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I. INTRODUCTION

“It has been said that there exists no general theory of liquids because it is
impossible to utilize the simplifying conditions either of the kinetic theory of gases
[1] where the density is small, or the theory of solids [2] where a high degree of
spatial order may be assumed. Yet a mathematical formulation of the problem
should be possible, without making such an assumption, since only the general
laws of mechanics and statistics are involved; though the solution itself may be
extremely difficult.”

With this introduction, Born and Green [3] began their formulation of what
has since been termed the “BBGKY hierarchy”. Historically, the acronym is
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correct only if the letters are read right to left. Yvon’s development [4] and that of
Kirkwood [5] appeared in 1935, whereas the Born–Green paper [3] and the article
of Bogoliubov [6] (see also Ref. 7) appeared in 1946 . Indeed, as noted in 1967
by Rushbrooke in his Spiers Memorial Lecture [8], not only did Yvon derive the
“BBGKY hierarchy,” stating explicitly the first and second equations [9], but he
also discussed the factorized structure of the equilibrium reduced distributions,
and derived the first two equations of “YBG theory [10].” Born and Green were
apparently unaware of Yvon’s earlier contribution (his work was not cited), and
obtained the same results a decade later.

Born and Green continue: “In the following we shall give a set of equations
which describes not only the equilibrium of a statistical assembly of molecules —
this could be done equally well by the methods of statistical mechanics —- but also
the dynamical properties. Our method consists of the introduction of not a single
distribution function as in the kinetic theory of gases, but a complete set of such
functions for singlets, doublets, triplets, and so on, of molecules in the assembly,
and depending not only on position and velocity, but also on higher derivatives
with respect to the time.”

For pairwise additive interactions, the functions being described, distributions
of singlets, doublets, triplets, and so on, are linked, for example, the doublet
distribution function satisfying an integral equation in which the triplet distribution
function must be specified, the triplet distribution function satisfying an integral
equation in which the distribution function for a quartet of particles must be
specified, and so on, leaving us ultimately with only one equation for the N-particle
distribution function. As noted by Kirkwood in his formulation of the hierarchy
equations [5], unless some closure is introduced to truncate the hierarchy, “we are
driven back to the many dimensional phase integrals with which we started.”

To address this problem, Kirkwood [5] suggested a closure appropriate for
gases at moderate density, and then one more appropriate for a dense fluid; today,
the latter closure is referred to as the Kirkwood superposition approximation. An
extensive literature has grown up assessing the consequences of adopting this
closure (as will be referenced later in this section). Some authors simply regard
the KSA as a convenient mathematical simplification, a “working hypothesis” to
obtain solutions to the derived nonlinear integral equation(s).

Lost in this characterization is Kirkwood’s rationale for introducing the closure.
It was inspired by Onsager’s 1933 paper [11] on the theory of concentrated
electrolyte solutions, which advanced a method for taking into account fluctuating
forces in calculating thermodynamic functions.

Drawing on insights presented in earlier contributions of Maxwell [12], Gibbs
[13], Boltzmann [14], Einstein [15], and Smoluchowski [16], Onsager [11] defined
a potential “which (for the case of fluctuating forces) replaces the energy in the
Maxwell–Boltzmann distribution,” a potential he identified as “the potential of
average force.” In the literature, this potential Wn, also referred to as the “potential
of mean force,” is defined as follows:
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Wn = −kT ln gn,

Here gn is the n-particle reduced distribution function.
To obtain the potential of mean force for a subset of molecules of an N-particle

system, we are back to the problem of solving a set of N −1 simultaneous integral
equations in which the number of fixed molecules i, j, . . . , l, ranges from 1 to
N − 1. Kirkwood, arguing by analogy (see later), proposed that in condensed
systems: “An obvious and simple approximation may be obtained by assuming
superposition in the potentials of mean force.”

Thus, for example, the three-body potential of mean force W3 is expressed as
the sum of three two-body potentials W2,

W3(i, k, s) = W2(i, k) + W2(i, s) + W2(k, s),

with the equivalent statement in terms of three-particle distribution functions being

g3(i, k, s) = g2(i, k)g2(i, s)g2(k, s).

Before introducing this closure, Kirkwood [5] commented on the assumption
of pairwise additivity in representing the potential of intermolecular forces VN ,
noting that this assumption “in no way excludes the simultaneous interaction of
groups of more than two molecules. It simply states that in such a group, the mutual
potential energy of any pair is independent of the presence of other molecules.”
In a similar spirit, on introducing the additivity assumption for the potential of
mean force, Kirkwood again emphasized that for three particles i, k, and s, this
assumption “holds for the direct action of i and k on s,” but “it cannot hold exactly
for their indirect action on s through their effect on the distribution of the remaining
N−3 molecules.” He then outlined an approach based on the theory of fluctuations
to assess the magnitude of the discrepancy introduced (by calculating “third-order
fluctuations”), and gave physical arguments to suggest where the approximation
would be acceptable, for example, if “s and k are situated at some distance from
each other so that their spheres of influence on the distribution of a third molecule l,
do not overlap appreciably.”

Comprehensive summaries of the distribution function approach to calculate
the properties and stability of fluid phases have been presented in monographs
by Green [17], I. Z. Fisher [18], Rice and Gray [19], Cole [20], Croxton [21], and
Baus and Tejero [22] and in the reviews of Rushbrooke [8], Barker and Henderson
[23], Caccamo [24], and Grouba et al. [25].

Representative of this body of work are the foundational analytic and numerical
studies of Kirkwood, Alder, and their colleagues [26–31] on the first equations of
the hierarchy under the Kirkwood closure. These led to unexpected insights on
the behavior of dense fluids, for example, that a system of particles interacting via
purely repulsive forces could exhibit a phase transition.
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Subsequently, Rice et al. [32–34] calculated corrections to the KSA for
potentials having both repulsive and attractive parts and, on analyzing the sign
and magnitude of these corrections, suggested that [19] “it is entirely possible that
with realistic potentials and densities the cancellation among the terms correcting
the superposition value of g3(1, 2, 3) may be almost complete.” Of immediate
relevance to the problem considered in this review, for both the simple and mod-
ified forms of the YBG equation, Young and Rice [34] obtained the equation of
state for the square-well fluid, characterized the fluid–solid transition, and showed
numerically that there was a region where the isothermal compressibility exhibited
a pronounced maximum, with the range of pair correlations extremely long.

As one consequence of finding that loss of stability of the fluid phase could
be studied using a distribution function approach, Rice and others [35–39] used
theorems drawn from bifurcation theory to analyze the first and second hierarchy
equations (nonlinear integral equations) under the KSA. Necessary conditions
were established to determine whether increase in an order parameter (e.g., the
density) might lead to the emergence of multiple solutions, thus signaling the onset
of a new phase.

In the late 1970s, reports that numerical solution of the YBG equation using
Kirkwood’s closure for a system of particles interacting via the square-well
potential led to critical exponents with values in substantial agreement with
experiment [40–46] triggered new analytic studies, which led to valuable insights
on the stability of the fluid phase in the neighborhood of the critical point [47–50].

This review summarizes a new analytic approach to study the stability of fluid
phases, with the results obtained supported by numerical studies (also summarized
here). We comment first on the choice of intermolecular potential adopted, the
square-well potential. Both Yvon and Kirkwood chose this potential to “test
drive” their theory, the former to calculate the second virial coefficient with
application to nitrogen and helium and the latter to illustrate the form of the pair
distribution function g2. Although only a many-parameter potential function can
adequately represent the subtle interactions between atoms or molecules, there
is a belief, articulated by Widom [51], that if such a potential function were
idealized as a square-well potential, but “the statistical mechanical consequences
of such a potential were then determined without further approximations, there
would undoubtedly result an essentially correct description of all the macroscopic
properties of matter throughout a vast region of the P,T plane, including the
neighborhoods of the triple and critical points.”

This insight provides a conceptual rationale for our choice of the square-well
potential. Given the emphasis on the square-well potential in previous studies, this
choice of potential also has the pragmatic advantage that it allows us to contrast
and distinguish our results from those reported earlier. From an analytic point
of view, the significant advantage gained is that the square-well potential can be
represented in terms of Heaviside step functions allowing a number of calculations
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to be performed analytically that would be impossible to carry out for a more
realistic, many-parameter potential.

An integrated, self-contained presentation of our analytic approach, proceeding
from the BBGKY hierarchy equations, and including insights drawn from the
Baxter hierarchy, is presented in Sections II–VII and in Appendices A and B.
In Section VII, the principal results obtained are summarized, and we highlight
several outstanding questions in the theory that remain unresolved.

II. YBG EQUATION FOR A SQUARE-WELL FLUID

The program introduced by Yvon, Kirkwood, Born, Green, and Bogoliubov was
formulated to account for both nonequilibrium and equilibrium properties of the
states of matter. Accordingly, we include in Appendix A the dynamical description
of the square-well fluid based on the hierarchy of equations for the multiparticle
distribution functions. From this, we derive therein the second BBGKY hierarchy
equation for a square-well fluid at thermal equilibrium. Although the equilibrium
hierarchy can be deduced directly from the structure of the equilibrium Gibbs
ensemble, its most fundamental derivation is that from the dynamical hierarchy,
where it appears as describing a stable-state invariant under the microscopic
evolution. Hopefully, the derivation presented in Appendix A will be useful for
studies of nonequilibrium transport processes in square-well fluids.

We begin our study of the second BBGKY hierarchy equation at thermal
equilibrium drawing upon analytic methods developed and numerical results
obtained in Refs. [52–55]. We thus consider a fluid composed of spherical particles
with hard-core diameter σ and an attractive square-well pair potential

U(r) = −Eθ(λσ − r), (1)

where E > 0, λ > 1, and θ is a unit Heaviside step function.
At equilibrium, the reduced spatial distributions n2(r1, r2) and n3(r1, r2, r3)

representing number densities of pairs and of triplets of particles, respectively,
can be conveniently written as

n2(r1, r2) = n2 χB(r12) y2(r12),

n3(r1, r2, r3) = n3 χB(r12)χB(r13)χB(r23) y3(r12, r13, r23) (2)

where n is the number density, rij = |ri − rj| denotes the distance between the
particles situated at points ri and rj, and χB is the Boltzmann factor corresponding
to the square-well interaction

χB(rij) = θ(rij − σ)θ(λσ − rij) B + θ(rij − λσ), (3)
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where

B = exp
(

E

kBT

)
. (4)

The dimensionless functions y2 and y3 are supposed to be continuous and
differentiable.

Starting from the dynamical BBGKY theory, we derived (see Appendix A) the
second YBG hierarchy equation (A.28), which can be simply written using the
Dirac δ-distributions

d

dr
y2(r) = n

�
dσ̂ (σ̂ · r̂)

� ∞
0

ds s2 [δ(s − σ)B + δ(s − λσ)(1 − B)] (5)

× χB(|sσ̂ − r|)y3(r, s, |sσ̂ − r|),
where

�
dσ̂ denotes the integration over three-dimensional solid angle, and r̂ is a

unit vector defined by r = rr̂.
The KSA

y3(r, s, t) = y2(r)y2(s)y2(t) (6)

leads then to a closed nonlinear equation for the radial distribution y2(r). Putting
r = σx, we write this equation for the dimensionless function Y(x) = y2(σx)

d

dx
ln Y(x) = nσ 3

�
dσ̂ (σ̂ · x̂ ) [χB(|x − σ̂ |)Y(1)Y(|x − σ̂ |)B (7)

− λ2χB(|x − λσ̂ |)Y(λ)Y(|x − λσ̂ |)(B − 1)],
where the Boltzmann factor (see (3)) takes the form

χB(x) = θ(x − 1) [1 + θ(λ − x)(B − 1)] . (8)

We next define the correlation function

H(x) = Y(x) − 1, (9)

subject to the condition

lim
x→∞ H(x) = 0. (10)

We now derive from Eq. (7) an integral equation making essential use of the
boundary condition (10). Putting μ = (σ̂ · x̂ ), and denoting by φ the volume
fraction

φ = πnσ 3

6
(11)
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we get

d

dx
ln Y(x) = 12φ

� 1

0
dμμ

{
Y(1)B

[
f (

√
x2 − 2xμ + 1) − f (

√
x2 + 2xμ + 1)

]
(12)

−λ2Y(λ)(B − 1)
[
f (

√
x2 − 2xμλ + λ2) − f (

√
x2 + 2xμλ + λ2)

]}
,

where for convenience we used the notation

f (x) = χB(x) Y(x). (13)

Integrating both sides of Eq. (12) over the interval (x, ∞), we derived [54]
the integral equation for Y(x). Our analysis revealed an interesting fact that the
structure of the equation changed when the range of the attractive well crossed the
threshold value λ∗ = 2. In the two cases λ = 1.4 and λ = 1.85 studied here,
the equation acquires the form

ln Y(x) = 12φ

{
−Y(1)B

[
1

2x

� x+1

x−1
ds sf (s)[1 − (x − s)2] − 2

3

]
(14)

+ Y(λ)(B − 1)

[
1

2x

� x+λ

|x−λ| ds sf (s)[λ2 − (s − x)2] − 2

3
λ3

]}
.

Equation (14) is the starting point of our subsequent analysis.

III. ASYMPTOTIC DECAY OF CORRELATIONS:
EXPONENTIAL MODES

Historically, several analytic methods have been introduced to determine the
limits of stability of fluid phases [18, 26, 27, 35–39]. We present here a method
based on studying the large-distance behavior of correlations between the density
fluctuations. The loss of stability of a given phase is signaled then by the qualitative
change in the law governing the decay of the pair correlation function. For
instance, in the case of an approach toward the liquid–vapor critical point along the
critical isotherm, the exponentially damped monotonic decay is replaced by a non-
integrable power law implying the divergence of the isothermal compressibility.

To implement this approach, we consider Eq. (14) in the region of x � 1. Using
the fundamental assumption (10) about vanishing of correlations when x → ∞,
we replace on the left-hand side of Eq. (14) the function ln Y(x) = ln[H(x)+1] by
H(x). On the right-hand side, we use the fact that in the region s > λ the function
χB(s) ≡ 1. The resulting integral equation that holds when x � 1 reads
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xH(x) = 6φ

{
−Y(1)B

� x+1

x−1
ds sH(s)[1 − (s − x)2] (15)

+Y(λ)(B − 1)
� x+λ

x−λ
ds sH(s)[λ2 − (s − x)2]

}
.

Equation (15) is an exact consequence of the superposition approximation valid
asymptotically at large distances provided the correlation function is integrable.
No additional approximations have been introduced making the present approach
more suitable to study the consequences of adopting the Kirkwood closure than
other analyses in the literature. For example, our approach is different from that
developed in Ref. 47, and developed extensively in Refs. 48 and 49. In the
regime of large compressibility, the analyses presented in Refs. 47–49 proceed
by inserting into the YBG equation (7) a large-distance expansion, retaining a
few lowest order terms. Thus, an additional approximation was introduced in the
analysis. The equation studied by Fisher and Fishman [48, 49] is not the integral
equation (15), but a second-order nonlinear differential equation, which results
from combining (7) with the constructed moment expansion, terminated at the
second-order term.

In order to pursue our study of the asymptotic decay of the correlation function
H(x), we insert into Eq. (15) the exponential mode

xH(x; κ) = exp(κx), (16)

where κ is a complex number. H(x; κ) is a solution of Eq. (15) provided the
parameter κ satisfies the condition

1 = 24φ [ λ3Y(λ)(B − 1)F(λκ) − Y(1)BF(κ)], (17)

where the function F is defined by

F(κ) = [κ cosh κ − sinh κ]
κ3 =

∞∑
n=0

κ2n

(2n + 3)(2n + 1)!

= 1

3

[
1 + κ2

10
+ κ4

280
+ · · ·

]
. (18)

On the real axis, F(κ) attains its absolute minimum at κ = 0, where F(0) = 1/3.
In order to determine the actual asymptotic decay law of the correlation

function H(x), we have to find the exponential mode (16) whose frequency

κ = a + ib = −|a| + ib (19)

has the smallest value of |a|, and represents thus exponential damping with the
longest range |a|−1.
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Clearly, the value of κ depends on the volume fraction φ, and on the temperature
via B = exp(E/kBT). So, we fix the temperature and consider solutions of Eq. (17)
when the state of the system is changing along an isotherm B = exp(E/kBT) =
const. We wish to study the possibility of a loss of stability of a given phase of the
system reflected by asymptotic vanishing of the real part a of the slowest decaying
mode. Here, two cases can occur. It may happen that when the volume fraction
approaches some value φ0, both real and imaginary parts of κ tend to zero. Another
possibility is that only the real part vanishes, but the imaginary part b remains
different from zero. The latter case has been already discussed in our studies of
hard-sphere systems [52, 53].

Consider the case of vanishing of κ . Introducing the quantity


 = 1 + 8φ [ Y(1)B − λ3Y(λ)(B − 1)] (20)

and taking the limit κ → 0 on both sides of Eq. (17), we find the relation


 = 0. (21)

We also note that for real κ � 1, Eq. (17) takes the asymptotic form (see the series
expansion in (18))


 = 4

5
φ [λ5Y(λ)(B − 1) − BY(1)] κ2. (22)

The range of the correlation function grows thus as 1/
√


 when 
 approaches
zero.

For a given λ, 
 is a function of volume fraction and temperature. Its vanishing
defines a line of absolute stability in the plane (φ, T). Crossing the line (21) makes
the exponential damping disappear, leading to a diverging spatial integral of H(x).

When the temperature increases, the parameter B approaches 1, so that the term
involving (B − 1) in (20) tends to zero, yielding a strictly positive value of 
. It
is thus clear that isotherms corresponding to sufficiently high temperatures do not
cross the line of stability 
 = 0.

The numerical evidence shows that

Y(λ) < Y(1). (23)

If (23) holds, then Eq. (21) can be satisfied only if

λ3
[

1 − 1

B

]
= λ3

[
1 − exp

( −E

kBT

)]
> 1. (24)

In accordance with the previous remark, (24) imposes an upper bound for temper-
atures for which equation 
 = 0 can be satisfied.
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In order to identify the critical point on the curve 
 = 0, we present an analysis
of the behavior of the exponential mode (16) as the threshold value κ = a + ib = 0
is approached. We follow here closely the method developed by I. Z. Fisher [18]
supposing that on an isotherm at some volume fraction φ0 the exponential damping
vanishes, so that a(φ0) = b(φ0) = 0. Therefore, when φ approaches φ0, we write

φ = φ0 + δφ, κ = δa + iδb,

where δφ � 1, δa � 1, and δb � 1.
Equation (17) then takes the form

1 = 24(φ0 + δφ) [ λ3Y(λ; φ0 + δφ)(B − 1)F(λ(δa + iδb))

− Y(1; φ0 + δφ)BF(δa + iδb)]. (25)

Using the series expansion (18) of function F, and, retaining terms up to the
second order in deviations δa and δb, we obtain two conditions by considering the
real and the imaginary part of Eq. (25). The conditions read

B

(
φ0

∂Y(1; φ0)

∂φ0
+ Y(1; φ0)

)
δφ + B

10
φ0Y(1; φ0)[(δa)2 − (δb)2] (26)

= (B − 1)λ3
(

φ0
∂Y(λ; φ0)

∂φ0
+ Y(λ; φ0)

)
δφ

+ (B − 1)

10
φ0λ

5Y(λ; φ0)[(δa)2 − (δb)2]
BY(1; φ0)δaδb = λ3(B − 1)Y(λ; φ0)δaδb. (27)

These have to be considered together with the threshold line equation 
(φ0) = 0.
As δa 	= 0, Eqs. (21) and (27) are compatible only if δb = 0. We thus arrive at

an interesting conclusion that the asymptotic approach to the κ = 0 instability can
occur only along the real axis. In particular, the theory predicts monotonic decay
of correlations in the immediate vicinity of the critical point. This fact supports
the interpretation of the line of stability (21) as representing the absolute stability
limit for the fluid (liquid or vapor) phases.

Inserting δb = 0 into (26) and using Eq. (21), we derive an asymptotic relation
between δa and δφ of the form[

φ0(B − 1)λ3(λ2 − 1)Y(λ; φ0) + 1

8

]
(δa)2 = 10φ0 �(φ) δφ, (28)

where

�(φ) = B
∂Y(1; φ)

∂φ
− λ3[B − 1]∂Y(λ; φ)

∂φ
− 1

8φ2
. (29)

We note that when �(φ) 	= 0, Eq. (28) can be satisfied only if δφ has the
same sign as �(φ). This means that on the corresponding isotherm, the point
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φ0 separates stable states from unstable states. But when �(φ0)= 0, the relation
between δa and δφ changes its nature because then the lowest order term in the
expansion in δφ is proportional to (δφ)2. So, if a solution with δφ > 0 exists,
there is also a solution with δφ < 0. A principal conclusion of this study is that if
�(φ0) = 0, the neighborhood of φ0 on the isotherm is composed of stable states
with exponentially decaying correlations reflecting the fact that the point at φ0 is
an isolated point where the exponential damping responsible for the monotonic
decay of correlations disappears. Such a characterization of the critical point was
proposed already in 1964 by I. Z. Fisher in his monograph [18].

Noting that

∂


∂φ
= 
 − 1

φ
+ 8φ

[
B

∂Y(1)

∂φ
− λ3[B − 1]∂Y(λ)

∂φ

]
(30)

= 


φ
+ φ�(φ),

we see that at the point φ0 on the limit of stability line 
 = 0, the relation �(φ) = 0
takes the form

∂


∂φ
|φ=φ0 = 0. (31)

Equations 
(φ0) = 0, and (31) taken together define the critical temperature
and the critical volume fraction of the vapor–liquid phase transition. There remains
now to answer the fundamental question of whether these equations can be
satisfied by solutions of the integral equation (14) allowing the critical behavior.
And to answer this question, the contact values Y(1) and Y(λ) as functions of
the volume fraction and temperature are needed, which requires solving the full
nonlinear integral equation (14).

IV. CONSISTENCY QUESTIONS

Before presenting in Section V numerical solutions of the integral equation (14),
we discuss here an important conceptual problem related to the use of the radial
distribution determined within the KSA in the derivation of the equation of state.
In particular, to calculate the pressure we have to choose between the virial and
compressibility pressures, as these two cease to be consistent with each other once
an approximate distribution is used. We give in the following arguments in favor
of the compressibility equation.

If the system attains the limit of stability line (21), the correlation function
decays as 1/x so that the integral in the following compressibility equation
diverges:

kBT
∂n

∂p
= kBTnKT = 1 + nσ 3

�
dx [χB(x)Y(x) − 1]. (32)
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The appearance of an infinite compressibility KT is a consequence of vanishing of
the exponential damping. Equation (32) would thus lead to physically satisfactory
predictions within the KSA if the latter could drive the system to the loss of
stability: at the critical point, the compressibility would become infinite.

It is significant that this important prediction disappears when we consider the
virial equation of state

p

nkBT
= 1 + 2

3
nπσ 3

[
BY(1) − λ3(B − 1)Y(λ)

]
. (33)

In terms of the function 
 defined in Eq. (20), it simply reads

p

nkBT
= 1 + 


2
. (34)

Differentiating with respect to n yields the relation

1

kBT

∂p

∂n
= 1

2

(
1 + 
 + n

∂


∂n

)
. (35)

The virial pressure on the limit of stability line satisfies the relation(
p

kBTn

)

=0

= 1

2
. (36)

Equation (36) should hold in particular at the critical point, yielding a classical,
unsatisfactory value of the critical ratio. Moreover, when the condition for the
occurrence of the critical point (31) is satisfied, we find(

1

kBT

∂p

∂n

)

=0,∂
/∂φ=0

= 1

2
. (37)

So, we are led immediately to the conclusion that, according to the virial equation
of state, the compressibility would remain finite at the critical point that is rather
unphysical. Clearly, within the KSA, the virial equation is inconsistent with the
compressibility equation. And it follows at once that to derive an equation of state
that properly characterizes criticality within the KSA, the compressibility relation
(32) should be used. A similar suggestion can be found in Refs. 48 and 49.

An analogous situation was encountered in the study by Baxter [56] of the
thermodynamic properties of a fluid of hard spheres with surface adhesion, where
the Percus–Yevick approximation was solved analytically for a special limit of
a square-well potential with infinite depth and vanishing range. The system was
shown to suffer a first-order phase transition with a critical point. Whereas the
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compressibility equation led to the behavior “very reminiscent of a Van der Waals
gas,” with diverging compressibility at the critical point, it was found that “the
virial pressure does not correspond to an infinite compressibility at the critical
point, and below the critical temperature there is a range of values of the pressure
for which each isotherm does not exist. Such behavior is quite unphysical.” In
an earlier paper, [57] Baxter presented convincing arguments in favor of “the
suggestion of Percus and Yevick that in the context of their approximation it
is appropriate to obtain the pressure from the compressibility relation, rather
than the virial theorem.” We arrived here at the same conclusion in the study of
the KSA.

These comments raise the general question of “consistency” between the virial
equation of state and the compressibility equation, one that can be addressed if
one uses the exact YBG hierarchy in concert with the exact hierarchy introduced
by Baxter [58]

{
kBTn2KT

∂

∂n
− k

}
nk hk(r1, . . . , rk)

=
�

drk+1nk+1hk+1(r1, . . . , rk+1) k = 1, 2, 3, . . . . (38)

Here, hk is the k-particle dimensionless correlation function, and KT denotes the
isothermal compressibility. We present the proof of consistency in Appendix B.

These remarks are important because they show the inadequacy of the virial
equation to predict physical properties of fluids whose states are described within
the KSA. There exists some confusion in the literature on this point. For instance,
I. Z. Fisher [18] assumes the vanishing of the right-hand side of (35). As this
does not follow from the basic integral equation (14), he has to go beyond the
superposition approximation and invoke the mean field theory, all this to force
consistency of the virial equation with the divergence of compressibility. Such a
reasoning led Fisher to conclude that the limit of stability line (21) cannot contain
a critical point, a statement with which we disagree.

Moreover, we wish to stress that on the line (21), and in particular at the
critical point, the relation (36) invoked by some authors (see e.g., Refs. 18 and
59) cannot be presented as the result of the Kirkwood closure. It is the result
of combining the relation 
 = 0 (see (20)), which results from the KSA with
the virial equation (33). Such a combination should be abandoned because of
the earlier described inconsistency of the virial equation with the divergence
of compressibility at the critical point. That Eq. (36) does not follow from the
KSA when the compressibility pressure is used rather than the virial pressure is
illustrated by the fact that the critical ratio calculated numerically on the basis of
YBG equation [41] does not exceed then 0.35.
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V. FREEZING, THE CRITICAL REGION AND THE
CRITICAL POINT

The fundamental question raised in this review is that of the limits of stability of
various phases of a square-well fluid as predicted by the YBG equation under the
KSA. Our analytic approach consisted in studying changes in the long-distance
decay of correlations occurring when the volume fraction is increased at fixed
temperature. The basis of the analysis was the integral equation (14) derived
under the assumption of integrability of the correlation function. It implied the
asymptotic decay of the following form, as corroborated numerically:

H(x) ∼ exp(−ax)

x
cos b, a > 0 (39)

When a vanishes, the correlation function ceases to be integrable, the phase loses
completely its mechanical stability, and a structural phase transition follows. There
are two possibilities for the arrival at the absolute stability limit. The first, already
known from the study of hard-sphere systems [52, 53], consists in the vanishing of
the damping factor a with, however, b 	= 0. In this case, we observe the approach
to long-distance undamped oscillations, which we interpret as the occurrence of
a freezing transition. In the study of square-well systems, we anticipated this
behavior when increasing the volume fraction along relatively high-temperature
isotherms. And indeed, the numerical solution of the integral equation confirmed
the existence of a freezing transition, reminiscent of the behavior of hard-sphere
fluids [52, 53]. This transition was clearly illustrated for a square well of range
λ = 1.85 on the isotherm B = exp(E/kBT) = 1.2 (see Fig. 1): the damping
of oscillations becomes weaker and weaker with increasing volume fraction φ,
disappearing at the threshold value φ0 ∼ 0.52. We conclude that adopting the
Kirkwood closure in the second equation of the BBGKY hierarchy for a fluid at
equilibrium predicts for square-well fluids the existence of an absolute stability
limit which may signal freezing.

x
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H(x) g(x)
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Figure 1. Left panel: correlation function H(x) for λ = 1.85, B = 1.2, and φ = 0.2 (solid) and
φ = 0.5 (dashed). Right panel: the corresponding pair distribution functions g(x) = χ(x)(1 + H(x)).
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As the temperature is decreased, at B = 1.5 and B = 1.8 (see Fig. 2), the region
in which the decay of the correlation functions is non-oscillatory in character shifts
toward smaller densities. At the same time, the characteristic length scale on which
the correlation functions decay increases dramatically, particularly in the region of
intermediate densities. This is a manifestation of a new phenomenon, related to the
second possibility of losing mechanical stability where the asymptotic decay of the
correlation function H(x) becomes purely monotonic, without oscillations. This is
the case where moving along an isotherm, we find that the parameter κ = a + ib
(see (17)) approaches zero. Using the type of analysis elaborated by I. Z. Fisher
[18], we proved analytically that the approach of κ to zero is possible only along
the real axis, that is, with b = 0. The numerical evidence presented in Ref. 54
confirms this result. As illustrated in Fig. 3 for λ = 1.85, the purely real root κ

governs the decay of correlations at temperature B = 1.6 up to φ ∼ 0.37, contrary
to what was the case at a higher temperature B = 1.2 where oscillatory decay
takes over already at φ0 ∼ 0.15. At the same time, the magnitude of the real root
is very weakly dependent on the density in the range 0.1 < φ < 0.3, staying at a
level of 0.05 − 0.2, which is consistent with the observation of a very slow decay
of the correlation functions in this range, interpreted by us as the manifestation of
the existence of liquid–vapor stability limit. For higher densities, the magnitude
of the purely real root increases again and finally becomes larger than the smallest
root with a nonzero imaginary part. Next, as the temperature is further decreased
(at B = 1.8, see the solid curves in Fig. 2 and the right panel of Fig. 3), the region
of non-oscillatory decay shifts toward even larger densities.

The interesting question is whether, for the square-well fluid, one can
actually reach the absolute stability limit where κ = 0, implying an asymptotic,
non-integrable power-law decay H(x)∼ 1/x. As shown in Section VI, this question
includes the problem of existence of a critical isotherm containing the critical
point.

In our analytic considerations based on the integral equation (15), there appears
the quantity


 = 1 + 8φ[BY(1) − λ3(B − 1)Y(λ)],
the vanishing of which was shown to be equivalent to reaching the limit of stability
with κ = 0 . We thus directed the numerical analysis to a systematic study of 
 as
a function of temperature and volume fraction for square wells of ranges λ = 1.85
and λ = 1.4. From its definition, 
(φ = 0, B) = 1. The behavior for increasing
volume fraction is sensitive to the temperature.

Along high-temperature isotherms, 
 increases with φ, never reaching zero
(see, e.g., the case of λ = 1.85, B = 1.2, presented in Fig. 4). However, at lower
temperatures there occurs an important qualitative change: along isotherms B =
1.45, B = 1.5, and B = 1.8 (still at λ = 1.85), the function 
(φ, B) decreases, with
the initial slope becoming steeper at lower temperatures. This marks the beginning
of an approach toward the loss of stability. The approach to zero occurs already
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Figure 2. Upper panel: correlation function H(x) for λ = 1.85, B = 1.5 (solid) and B = 1.8 (dashed) for φ = 0.1 (left), φ = 0.25
(center), and φ = 0.45 (right). Lower panel: the corresponding pair distribution functions g(x) = χ(x)(1 + H(x)).
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Figure 3. The magnitude of the purely real root (dashed) and the smallest (in terms of Re(κ)) root with nonzero imaginary part
(solid) for λ = 1.85 and B = 1.2 (left), B = 1.5 (center), and B = 1.8 (right).
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Figure 4. The parameter 
 as a function of volume fraction for λ = 1.85 for different
temperatures corresponding to B = 1.2 (dot-dashed), B = 1.45 (solid), B = 1.5 (dotted), and B = 1.8
(dashed).

along the isotherm B = 1.45 on which the minimum attained by 
 equals 0.0126.
The minimum then widens and also becomes deeper. It has been established that
the curve φ → 
(φ, B = 1.6) decreases to a very small value of the order of 10−3.
For B = 1.45, a plateau appears where 
 remains very close to zero over intervals
whose width broadens with decreasing temperature.

We interpret the appearance of such a widening plateau where 
, although
positive, stays very close to zero as the way in which the YBG equation under the
KSA reveals the existence of the liquid–vapor transition. The “critical isotherm”
that marks the appearance of the plateau for lower temperatures would thus
correspond to B = 1.45 for λ = 1.85, and the “critical volume fraction” where
the minimum of 
 is attained was determined numerically to be φ = 0.19.
It is reasonable to assume that the plateau itself, although corresponding to
stable uniform states, may well signal the onset of a two-phase region. In this
interpretation, increasing the volume fraction beyond the plateau region should
mark the entrance into a pure liquid phase, behavior reflected by an increase of 


driving the system away from the absolute stability line (21). Further increase of
the volume fraction leads to freezing, as signaled by the approach to undamped
oscillatory behavior of correlations. The behavior of the system at λ = 1.4 is
discussed in Ref. 54 where, once again, the values of 
 found from the numerical
analysis are always positive.

The overall picture emerging from the numerical analysis suggests the con-
clusion that the line of stability 
 = 0, and in particular the conditions for the
critical point, cannot be exactly satisfied by the solutions of the integral equation
(14). However, based on our interpretation of the numerical results, the position of
the “absolute stability line,” and of the “critical isotherm” can be approximately
localized.

The analysis of the critical behavior presented by Fisher and Fishman [48, 49]
led to a similar conclusion: in three dimensions, the YBG equation cannot predict a
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“true criticality.” However, their conclusion was based on analysis of a nonlinear
differential equation derived by invoking an additional approximation beyond
the KSA.

Here, we studied the consequences of the integral equation (14) representing
exactly the KSA, without additional approximations. Whereas our study does not
rule out decisively the possibility of reaching the line of stability, the analytic and
numerical results presented in Ref. 54 and reviewed here suggest that solutions of
(14) will be always stable, and thus lie outside this line.

Nonetheless, exploring this “near-critical” region reveals some fascinating
results. Already by the late 1970s, it was known that the values of the critical
exponents [α, β, δ, γ ] extracted from numerical solutions to the YBG equation
under the KSA had values in substantial agreement with accepted experimental
values, and further, they satisfied two of the (Griffiths) inequalities that involve
all four exponents [40–46]. Our more recent calculations have corroborated that
although the adoption of the Kirkwood closure appears to preclude the identifica-
tion of a “true” critical point, essentially correct values of the critical exponents can
be recovered via analysis of the compressibility in the regime of “intermediate”
distances from the “quasi” critical point. In extracting values of the critical
exponents, one must not go too far from the “quasi” critical point (else a power-
law behavior will no longer be observed), or not too close (since the dependencies
“flatten out” and cease to diverge as we approach the “near-critical” region).

It was also noted earlier [46] that if one used the virial equation for the pressure,
the value obtained for the critical ratio zc for a well-width λ = 1.85 was in
agreement with the one reported in Ref. 34, namely, for λ = 1.5, namely, zc =
0.48 ± 0.02, essentially the mean field value, zc = 0.5. Significantly, however, if
one used the compressibility equation for the pressure [46], the estimated value of
the critical ratio zc = 0.2914 ± 0.0087 was in near agreement with experimental
data on the inert gases.

Given these analytical and numerical results, we are left with the question of
whether the nonexistence of a critical point can be proved rigorously starting from
the YBG equation under the Kirkwood closure. This remains an open question.
As we shall show in the following section, a different strategy can be adopted
to explore this question by applying the KSA within the Baxter hierarchy [58]
(see also Ref. 60).

VI. PROOF OF NONEXISTENCE OF A CRITICAL POINT: THE
KIRKWOOD CLOSURE APPLIED TO THE BAXTER

HIERARCHY

We present an analytic argument to show that the application of the KSA to
the second equation of the Baxter hierarchy (38) precludes the existence of a
“true” critical point. Owing to the structure of the hierarchy the argument holds
irrespective of the dimension of the system and the specific form of the interaction
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potential. Of course, this does not answer the question stated at the end of
Section V because the radial distributions obtained from the Kirkwood closure
applied to different exact hierarchy equations are different.

Of central importance is the radial distribution function g(r) = h(r) + 1.
To proceed, we consider the cluster decomposition of the three-particle number
density

n3(r12, r13, r23) = n3[ h3(r12, r13, r23) + h2(r12) + h2(r13) + h2(r23) + 1], (40)

which defines three-particle correlation functions h3. Using our earlier notation,
in the recent equations n is the density of a homogeneous fluid, and rij = |ri − rj|
denotes the distance between points ri and rj. We assume here that the potential
of interaction is spherically symmetric.

The correlation functions h2 and h3 satisfy the nonlinear equation

�
dr3 h3(r12, r13, r23) = 2

[�
drh2(r)

]
h2(r12) +

[
1 + n

�
drh2(r)

] ∂h2(r12)

∂n
,

(41)

involving the isothermal compressibility K(n, T) through the compressibility
equation (B.3). Equation (41) is the second equation of the hierarchy (38).

The superposition closure

n3(r12, r13, r23) = n3[1 + h2(r12)][1 + h2(r23)][1 + h2(r31)], (42)

when compared with (40), implies an approximate expression for the three-particle
correlation function

h3(r12, r13, r23) = h2(r12)h2(r13)h2(r23) + h2(r12)h2(r13)

+ h2(r13)h2(r23) + h2(r12)h2(r23). (43)

Upon inserting (43) into the integral relation (41) and integrating over the
variable r12, we find

�
dr

1

1 + h2(r)

∂h2(r)

∂n
=

[�
dr h2(r)

]2

1 + n
�

dr h2(r)
. (44)

Analysis of Eq. (44) allows us to prove that the critical point cannot be attained
within the KSA by showing that assuming the existence of a critical isotherm leads
to a contradiction.

Suppose there exists an isotherm T = Tc such that when the density n
approaches some critical value nc, the isothermal compressibility KT(n, Tc)

defined in (32) diverges. This happens because at n = nc, the function h2(r)
becomes non-integrable, showing a slow power-like decay at infinity. A necessary
condition is that both sides of Eq. (44) should diverge in the same manner.
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As h2(r) → 0 when r → ∞, the large distance decay of the integrand on the
left-hand side of Eq. (44) coincides with that of the derivative ∂h2(r)/∂n . So,
when n → nc, the dominant (supposed diverging) contribution to the left-hand
side behaves like

∂

∂n

(�
dr h2(r)

)
T=Tc

= ∂

∂n

[
kBTcKT(n, Tc) − 1

n

]
. (45)

In other words, the left-hand side of (44) diverges like the derivative of the
compressibility.

Now, the diverging contribution to the right-hand side has the form

1

n

�
drh2(r) = 1

n2 [nkBTKT(n, Tc) − 1],
and behaves thus (up to a factor) like the compressibility. Equation (44) thus
requires that the derivative with respect to the density of the compressibility
at the approach to the critical density diverges exactly in the same way as the
compressibility itself. This is however not possible. If one assumes the power-
law divergence for the critical behavior, K(n, Tc) ∼ (n − nc)

−γ , γ > 0, then
the left-hand side of (44) diverges as (n − nc)

−(γ+1), whereas the right-hand side
diverges as (n−nc)

−γ , which is incompatible. Hence, there is a contradiction with
the assumed divergence of the compressibility, leading to the conclusion that the
existence of a critical isotherm, and thus of a critical point, is ruled out when the
KSA is applied to the general relation (41).

The analysis presented before has been based on the relation (41) between
the two- and three-particle correlation functions involving compressibility. This
relation generalizes the compressibility equation (32) to higher order correlations,
and is therefore particularly well suited to study the possibility of attaining a
critical point, where the compressibility becomes infinite. As we stressed earlier,
the relation is general, valid in any dimension. It does not depend on any specific
form of interaction. Rather, the relation (41) follows directly from the structure of
the equilibrium Gibbs ensemble.

The result obtained is consistent with conclusions reached in analytical and
numerical studies of the three-dimensional square-well fluid based on the YBG
hierarchy equations assuming the KSA. In Refs. 49 and 54, the authors concluded
that within the superposition approximation, no true criticality could be attained.
However, mean-field criticality in dimension d > 4 was predicted in Ref. 49.
Our analytic result, which was derived starting from exact relations between the
correlation functions, rules out the possibility of a critical point in any dimension.
Thus, the predictions of the mean-field criticality in dimensions d > 4 obtained in
Ref. 49 would appear to be a consequence of applying KSA to the YBG hierarchy,
rather than to the Baxter hierarchy, and possibly also, of using an approximation
beyond the KSA to derive the nonlinear differential equation on which the analysis
in Ref. 49 was based.
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Similarly, in numerical studies of the YBG integral equation under KSA, the
presence of a critical point in dimensions d = 5 and d = 6 seemed to be implied
by the numerical evidence (see Ref. 50). However, as the authors comment, a
numerical proof of the critical point can never be rigorous, inasmuch as numerical
solutions cannot be constructed arbitrarily close to the critical point, and one must
rely on the extrapolation procedures instead.

In summary, we have shown that the KSA applied directly to the spatial integral
of the three-particle correlation function leads to a result incompatible with the
existence of a critical point.

VII. DISCUSSION, CONCLUSIONS, AND OPEN QUESTIONS

The analytic approach taken here was introduced in our earlier studies on a system
of particles interacting via purely repulsive forces, namely, the hard-disk and hard-
sphere fluids [52], and hard hyperspheres [55]. There, a new method for studying
the asymptotic decay of correlations, first described in Ref. 61, was presented.
Specifically, for the hard-sphere fluid [52], we found that exponential damping
of oscillations becomes impossible when λ = 4nπσ 3[1 + H(1)] ≤ 34.81, where
again H(1) is the contact value of the correlation function, n is the number density,
and σ is the sphere diameter, in exact agreement with the condition λ ≤ 34.8,
first reported in a numerical study of the Kirkwood equation [28]. Adapting our
analytic method to the case of a system of molecules interacting via both repulsive
and attractive forces, the square-well fluid, we have shown conclusively that the
YBG equation under the Kirkwood closure can account for the existence of limits
of stability corresponding to both the fluid–solid transition and the fluid–gas
transition [54], with the near-critical region characterized by essentially correct
values of the critical exponents (see Refs. 40–46 and discussion later).

It is intriguing that the YBG equation under the Kirkwood closure can describe
the unusually strong growth of the correlation length in the near-critical region,
leading to a significant increase in the fluid compressibility. Moreover, as noted
earlier, our results show that critical-like behavior is captured to such an extent
that one can extract from numerical solutions of the YBG equation under the KSA
exponents characterizing the behavior in the near-critical region.

The calculated exponents are quite close to those characterizing real critical
behavior for the inert gases, and predicted by the group renormalization approach.
Beyond the evidence reported in Refs. 40–46, we presented in Fig. 5 a plot of
the isothermal compressibility KT as a function of the volume fraction φ in the
vicinity of a critical point. Fitting values of KT to the functional form KT(φ)=
|φ − φc|(δ−1) yields δ = 4.65 ± 0.2, a value congruent with the result reported
earlier [42], and close to the Ising exponent (δ ∼ 4.8). Thus, the YBG equation
under the Kirkwood closure not only predicts the loss of stability corresponding
to a fluid–crystal transition but also informs us about a region of thermodynamic
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Figure 5. The isothermal compressibility, κ , as a function of the volume fraction, ϕ, in the
neighborhood of a critical point. Filled circles: the values of κ obtained from the iterative solution of
the integral equation along the isotherm B = 1.455. Solid line: a fit to the functional form κ (ϕ) =
|ϕ − ϕc|δ−1 yields δ = 4.65 ± 0.2, a value congruent with the result reported earlier (32), and close to
the Ising exponent (δ ≈ 4.8). The fit is performed in the range |ϕ − ϕc| < 0.09 excluding the regions
in the immediate neighborhood of the critical point, where the function becomes concave.

parameter space where an important structural change appears, one character-
ized by a strong growth in the range of correlations, a fact that is observed
experimentally.

In order to assess the consequences of the KSA, we also analyzed the predic-
tions of the Baxter hierarchy (38) under the Kirkwood closure. The most important
result obtained along these lines is the nonexistence theorem proved in Ref. 55 (see
Section VI). There, an analytic argument was given to show that application of
the KSA to the description of fluid correlation functions precludes the existence
of a critical point irrespective of the dimension of the system and the specific
form of the interaction potential. The essence of the proof was to show that the
superposition approximation is inconsistent with the existence of a singularity
of the isothermal compressibility, and thus of a critical point. It would appear,
therefore, that in adopting the Kirkwood closure, correlations will never acquire a
non-integrable power-law decay. We note that the Baxter hierarchy (38) has been
used recently to reveal the fundamental role of multiparticle correlations in the
appearance of a critical point [62].

It is important to realize that the KSA applied to the YBG equation generates a
radial distribution different from that obtained by using the same approximation to
close the Baxter hierarchy. From an analytic point of view, there is a fundamental
difference between the results obtained using these two exact hierarchies. Assum-
ing a divergent compressibility leads to a contradiction when the radial distribution
satisfies the Baxter equation under KSA. In contradistinction, when the same
closure is applied to the YBG equation, no obvious contradiction is found. Instead,
there result conditions for the existence of a critical point (Eqs. 21 and 31) to be
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satisfied by the solution of the integral equation, and, up until now, there exists
no analytic argument to answer the question of whether a solution satisfying such
conditions exists.

Yet, in three dimensions, both approaches agree qualitatively in the sense that
both indicate that the application of the Kirkwood closure to the description of
fluid correlation functions precludes the existence of a critical point. In the case
of the Baxter hierarchy, we could prove this conclusion analytically. For the YBG
hierarchy, we have up to now only the numerical evidence.

In Section IV, we presented arguments showing that the use of the compress-
ibility equation gives satisfactory results within KSA, whereas the virial formula
for the pressure yields unphysical results and should not be used. In particular, the
virial pressure led to a reported value [34] of zc = 0.48 ± 0.02 , essentially the
mean-field value, whereas the use of the compressibility equation for the pressure
gave a result [36], zc = 0.2914±0.0087, in substantial agreement with experiment.
The analysis presented in Appendix B addressed this discrepancy, and we proved
that the virial equation of state (33) and the compressibility equation (32) are, in
fact, consistent provided the correlation function h2(r, n, T) is related to the three-
particle correlation function h3 both by the Baxter equation (B.6) and by the second
YBG hierarchy equation (B.7).

In the course of our studies, we encountered a number of fundamental open
and challenging problems whose solution would mark important progress in
understanding the distribution function approach to the stability of fluid phases.
Among these open questions, we highlight the following:

1. Find an analytic argument that would show whether the YBG equation under
the Kirkwood closure applied to square-well fluids can or cannot account
for a critical point in d = 3 dimensions. An even more ambitious problem
would be to find an analytic answer to this question in arbitrary dimension,
especially in light of predictions made by Fisher and Fishman [48, 49].

2. Derive exact analytic predictions of the KSA for the special case of the
square-well fluid corresponding to the case of adhesive spheres.

This case corresponds to the special limit where the range of the
well shrinks to zero (λ − 1) → 0, its depth approaches infinity B =
exp(E/kBT) → ∞, but the product (λ − 1)B = α stays constant. The
last condition assures the existence of a well-defined asymptotic equation
of state.

The fluid of adhesive spheres was successfully studied by Baxter within
the Percus–Yevick approximation where a rigorous solution for the radial
distribution could be found [56]. It would be of great value to perform the
same program within the KSA, or, at least, explore rigorously the possibility
of a critical point.

3. Derive the properties of the radial distribution solving the second equation
of the Baxter hierarchy within the KSA.
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Performing this program would extend substantially our knowledge of
the consequences of the KSA. One of them is the nonexistence theorem pre-
sented here. However, it would be very interesting to explore the properties
of the resulting equation of state, and to check in particular whether it also
predicts the quasi-critical region discovered when using the YBG equation
(and whether the critical exponents calculated are classical or nonclassical).

4. Investigate analytically and numerically solutions of the YBG equation
strictly within the KSA in dimensions d > 4.

The problem of verifying the correctness of the prediction of mean-field
criticality in d > 4 by Fisher and Fishman is most challenging, especially
in the light of our nonexistence theorem. The real question here is to find a
way of solving the problem using exclusively the Kirkwood closure of YBG
without any additional approximations.

5. Following the original strategy applied by Alder to hard spheres [63],
evaluate numerically the radial distribution under KSA for square-well
fluids directly from the three-particle distribution without using any integral
equations. This program has been announced in Ref. 63, but to our knowl-
edge the planned molecular dynamics calculations were not carried out.

Alder’s paper [63] contains a remark that under KSA, the three-particle
distribution y3 (see Eq. 2) for equal-distance configurations takes the form

y3(r, r, r) = [y2(r)]3 (46)

A precise numerical evaluation of y3(r, r, r) permits thus to determine
the two-particle distribution from the relation y2(r) = [y3(r, r, r)]1/3. No
integral equation is needed. It turned out that y3 for hard spheres at contact
“can be expressed by a triple product of the pair distribution functions ...
to within a few percent accuracy.” Alder concluded in particular that “The
poor results previously obtained from the superposition approximation in the
liquid region are due to an extreme magnification of the error by the integral
equations in which it was introduced.” And, referring to the fact that in the
dense fluid and solid region for hard spheres the KSA turns out to be correct
within a few percent, he added the remark “... it is not appropriate to judge
the validity of an approximation in the liquid region by the accuracy with
which the fourth virial coefficient is calculated.”

Solving the problem 5 would give the most valuable information about
properties of the radial distribution within the KSA, predictions not modified
by the operators acting in the integral equations.

Finally, it needs to be noted that, at present, there is no analytical proof of the
existence of the critical point based on the full BBGKY hierarchy. Intriguingly, a
number of authors over the years have suggested a more complicated structure of
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the phase diagram in the critical region. In particular, Mayer et al. [64] showed that
reasonable assumptions about the behavior of the higher order virial coefficients
lead to the temperature Tm below which surface tension becomes nonzero slightly
lower than the temperature Tc below which a difference in densities is possible.
More recently, Woodcock [65] has suggested that the critical region consists of
a line of critical coexistence states of constant chemical potential. We are not
suggesting that there is necessarily a connection between the “near critical” region
uncovered in our study, and the structure of critical region emerging from the
above-mentioned papers. But it is intriguing that different styles of analysis have
led to questions on the proper interpretation of the near-critical region. Rigorous,
analytical results on the existence (or non-existence) of the critical point are
undoubtedly needed to get a deeper understanding of these problems.

The challenging problems formulated above show that the study of the physical
properties of fluids based on the BBGKY hierarchy under the KSA remains
an open research field both for analytic and for numerical studies. Clearly, this
approach to the problem of stability of fluid phases needs further investigation,
and it is our hope that this review will stimulate research in this direction.
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APPENDIX A: BBGKY HIERARCHY EQUATIONS FOR THE
SQUARE-WELL FLUID

The square-well binary interaction consists of a hard core of diameter σ , and an
attractive square well of depth E and range λσ , with λ > 1. Within the square
well, the potential is constant, so instantaneous collisional changes of velocities
occur only when the distance between a pair of particles becomes σ or λσ . In all
other configurations, the motion is free. This fact allows one to study the kinetic
theory of square-well fluids by analogy with the case of hard-sphere systems.

The dynamical evolution of the square-well fluid is described in the thermody-
namic limit by the BBGKY hierarchy equations [66] (for the formal structure of
the collision operators, see also Refs. 67 and 68). The second hierarchy equation



DISTRIBUTION FUNCTION APPROACH TO THE STABILITY OF FLUID PHASES 385

establishes a relation between the two- and three-particle reduced distributions

(
∂

∂t
+ v1 · ∂

∂r1
+ v2 · ∂

∂r2
− T(1, 2)

)
f2(1, 2; t)

=
�

d3 [T(1, 3) + T(2, 3)] f3(1, 2, 3; t) (A.1)

In writing (A.1) the shorthand notation j ≡ (rj, vj), j = 1, 2, 3, has been used.
The effects of binary collisions are described by the operator

T(i, j) =
4∑

a=1

Ta(i, j), (A.2)

which takes into account four mutually exclusive dynamical events as follows:

T1 — hard core collisions at the distance σ

T2 — instantaneous change of velocities when the particles cross the distance
λσ approaching each other

T3 — instantaneous change of velocities when the particles separate overcom-
ing the energy barrier E at the distance λσ

T4 — hard-core collision at the distance λσ when the particles get reflected by
the energy barrier E

The particular role of distances σ and λσ leads to the appearance of the Dirac
distributions in the structure of the collision operators.

T1(i, j) is thus the hard-core collision operator whose action on a function
f (ri, vi, rj, vj) reads (for a clear derivation see Ref. 69)

T1(i, j)f (ri, vi, rj, vj) (A.3)

= lim
0<ε→0

σ 2
�

dσ̂ (vij · σ̂ ) δ[rij − σ̂ (σ + ε)] [θ(vij · σ̂ )f (ri, v∗
i , rj, v∗

j )

+ θ(−vij · σ̂ )f (ri, vi, rj, vj)].

Here, rij = (ri − rj) and vij = (vi − vj) denote the relative position and the
relative velocity of the particles, respectively, and σ̂ is a unit vector along the line
passing through their centers in collisional configuration. The fact that the motion
between collisions is free makes the collision frequency proportional to |vij| (the
factor (vij · σ̂ )).

The δ-distribution restricts the distance |rij| = rij between the centers of the
particles to (σ + ε). The limiting procedure 0 < ε → 0 permits to avoid
ambiguities related to the action on a function containing the excluded volume
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factor θ(rij − σ). It reflects the fact that hard spheres approach each other always
from outside.

The velocities v∗
i , v∗

j are related to vi, vj by the elastic collision law satisfying
the kinetic energy conservation

(v∗
i )

2 + (v∗
j )

2 = v2
1 + v2

2. (A.4)

The operator T2(i, j) describing the process of entering of the particles into the
attractive well acts according to the following formula:

T2(i, j)f (ri, vi, rj, vj)

= lim
0<ε→0

(λσ)2
�

dσ̂ (vij · σ̂ ) [δ(rij − σ̂ (λσ − ε)) θ(vij · σ̂ )f (ri, v∗∗
i , rj, v∗∗

j )

(A.5)

+ δ(rij − σ̂ (λσ + ε))θ(−vij · σ̂ )f (ri, vi, rj, vj)].
The limit ε → 0 takes here into account the fact that the particles with velocities
v∗∗

i , v∗∗
j move already inside the well (|rij| < λσ), whereas they approach each

other from outside
where |rij| > λσ .

The conservation of energy requires here the following relation:

(v∗∗
i )2 + (v∗∗

j )2 − 2E

m
= v2

1 + v2
2. (A.6)

The operator T3(i, j) describes the collisional effect of the separation of
particles that cross the end point of the potential well at the distance σ2 moving
away from each other. This process can occur only if

v2
1 + v2

2 >
2E

m
, or |vij · σ̂ |2 >

4E

m
. (A.7)

We thus find

T3(i, j)f (ri, vi, rj, vj)

= lim
0<ε→0

(λσ)2
�

dσ̂ (−vij · σ̂ ) [δ(rij + σ̂ (λσ + ε))

× θ(−vij · σ̂ )f (ri, v∗∗∗
i , rj, v∗∗∗

j ) (A.8)

+ δ(rij − σ̂ (λσ − ε))θ(vij · σ̂ )f (ri, vi, rj, vj)]θ
(

v2
1 + v2

2 − 2E

m

)
.

The conservation of energy takes the following form:

v2
1 + v2

2 − 2E

m
= (v∗∗∗

i )2 + (v∗∗∗
j )2. (A.9)
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Finally, when

v2
1 + v2

2 <
2E

m
, or |vij · σ̂ |2 <

4E

m
, (A.10)

the particles cannot separate and suffer a hard-core collision. The operator T4(i, j)
thus reads

T4(i, j)f (ri, vi, rj, vj)

= lim
0<ε→0

(λσ)2
�

dσ̂ (−vij · σ̂ ) δ[rij − σ̂ (λσ − ε)] [θ(−vij · σ̂ )f (ri, v∗
i , rj, v∗

j )

(A.11)

+ θ(vij · σ̂ )f (ri, vi, rj, vj)]θ
(

2E

m
− v2

1 − v2
2

)
.

where the velocities (v∗
i , v∗

j ) satisfy the kinetic energy conservation law (A.4).
Our objective now is to derive the form of the second BBGKY hierarchy

equation (A.1) in the case of an invariant equilibrium state. The reduced distri-
butions then factorize into products of Maxwell velocity distributions and spatial
distributions invariant under translations and rotations

fs(1, 2, . . . , s) = ns(r1, r2...rs)φ(v1)φ(v2)...φ(vs). (A.12)

Here,

φ(v) =
(

m

2πkBT

)3/2

exp
(−mv2

2kBT

)
. (A.13)

In order to perform the calculation, we thus need the result of the action of the
collision operators Ta(i, j), a = 1, . . . , 4, on distributions that involve the velocities
via the kinetic energy only. Indeed,

φ(vi)φ(vj) =
(

m

2πkBT

)3

exp

[−m(v2
i + v2

j )

2kBT

]
.

Taking into account the conservation laws (A.4), (A.6), (A.9), and the relations

lim
0<ε→0

χB(σ + ε) = lim
0<ε→0

χB(λσ − ε) = B, lim
0<ε→0

χB(λσ + ε) = 1,

(A.14)

we find

T1(1, 2)n2(r1, r2)φ(v1)φ(v2) = n2Bδ(r12 − σ)(v12 · r̂12)φ(v1)φ(v2)y2(σ )

(A.15)

T2(1, 2)n2(r1, r2)φ(v1)φ(v2) = n2δ(r12 − λσ)(v12 · r̂12)φ(v1)φ(v2)y2(λσ)

(A.16)
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T3(1, 2)n2(r1, r2)φ(v1)φ(v2) = −n2Bδ(r12 − λσ)(v12 · r̂12)φ(v1)φ(v2)y2(λσ)

× θ

(
v2

1 + v2
2 − 2E

m

)
(A.17)

T4(1, 2)n2(r1, r2)φ(v1)φ(v2) = −n2Bδ(r12 − λσ)(v12 · r̂12)φ(v1)φ(v2)y2(λσ)

× θ

(
2E

m
− v2

1 + v2
2

)
(A.18)

In these equations, the dimensionless functions ys, s = 1, 2, . . . have been
introduced (see Eq. 2) and the notation r̂12 = r12/r12 has been used.

Adding up all four terms (A.15) – (A.18) yields the following relation:

4∑
a=1

Ta(1, 2)n2(r1, r2)φ(v1)φ(v2) (A.19)

= n2(v12 · r̂12)φ(v1)φ(v2){B [δ(r12 − σ) − δ(r12 − λσ)]
+ δ(r12 − λσ)}y2(r12).

Noting that

ˆ
{

v1 · ∂

∂r1
+ v2 · ∂

∂r2

}
χB(r12)

= (v12 · r̂12){[δ(r12 − σ) − δ(r12 − λσ)] B + δ(r12 − λσ)}, (A.20)

we find that in the case of an equilibrium state the term (A.19) involving the Dirac
distributions cancels out and the left-hand side L of the BBGKY equation (A.1)
reduces to

L = n2χB(r12)(v12 · r̂12)φ(v1)φ(v2)
dy2(r12)

dr12
(A.21)

The right-hand side R of Eq. (A.1) involves the integration on the phase
(r3, v3) of particles of the medium interacting with the pair situated at r1 and
r2. Owing to the δ-distributions, the spatial integration can be performed in a
straightforward way. Also, the velocity integration is simple. In order to illustrate
the calculation, we present here in some detail the evaluation of the term involving
the T1 operators.

Using the defining Eq. (A.3), we find

�
d3 T1(1, 3)f3(1, 2, 3; t)

= n3
�

dr3

�
dv3 lim

0<ε→0
σ 2

�
dσ̂ (v13 · σ̂ ) δ[r13 − σ̂ (σ + ε)] (A.22)
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[θ(v13 · σ̂ )φ(v∗
1)φ(v2)φ(v∗

3) + +θ(−v13 · σ̂ )φ(v1)φ(v2)φ(v3)]
× χB(r12)χB(r13)χB(r23)y3(r12, r13, r23)

= n3σ 2B χB(r12)φ(v1)φ(v2)

×
�

dσ̂ (σ̂ · v1)χB(|r12 − σ̂σ |)y3(r12, σ1, |r12 − σ̂σ |).

Proceeding along the same lines, we obtain the following relation:

�
d3 T1(2, 3)f3(1, 2, 3; t) (A.23)

= n3σ 2BχB(r12)φ(v1)φ(v2)

×
�

dσ̂ (−σ̂ · v2)χB(|r12 − σ̂σ |)y3(r12, σ , |r12 − σ̂σ |).

Using then the symmetry of function y3, we eventually find the total contribution
from hard-core collisions at r12 = σ

�
d3 [T1(1, 3) + T1(2, 3)]f3(1, 2, 3; t) (A.24)

= n3σ 2BχB(r12)φ(v1)φ(v2)

×
�

dσ̂ (σ̂ · v12)χB(|r12 − σ̂σ |)y3(r12, |r12 − σ̂σ |, σ).

In the same way, one can derive contributions to the right-hand side R of (A.1)
coming from collisions occurring at the distance r12 = λσ

�
d3 [T2(1, 3) + T2(2, 3)]f3(1, 2, 3; t) (A.25)

= n3(λσ)2χB(r12)φ(v1)φ(v2)

×
�

dσ̂ (σ̂ · v12)χB(|r12 − σ̂λσ |)y3(r12, |r12 − σ̂λσ |, λσ)

and

�
d3 [T3(1, 3) + T3(2, 3) + T4(1, 3) + T4(2, 3)]f3(1, 2, 3; t) (A.26)

= −n3(λσ)2BχB(r12)φ(v1)φ(v2)

×
�

dσ̂ (σ̂ · v12)χB(|r12 − σ̂λσ |)y3(r12, |r12 − σ̂ λσ2|, σ).
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The results obtained so far permit us to write the second BBGKY equation in
the form

n2χB(r)(v12 · r̂)φ(v1)φ(v2)
dy2(r)

dr
(A.27)

= n3χB(r)φ(v1)φ(v2)v12 ·
�

dσ̂ σ̂ {B σ 2 χB(|r − σ̂σ |) y3(r, |r − σ̂σ |, σ)

+ (λσ)2 [1 − B]χB(|r − σ̂λσ |) y3(r, |r − σ̂λσ |, λσ)}

where we put r12 = r.
Equation (A.27) must hold for any value of the relative velocity v12. Taking

this fact into account, we arrive at the final form of the second BBGKY hierarchy
equation for a square-well fluid at thermal equilibrium

dy2(r)

dr
= n

�
dσ̂ (r̂ · σ̂ ){ Bσ 2 χB(|r − σ̂σ |)y3(r, |r − σ̂σ |, σ) (A.28)

+ [1 − B](λσ)2 χB(|r − σ̂λσ |)y3(r, |r − σ̂λσ |, λσ) },

where the Boltzmann factor χB(r) has been defined in Eq. (3).

APPENDIX B: PROOF OF CONSISTENCY BETWEEN THE VIRIAL
AND COMPRESSIBILITY EQUATIONS OF STATE

On the one hand, the virial expression for the pressure p is given by the formula

p = n

(
kBT − n

6

�
dr

[
r · ∂V(r)

∂r

]
g2(r; n, T)

)
, (B.1)

where V(r) is the pair potential, g2(r; n, T) is the radial distribution, related to the
pair correlation function h2(r; n, T) by

g2(r; n, T) = 1 + h2(r; n, T). (B.2)

On the other hand, the compressibility equation reads

kBTnKT = kBT

(
∂n

∂p

)
= 1 + n

�
dr h2(r; n, T). (B.3)

From (B.1), we get

(
∂p

∂n

)
= kBT − n

3

�
dr

[
r · ∂V(r)

∂r

] (
g2(r; n, T) + n

2

∂

∂n
h2(r; n, T)

)
. (B.4)



DISTRIBUTION FUNCTION APPROACH TO THE STABILITY OF FLUID PHASES 391

The consistency between (B.3) and (B.4) requires that the following equality
holds:

kBT =
[
1 + n

�
dr h2(r; n, T)

]
(B.5)

×
{

kBT − n

3

�
dr

[
r · ∂V(r)

∂r

] (
1 + h2(r; n, T) + n

2

∂

∂n
h2(r; n, T)

)}

The proof of (B.5), not given in the literature as far as the authors are aware,
is presented below. We suppose that the two-particle correlation function satisfies
the following exact equations:

1. The generalized compressibility equation (see Eq. (38) with k = 2)

�
dx h3(r, |x − r|, x) = 2

[�
dx h2(x; n, T)

]
h2(r; n, T) (B.6)

+
[
1 + n

�
dx h2(x; n, T)

] ∂

∂n
h2(r; n, T).

2. The second YBG hierarchy equation

− n
�

dx
∂V(|r − x|)

∂r
h3(r, |x − r|, x) (B.7)

= kBT
∂h2(r; n, T)

∂r
+ [1 + h2(r; n, T)]∂V(r)

∂r

+ n
�

dx
∂V(|r − x|)

∂r
h2(x; n, T).

We introduce the short-hand notation

W(r) = r · ∂V(r)

∂r
(B.8)

I(n, T) =
�

dr h2(r; n, T).

Multiplying equation (B.6) by W(r) and integrating over the position space, we
find the relation

�
dx

�
drW(r) h3(r, |x − r|, x) (B.9)

= 2I(n, T)
�

drW(r)h2(r; n, T) + [1 + nI(n, T)]
�

dr W(r)
∂

∂n
h2(r; n, T).
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Taking then the scalar product of the YBG equation (B.7) with the vector r, and
integrating with respect to dr, we find

− n
�

dr
�

dx r · ∂V(|r − x|)
∂r

h3(r, |x − r|, x)

= −n

2

�
dr

�
dxW(|r − x|)h3(r, |x − r|, x) (B.10)

= kBT
�

dr r · ∂h2(r; n, T)

∂r
+

�
dr W(r) [1 + h2(r; n, T)]

+ n
�

dx
�

dr r · ∂V(|r − x|)
∂r

h2(x; n, T)

= −3kBTI(n, T) +
�

dr W(r) [1 + h2(r; n, T)] + nI(n, T)
�

dx W(x).

Multiplying equation (B.9) by n/2 and adding both sides to equation (B.10), we
thus find the exact relation

nI(n, T)
�

drW(r)h2(r; n, T) + n

2
[1 + nI(n, T)]

�
dr W(r)

∂

∂n
h2(r; n, T) (B.11)

= 3kBTI(n, T) −
�

dr W(r) [1 + h2(r; n, T)] − nI(n, T)
�

dx W(x).

It can be readily checked that Eq. (B.11) coincides with the consistency
equation (B.5). This analytic result leads to the conclusion that the virial equation
of state (B.1) and the compressibility equation (B.3) are consistent provided the
correlation function h2(r; n, T) is related to the three-particle correlation function
h3, both by the generalized compressibility equation (B.6) and by the second YBG
hierarchy equation (B.7).
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