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Abstract We consider a simple model of infiltration-driven mineral replacement, in which the chemical
coupling between precipitation and dissolution leads to the appearance of a reaction front advancing
into the system. Such fronts are usually accompanied by a local increase of porosity. We analyze the linear
stability of the replacement front to establish whether such a localized porosity increase can lead to global
instability and pattern formation in these systems. We find that for a wide range of control parameters such
fronts are unstable. However, both short- and long-wavelength perturbations are stabilized, whereas in
a purely dissolutional instability only short wavelengths are stable. We analyze the morphologies of the
dissolution patterns emerging in the later stages of the evolution of the system, when the dynamics are
beyond the linear regime. Implications of these results for the natural systems are discussed, particularly
in the context of karst formation in terra rossa-covered carbonate bedrock.

Plain Language Summary The geological forms we observe all around us were shaped over long
periods of time by changes that are occasionally violent—for example, earthquakes and volcanos—but
are more often gradual. One important mechanism for gradual change in rock morphology is chemical
reactions, such as dissolution and precipitation, which slowly transform the rock matrix. In this paper,
we are interested in the stability of the reaction fronts between the primary (dissolving) and secondary
(precipitating) rock. Are these fronts moving in a stable way remaining planar, or could they form fingers
or funnels in which the fluid flow is focused? As we show, the answer to this question depends on a subtle
interplay between reactant transport, fluid flow, and rates of chemical reactions. In many cases we find
that the fronts are unstable and finger-like structures are formed which then compete with each other:
the shorter fingers are attracted to the longer ones and eventually merge with them. As a result the pattern
coarsens with time, and the widths of the fingers and characteristic distance between them increase.

1. Introduction

Whenever a fluid is out of equilibrium with the porous rocks it is infiltrating, dissolution and precipitation can
take place in the pore space. As a result, the chemical composition and morphology of the rock might undergo
significant changes, up to the complete replacement of the parent (primary) rock by a product (secondary)
one. Natural examples of replacement include dolomitization [Merino and Canals, 2011], serpentinite car-
bonation [Beinlich et al., 2012], and fluid-mediated feldspar replacement reactions [Plümper and Putnis, 2009;
Hofmann, 1972]. Fluid-mediated replacement reactions have also been studied in the laboratory, although
most of the experiments were conducted in the absence of the flow [Putnis, 2009]. The replacement of one
rock by another is not instantaneous. Instead, replacement fronts form. These are regions of increased chem-
ical activity, separating the secondary and the primary phase, which propagate in the direction of the flow,
but with much lower velocity than that of the infiltrating water [Ortoleva et al., 1986; Bickle and Baker, 1990;
Lake et al., 2002]. This time scale separation is due to the large molar concentration difference between ions
in the fluid phase and the consolidated material in the solid phase.

When the upstream secondary phase is more permeable than the downstream primary phase, the reaction
front is destabilized. Even if the reaction front is initially planar, small perturbations emerge, which absorb
more flow and amplify into finger-like or funnel-like structures, such as wormholes or solution pipes [Daccord
and Lenormand, 1987; Hoefner and Fogler, 1988; Petrus and Szymczak, 2016]. This mechanism is referred
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to in the literature as the reactive-infiltration instability [Chadam et al., 1986; Hinch and Bhatt, 1990; Aharonov
et al., 1995]. The classic example of this process is the dissolution of a carbonate matrix by an incoming acidic
solution, giving rise to a rich variety of karstic forms[Jennings, 1985; Palmer, 1991]. On the other hand, precip-
itation reactions tend to stabilize the reaction front by decreasing the permeability of the rock [Woods, 2014];
nevertheless, in some instances localized precipitation can initiate an instability in the front [Nagatsu et al.,
2014; Shukla and De Wit, 2016] (see section 6).

Replacement fronts are sometimes characterized by centimeter-scale zones of increased porosity [Merino and
Banerjee, 2008; Banerjee and Merino, 2011]. In such cases the permeability of the rock near the reaction front is
higher than the permeability of both the parent and the product phase. Banerjee and Merino [2011] have pro-
posed that kaolinite-for-calcite replacement, driven by an oversaturated solution of alumino-silicate ions, is
a key process underlying terra rossa formation on limestone bedrock. A high-porosity region at the interface
between primary and secondary minerals can also be observed in gypsum-for-calcite replacement, driven by
an oversaturated gypsum solution [Plan et al., 2012], in the hydrothermal replacement of calcite by magne-
sium carbonates [Jonas et al., 2015], and in fluorite-for-calcite replacement [Putnis, 2009]. Merino and Banerjee
[2008] have suggested that the presence of a highly porous intermediate zone might cause an instability in
the replacement front, which would speed up karst formation and lead to the appearance of solution pipes
and sinkholes in terra rossa-covered regions.

We have previously proposed a kinetic model for infiltration-driven replacement [Kondratiuk et al., 2015],
which synchronizes the dissolution and precipitation fronts even when the incoming solution is oversatu-
rated. The system dynamics (section 2) contain the key features of the mechanism for terra rossa replacement
proposed by Banerjee and Merino [2011], including a region of high porosity separating the dissolution
and precipitation fronts. In this paper, we investigate the evolution of precipitation-driven replacement
fronts (section 3) derived from these model kinetics. A linear stability analysis (section 4) allows us to verify the
Banerjee-Merino hypothesis that a high-porosity region can destabilize the replacement front. Subsequently,
the nonlinear evolution of the replacement system is explored numerically (section 5), tracking the evolution
of wormholes as they develop in time and space. The morphology of these simulated wormholes is com-
pared with outcrops. The qualitative features of the evolving replacement fronts are compared with viscous
fingering and localized precipitation systems (section 6), and the geological context of our results is discussed
in section 7.

2. The Mineral Replacement Model

The mineral replacement model used here is a simplified version of the model of Banerjee and Merino [2011],
which is an example of a precipitation-dissolution process. A supersaturated solution of secondary ions AS

infiltrates a porous matrix of the primary mineral MP , precipitating the secondary mineral MS and releasing
aqueous protons (or other coupling species) H, which in turn dissolve the primary mineral with release of ions
AP . Schematically, this can be represented as

AS −→ MS + 𝜈H (1)

MP + H −→ AP, (2)

where 𝜈 is a stoichiometric coefficient. The model assumes irreversible reactions. The assumption is justified
as long as the inlet solution is oversaturated by AS, and the dissolution of the primary mineral is fast compared
to the reverse reaction, as in the case of dissolution of calcite by acidic fluids. Similar models with reversible
reactions were studied previously [Kondratiuk et al., 2015].

The overall setup is shown in Figure 1.

The flow through the rocks is assumed to follow Darcy’s law:

v = −K∇p, (3a)

where v is the Darcy velocity,𝜑 is the porosity, and K = K(𝜑) is the permeability. We adopt a cubic dependence
of the rock permeability on its porosity, K(𝜑) ∝ 𝜑3, which corresponds to the Kozeny’s model with a constant
surface area [Bear, 1972].
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Figure 1. Schematic view of the replacement system, adapted from Kondratiuk et al. [2015]. Fluid infiltrates the system,
bringing AS ions. The ions precipitate, releasing coupling ions H, which dissolve the primary mineral.

We assume that the velocity field is incompressible,

𝛁 ⋅ v = 0, (3b)

neglecting contributions to the fluid density from reactants or dissolved products. Under typical geological
conditions, porosity evolution is slow in comparison to flow and transport processes; we can therefore assume
a steady state in both the flow and transport equations [Lichtner, 1988]. The aqueous species (AS, H, and AP)
are transported by convection and dispersion. Since dissolution is taken as irreversible, the AP species can be
treated as inert, so that we need only to track the concentrations of AS (denoted by cS) and H (cH):

∇ ⋅ (cSv) − ∇ ⋅ (D∇cS) = −rprec (3c)

∇ ⋅ (cHv) − ∇ ⋅ (D∇cH) = 𝜈rprec − rdiss. (3d)

Here rprec and rdiss are the rates of precipitation and dissolution, respectively, and D is the effective dispersion
coefficient. In general, D is a function of both porosity and the fluid flow, but for simplicity we will assume
it to be constant. The specific volumes of the solid phases, 𝜙S and 𝜙P , evolve due to the precipitation and
dissolution reactions,

csol
S 𝜕t𝜙S = rprec (3e)

csol
P 𝜕t𝜙P = −rdiss, (3f)

where csol
P,S is inverse molar volumes of the primary and secondary minerals. Obviously, the relation between

the porosity and the mineral volume fractions is

𝜙S + 𝜙P + 𝜑 = 1. (3g)

To facilitate an analytical treatment, we assume first-order reaction kinetics, with rate constants 𝛼prec and 𝛼diss

respectively,

rprec = 𝛼preccS𝜃(𝜑 − 𝜑min) (3h)

rdiss = 𝛼disscH𝜃(𝜙P). (3i)

Both the dissolution and the precipitation are surface reactions, but we assume that the specific surface
area is constant and incorporated into the kinetic constants 𝛼prec and 𝛼diss. The Heaviside functions (𝜃) in
equations (3h) and (3i) indicate that the dissolution reaction ceases if there is no soluble mineral present and
that the precipitation reaction stops if the porosity drops below a minimum value, 𝜑min. The introduction of
residual porosity, which prevents a complete clogging of the flow paths, can be justified by the observation
that precipitation in small pores is much slower than in large pores and thus only a fraction of the porosity is
eliminated [Jamtveit et al., 2014]. Moreover, reaction-generated stresses can keep a part of the pore network
open and even induce microcracking in the matrix.

Equation (3) has to be supplemented with appropriate boundary conditions on the velocity and concentration
fields as x → ±∞. We require that the fluid flow is uniform both far upstream and far downstream from the
replacement zone,

v(x → −∞) = v0ex , vy(x → ∞) = 0. (4a)
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The input stream contains AS component only, whereas in the outlet stream the concentrations become x
independent:

cS(x → −∞) = cin
S , (𝜕xcS)(x → ∞) = 0, (4b)

cH(x → −∞) = 0, (𝜕x cH)(x → ∞) = 0. (4c)

Finally, the initial conditions on the mineral volumes are that the system is filled with a primary phase of
volume fraction 𝜙max

P

𝜙S(t → −∞) = 0 (4d)

𝜙P(t → −∞) = 𝜙max
P . (4e)

The replacement model defined above possesses two intrinsic features that are crucial for our study. First, its
dynamics allows for the emergence of planar and stationary replacement fronts, whose stability with respect
to small perturbations can then be analyzed. Second, as we show below, it produces a region of increased
porosity at the front, which is consistent with field observations [Banerjee and Merino, 2011; Lucke et al., 2012].

3. Front Velocities and Stationary Planar Profiles

Let us first consider the velocities of the reaction fronts in the planar case, where all the fields (p, v, cS, cP , 𝜙S,
and 𝜙P) depend on the x coordinate only. The precipitation front can be defined as the rightmost position
where the specific volume of the secondary mineral is equal to its maximum allowed value, 𝜙max

S = 1 − 𝜑min.

Similarly, the dissolution front corresponds to the leftmost position where 𝜙P is positive. The locations of the
fronts are indicated by xS and xP in the sketch (Figure 1). The propagation velocities of these fronts follow from
reactant mass balances. In the case of precipitation, there are v0cin

S secondary ions entering the system per
unit time and unit area. The same amount needs to be precipitated, since the outgoing concentration of AS is
0. This gives the velocity of the precipitation front as

Uprec =
v0cin

S

𝜙max
S csol

S

. (5)

On the other hand, since each mole of precipitated secondary ions produces 𝜈 moles of protons, each mole
dissolving a volume

(
csol

P

)−1
, the dissolution front moves with the velocity of

Udiss =
𝜈v0cin

S

𝜙max
P csol

P

. (6)

Note that in deriving equations (5) and (6) we have again assumed a complete separation of time scales
between reactant transport and mineral dissolution (v0 ≪ Uprec,Udiss). Obviously Uprec differs from Udiss in
general, the only condition under which the front velocities can match being

𝜈
𝜙max

S csol
S

𝜙max
P csol

P

= 1. (7)

With the chemical kinetics in our model, all of the above parameters are independent: csol
S and csol

P are mate-
rial properties of the respective minerals, 𝜙max

P is controlled by the porosity of the primary rock, and 𝜙max
S by

the amount of the free space available to precipitate. Due to the oversaturation of the incoming solution, the
reaction stops only when all of the available space is filled with precipitate. It would seem that there is no rea-
son for the fronts to move with the same velocities, yet in nature, the precipitation and dissolution fronts are
often synchronized. For example, during carbonate-for-clay replacement, both the precipitation and disso-
lution front have moved several meters over approximately 10 million years [Meert et al., 2009]. At the same
time, primary and secondary minerals are separated by a thin porous band only a few centimeters thick. This
observation shows that the front velocities must be synchronized to within a few percent.

Two mechanisms of synchronization have been proposed for replacement fronts driven by an oversaturated
solution of secondary ions: a mechanical one [Banerjee and Merino, 2011] and a chemical one [Kondratiuk
et al., 2015]. In the mechanical mechanism crystallization pressure suppresses the growth of the replacement
phase, thereby synchronizing the fronts [Maliva and Siever, 1988; Merino et al., 1993; Minguez and Elorza, 1994].
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Figure 2. Stationary one-dimensional mineral replacement profiles for H = 1, 𝜅 = 2, 𝜈 = 1, 𝜌 = 1 (14), and 𝜙max
S

= 0.9.
(a) Volume fractions of the primary (𝜙P) and the secondary (𝜙S) minerals, and the porosity 𝜑. The porosity is larger in the
vicinity of the replacement zone. (b) Concentration profiles of the secondary ions cS and of protons, cH , scaled by the
input concentration of secondary ions. The length scale ld is the downstream penetration length of the secondary ions
(equation (10)).

However, when the molar volume of the replacement phase is smaller than that of the primary, as for exam-
ple in kaolinite-for-calcite replacement, there will be no confining stress. Rather, the primary phase will tend
to run away from the precipitation front creating an increasing gap between them. Kondratiuk et al. [2015]
proposed that in such cases, the excess protons could be consumed by a buffering reaction, which lowers
the dissolution rate until it matches with the precipitation rate. The width of the zone separating the fronts
decreases with increasing buffering rate; this is a self-regulatory process, which maintains a constant distance
between the dissolution and precipitation fronts over a wide range of buffering rates. We consider this model
in the simulations in section 5, but here we simply assume that the fronts move with the same velocities,

U = Uprec = Udiss. (8)

The system described by equations (3) and (4), together with the condition expressed in (8), possesses a class
of solutions that correspond to planar reaction fronts propagating invariantly with velocity U, so that all the
fields depend on only one variable x′ = x − Ut (Appendix A).

A typical stationary solution is illustrated in Figure 2. In the reaction zone the volume of secondary mineral
decays exponentially and is accompanied by a sharp rise of primary phase volume. The width of the reaction
zone is controlled by the slowest rate constant. In most geochemical systems dissolution is much faster than
precipitation and we will assume that the ratio

𝜅 =
𝛼diss

𝛼prec
> 1. (9)

In this case the relevant length scale is, from (3c),

ld = 2D√
v2

0 + 4𝛼precD − v0

. (10)

The associated time scale,

tp =
csol

S 𝜙max
S

cin
S

ld

v0
, (11)

is the characteristic time scale for the replacement front to propagate over a distance ld . The Péclet number
on the length scale ld ,

Pe =
v0ld

D
= 2√

1 + 4H − 1
, (12)

is a function of the dimensionless group

H = 𝛼precD∕v2
0 , (13)

which can also be interpreted as the inverse Péclet number associated with the precipitation length scale
v0∕𝛼prec.

The reaction zone is characterized by an increased porosity, which may lead to an instability in a planar
replacement front (section 4). The concentration of the secondary aqueous species, cS, decreases sharply
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in the reaction zone, due to consumption by the secondary mineral precipitation reaction. Protons pro-
duced during precipitation initially increase the cH concentration but are then consumed by the dissolution
of primary mineral, leading eventually to an exponential decay of the cH profile.

The morphology of the stationary front depends on a small number of dimensionless parameters: the trans-
port parameter H, the ratio of the reaction rate constants 𝜅, the stoichiometric coefficient 𝜈, and the ratio of
the volume fractions,

𝜌 =
𝜙max

S

𝜙max
P

. (14)

In fact, a whole class of valid one-dimensional solutions can be found, which vary in the distance between the
precipitation front and the dissolution front. In section 4 we will assume that these two fronts overlap,

xS(t) = xP(t) = xfront(t). (15)

Explicit formulas for the (one-dimensional) volume fractions and aqueous ion concentrations, illustrated in
Figure 2, are given in nondimensional form in equations (A13)–(A16). The variable gap between the fronts
is a result of the constraint imposed by matching the velocities of the two fronts (7), which maintains the
separation imposed by the initial conditions. In section 5 we consider a more general model where the
synchronization arises from the dynamics, but in this case the stability analysis is not analytically tractable.

4. Stability of the Planar Mineral Replacement Front

The model described in section 2 has steady one-dimensional solutions (section 3) propagating with velocity
U (5), provided that the condition (8) is fulfilled. In this section we investigate the stability of these solutions
to infinitesimal perturbations in an initially planar reaction front,

xfront(y, t) = Ut + A sin(ky) exp(𝜎t); (16)

here A is the (small) amplitude of the harmonic perturbation, k is its wave number, and 𝜎 the growth rate.
The pressure, Darcy velocity, concentration, and volume fraction fields are also perturbed by small har-
monic oscillations, growing (or decaying) exponentially in time. The perturbed fields are then inserted back
into equations (3) with boundary conditions (4) and continuity conditions across the front. The resulting
equations for the perturbations are linearized by neglecting terms which are of the second and higher order
in the perturbation amplitudes. Eventually, a dispersion relation is obtained, relating the growth rate 𝜎 to
the wave number k of the harmonic mode. Details of the derivation can be found in the Appendix B. The
nondimensional dispersion relation, given by equation (B9), depends on only three parameters: the trans-
port parameter H (13), the ratio of reaction rate constants 𝜅 (9), and the ratio of solid volume fractions 𝜌 (14).
Analytic expressions for the dispersion relation can be obtained in the limit that the permeability contrast
K(𝜑max)∕K(𝜑min) is close to unity (Appendix C). However, the dispersion relations shown in Figures 3–5 were
obtained by a pseudospectral method [Boyd, 2001] and are valid for any permeability contrast.

Figure 3 shows a typical set of dispersion curves 𝜎(k) for different values of H. For H > 0, there is a maximum
growth rate, 𝜎max, at a specific wave number kmax. The sign of 𝜎max determines the stability of the front. If
𝜎(kmax)> 0, the front is unstable; the mode with wave number kmax grows fastest and dominates the shape of
the growing front in the early stages of replacement. Analogous to the reactive-infiltration instability, diffusion
stabilizes small-wavelength perturbations [Szymczak and Ladd, 2014]. The relative magnitude of the diffusive
flux on length scales v0∕𝛼prec is controlled by the transport parameter H (equation (13)). Increasing H reduces
the range of unstable wavelengths (Figure 3), but the long-wave (kld ≪ 1) part of the spectrum is not affected
by diffusion, and all the plots collapse to a single curve in this domain.

The system is more unstable for smaller values of 𝜌 (Figure 4): both the range of unstable wave numbers and
the maximum growth rate (𝜎max) decrease with increasing 𝜌. The stability of the long-wave (small k) part of the
spectrum is solely determined by 𝜌: it is unstable when 𝜌 < 1, meaning that the slope of the dispersion curve
𝜎′(k = 0)> 0, and vice versa. This agrees with our intuition: the long-wave part of the spectrum is related to
the permeability difference between the bulk minerals,

Γ∞ = K(x′ → ∞)
K(x′ → −∞)

, (17)
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Figure 3. Dispersion curves for the replacement system with
𝜅 = 10, 𝜑min = 0.1, 𝜌 = 1, and H = 0, 0.002, 0.005, 0.01, and 0.02
(top to bottom). The length scale ld is the penetration length for the
secondary species (equation (10)), and tp is the characteristic time
scale of the precipitation reaction, equation (11).

but it does not depend on H or 𝜅, which
only affect the properties of the front itself.
At long wavelengths the replacement front
between the secondary and primary rock
appears sharp and the system reduces to
the classical reactive-infiltration instability
[Ortoleva et al., 1987; Szymczak and Ladd,
2014]. The limiting slope of the dispersion
curve can then be found analytically,

d𝜎
dk

||||k=0
=

1 − Γ∞

1 + Γ∞
U. (18)

A similar result can be derived for the
replacement system in the limit of a small
permeability contrast (Appendix C).

Perturbations with wavelengths compara-
ble to the width of the reaction front can be

unstable even whenΓ∞ ≥ 1 (Figure 4). This behavior is fundamentally different from one-component reactive
infiltration, where precipitation fronts (Γ∞ ≥ 1) are always stable. This new instability arises from the pres-
ence of a negative slope in the porosity profile in the region of the front (Figure 2), meaning that the more
permeable intermediate zone precedes the less permeable primary mineral. Our hypothesis is supported by
the observation (Figure 4) that the wavelength of the most unstable mode is of the order of the width of
the region of increased porosity near the reaction front. Diffusion (H > 0) stabilizes short-wave perturbations
(Figure 4), but perturbations of the order of the front width (kld ∼ 1) remain unstable for 𝜌 ≳ 1.

Cases with 𝜌 ≥ 1 are particularly interesting, because they do not involve a destabilizing permeability contrast
between the bulk minerals (Γ∞ ≥ 1 for 𝜌 ≥ 1). An instability must then be connected with the rearrangement
of porosity within the reaction zone. In fact, if the porosities of both bulk mineral phases are the same (𝜌 = 1),
the total porosity in the system becomes a conserved quantity (Appendix D). However, despite the lack of
porosity generation, a domain of unstable wavelengths exists (see Figures 3–5), but, contrary to the standard
reactive-infiltration instability, long-wave perturbations are stable, as shown in the inset to Figure 5.

In Figure 5 we observe that the front is stabilized by an increasing contrast in the reaction rates (𝜅). From
equation (A16) in Appendix A we can deduce that increasing 𝜅 reduces the negative slope of the porosity in
the region just after the permeability (or porosity) maximum (Figure 2). This supports our hypothesis that the
front is being destabilized by the region where the slope of the porosity profile is negative. For smaller 𝜅 the
permeability contrast between the reaction zone and the bulk primary mineral is higher, which results in a
more unstable system.

Figure 4. Dispersion curves for the replacement system with 𝜙max
S

= 0.9, 𝜅 = 5, H = 0 (solid lines) or H = 0.01 (dashed
lines), and 𝜌 = 0.95, 1, and 1.02 (top to bottom, either in the zero- or finite-H case). Inset: long-wave perturbations are
unstable for 𝜌 < 1 and stable for 𝜌> 1.
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Figure 5. Dispersion curves for the replacement system with 𝜙max
S

= 0.9, 𝜌 = 1, H = 0 (solid lines) or H = 0.01 (dashed
lines); 𝜅 = 2, 5, and 10 (top to bottom, either in the zero- or finite-H case). Inset: negativity of the long-wavelength
(kld ≪ 1) part of the spectrum indicates that long-wavelength perturbations are stable, even in the case of neutral
(𝜌 = 1) permeability contrast between the primary and secondary rock.

So far, we have focused on the convection-dominated case, H < 1, which implies either relatively large fluid
flows or small precipitation rates. For example, in kaolinite-for-calcite replacement the rate limiting step is
the precipitation reaction [Banerjee and Merino, 2011], which results in convective replacement (H < 0.1) for
groundwater flow rates in excess of 1 m/yr [Kondratiuk et al., 2015]. In such cases, the most unstable wave-
length is of the order of the front width, (kmaxld ∼ 1). On the other hand, when the flow velocity is small (or the
reaction rate large) such that H > 1, the unstable region moves toward longer length scales. Now the system is
controlled by an interplay of convection and diffusion in the upstream region. The relevant length scale is then
given by the transport length lu = D∕v0, which can extend from meters to kilometers depending on the flow
rate. Again, at these length scales, the system reduces to the thin-front limit of classical reactive-infiltration
instability [Ortoleva et al., 1987]. The dispersion relation

𝜎 = U
lu(1 + Γ∞)

[
1 + (1 − Γ∞)klu −

√
1 + 4(klu)2

]
(19)

has then a maximum

𝜎max =
U

lu(1 + Γ∞)

[
1 −

√
(3 − Γ∞)(1 + Γ∞)

2

]
(20)

at a wave vector

kmaxlu =
1 − Γ∞

2
√
(3 − Γ∞)(1 + Γ∞)

. (21)

Note that kmaxlu depends only on the permeability contrast, not on the reaction rates. In this case, the insta-
bility appears only if Γ∞ < 1, and fronts where the secondary phase is less porous than the primary one are
always stable.

5. Later Stages of Evolution: The Growth of Replacement Fingers

The results of the linear stability analysis show that the replacement front is unstable over a wide range of the
control parameters, even if the permeabilities of the product and parent rock do not differ. In the parameter
space we have explored, the maximally unstable wavelength is of the order of the penetration length of the
secondary species. This is the largest length scale in our system, and thus, the width of the porous region at
the replacement front is of the same order of magnitude. Merino and Banerjee [2008] and Lucke et al. [2012]
have measured this width to be of the order of 5 cm. However, this is far smaller than the spacing between any
of the karst features observed in terra rossa-covered regions, like the ones depicted in Figure 6. As a possible
solution to this problem, Merino and Banerjee [2008] suggested that the replacement pattern can coarsen with
time, analogous to what is observed in dissolution systems [Szymczak and Ladd, 2006].
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Figure 6. (left) Solution pipes in limestone bedrock overlaid with terra rossa at Greatstone Winery near Coonawarra,
South Australia. The height of the outcrop is about 7 m. The photo is courtesy of Les Sampson (Claremont Wines, South
Australia). (right) Closeup of one of the pipes, showing the terra rossa layer (dark red) and more recent siliceous sands
overlaying it. The hammer indicates the scale.

To test these ideas, we have carried out numerical simulations of equations (3) and (4) in two spatial dimen-
sions. To make the simulations more realistic, we have included the dependence of the dispersion coefficient
D on the porosity,

D = 𝜑Dmol, (22)

where Dmol is the (constant) molecular diffusion coefficient. The evolution of porosity and precipitated
(secondary) mineral is illustrated in Figure 7. As predicted by linear stability analysis, an initially planar front
is unstable, with spontaneous protrusions developing as the reaction proceeds. With time, these protrusions

Figure 7. The basic mineral replacement system. Development of wormhole-like structures from spontaneous
protrusions in the replacement front: H = 1∕16, 𝜅 = 2, 𝜌 = 1, and 𝜙max

S
= 0.9. (top row) The initially planar replacement

front. (middle row) Initial protrusions in the front. (bottom row) Well-developed wormholes. (left column) The rescaled
porosity field, 𝜑̂ = (𝜑 − 𝜑min)∕(1 − 𝜑min). (right column) Secondary mineral volume fraction (𝜙̂S = 𝜙S∕𝜙max

S
). Movies S1

and S2 in the supporting information illustrate the full evolution of this system.
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Figure 8. Dispersion relations for the extended replacement model,
recovered from two-dimensional simulations. The parameters are 𝜌 = 1,
𝜅 = 100, 𝜙max

S
= 0.9, and H = 0.001 (red circles), H = 0.005 (green

squares), or H = 0.01 (blue diamonds). The system has finite width and
the longest wavelength corresponds to kld ≈ 0.4.

extend and transform themselves into
fingers. The fingers interact with each
other in a strongly nonlinear way, which
gives rise to a complex dynamics at
the front. A striking feature in Figure 7
is the concentration of porosity in dis-
joint regions associated with the tips
of the fingers. Since precipitation pro-
duces the protons needed for the dis-
solution reaction, the presence of free
space is essential for the replacement to
proceed. Therefore, except for the finger
tips, the pattern becomes frozen and no
longer evolves. The effect is illustrated
in Movie S1 (supporting information),
which shows the evolution of the vol-
ume fraction of the secondary mineral.

A characteristic phenomenon is attrac-
tion of shorter fingers by the longer

ones, which is due to the flow convergence near the bases of the longest fingers [Szymczak and Ladd, 2006],
which causes the shorter fingers to bend toward their longer neighbors. As the fingers merge, the longer
finger absorbs the porosity concentrated at the tip of the shorter one. This predatory behavior is further illus-
trated in Movie S2, which shows the evolution of porosity in the system. Since precipitation occurs only at
the tips of the active fingers, their trajectories are regions with the highest concentration of the secondary
phase. This gives rise to tree-like structures of the fingers, as shown in Figure 7. Interestingly, although the
evolution of the system is highly nonlinear and complex, the total porosity in the system is time independent
(Appendix D).

The morphology of these structures is markedly different from terra rossa-filled fingers in nature (Figure 6).
A possible reason for this discrepancy is the simplicity of the replacement model with the matching condition

Figure 9. System with the same parameters as in Figure 7 but with the additional reaction (23) characterized by
𝛼buff = 𝛼prec. Movies S3 and S4 in the supporting information illustrate the full evolution of this system.
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Figure 10. Average distance between the pipes as a function of time for
the buffering model with H = Da∕Pe = 5∕8, 𝜅 = 2, 𝜌 = 1, and 𝜙max

S
= 0.9.

The functional form of the solid line is given by d∕ld = 14.4 + 4.7
√

t∕tp .

(8) externally imposed. We therefore
consider a more sophisticated model
[Kondratiuk et al., 2015], where the
velocity synchronization (8) is achieved
by introducing a buffering reaction to
deplete the excess protons,

B + H −→ Y. (23)

The buffering reaction gives rise to
a feedback loop which stabilizes the
distance between the dissolution and
precipitation fronts at a value which
guarantees an exact matching of the
dissolved and precipitated volumes
[Kondratiuk et al., 2015]; the fronts
then become synchronized and subse-

quently move with equal velocities. In kaolinite-for-calcite replacement, the buffering might be provided by
the reaction of H+ ions with bicarbonate anions. Due to the excess of (HCO−

3 ), the kinetics are expected to be
roughly linear in the proton concentration

rbuff = 𝛼buffcH. (24)

Such a system is also unstable with respect to small perturbations. The dispersion curves in Figure 8 were
recovered by analyzing the initial growth of perturbations in the nonlinear system, sampling over seven initial
conditions to reduce the statistical noise. The plots are qualitatively similar to the ones obtained for the system
without the buffering reaction (Figure 4).

As suggested by the resemblance of the dispersion curves for the two models, the initial development of the
systems is similar (compare middle rows in Figures 7 and 9). However, their further evolution is markedly dif-
ferent. For the buffering system, more compact, funnel-like structures emerge, and the high-porosity layer
remains continuous, although still mostly concentrated at the finger tips (Figure 9, bottom). The overall
morphology of the fingers is now much more akin to the natural systems shown in Figure 6.

The fingers again interact with each other (see Movies S3 and S4), with the smaller fingers attracted to the
longer ones (see, for instance, the second finger from the right in Figure 9, bottom, which is leaning toward its
neighbor and is about to merge with it). There is a fundamental difference in the dynamics when compared to
the system without the buffering reaction (Figure 7). In the buffered system the precipitation reaction takes

Figure 11. The effect of H on the replacement patterns. The successive columns correspond (from left to right) to
H = 1, 1∕4, 1∕16, and 1∕64 at a time t = 30 tp ; the other parameter values are the same as in Figure 9. (top row) Rescaled
porosity; (bottom row) rescaled volume fraction of the secondary mineral.
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Figure 12. Long time limiting form for the (left) porosity, (middle) secondary mineral volume fraction, and (right) Darcy
velocity. The parameters are H = 1, 𝜅 = 2, 𝜌 = 1, 𝜙max

S
= 0.9, and 𝛼buff∕𝛼prec = 1. Due to competition and merging a

single finger with a time-independent shape has eventually developed.

place along the entire front, not just at the finger tips, and the front propagates throughout the system, wip-
ing out all of the preexisting patterns, including the remnants of the shorter fingers. The pattern coarsens,
and the characteristic distance between the fingers increases with the square root of time, as illustrated in
Figure 10. Thus, after a while, the size of the fingers and the distance between them are unrelated to the
values predicted by linear stability analysis. Interestingly, analogous

√
t coarsening has been observed in

the growth of viscous fingers [Wooding, 1969; Menon and Otto, 2005], which is another indication that these
phenomena share many common features. Importantly, the

√
t dependence is not connected with a trans-

verse spreading of the fingers by diffusion, but it is rather a consequence of the convective coalescence of
nearby fingers [Menon and Otto, 2005]. The shapes of the fingers are influenced by the value of H, becoming
more elongated as H decreases (Figure 11), which, according to equation (13), corresponds to increased flow
through the rock.

Looking more closely at the distribution of porosity within the body of the finger, in Figure 12 (left) we notice
regions of enhanced porosity (green) at the sides of the finger and along its centerline. The enhanced porosity
along the edges of the finger coincide with the position of the replacement front, where protons produced by
precipitation result in an increased leaching intensity. The reason behind a porous zone along the centerline
of the finger is less obvious, but a careful examination of the porosity evolution (Movie S4) shows that this is a
remnant of the passing finger tip, still visible because of the delay in the filling of the pores by the precipitation
reaction. This zone of enhanced porosity results in an increased flow in the center of the finger, as shown
in Figure 12 (right). We hypothesize that the concentration of flow in the center of the fingers might be the
reason why siliceous sands, deposited later than the terra rossa layer, have been transported predominantly
along the centerline of a solution pipe; an example can be seen in Figure 6 (right).

6. Comparison With Other Fingering Instabilities

Instabilities in precipitation-dissolution systems resemble a particular viscous fingering in which a thin slice
of fluid of viscosity 𝜇C is inserted between two fluids of viscosities 𝜇A (upstream) and 𝜇B (downstream); the
fluids are confined within a Hele-Shaw cell and driven by an applied pressure gradient [De Wit et al., 2005;
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Mishra et al., 2008; Daripa, 2008; Hejazi et al., 2010; Pramanik and Mishra, 2015]. The special case 𝜇A = 𝜇B,
analogous to the replacement instability with 𝜌 = 1, is characterized by an absence of mobility contrast in
the bulk phases; nevertheless, one of the two fluid-fluid interfaces is always unstable. When a slice of a more
viscous solution (𝜇C >𝜇A, 𝜇B) is sandwiched in-between the bulk phases, the rear interface of the injected
slice becomes unstable while the forward one is stable. Conversely, when the plug has a lower viscosity than
the bulk fluids (𝜇C < 𝜇A, 𝜇B), fingers develop at the forward interface of the sample while the rearward one
remains stable [De Wit et al., 2005]. These conclusions have been verified experimentally [Catchpoole et al.,
2006; Shalliker et al., 2007]. Even if the fluid upstream is more viscous than the fluid downstream (𝜇A >𝜇B), the
presence of the additional middle layer can destabilize the front, provided that its viscosity 𝜇C is either lower
or higher than both viscosities of the neighboring fluids. Such a case is analogous to our examples with 𝜌> 1,
where the downstream (primary) mineral has a higher porosity than the upstream one.

Although the instability in hydrogeochemical systems is conceptually similar to viscous fingering, there are
important distinctions. In a replacement system, the characteristic wavelength of the perturbation is compa-
rable to the width of reaction zone, but in the viscous fluid case the width of the central slice of fluid has a
minimal impact on the dynamics [Daripa, 2008].

Although one-component precipitation fronts are stable, multicomponent reactions can sometimes lead to
an unstable front [Nagatsu et al., 2014; Shukla and De Wit, 2016]. For example, if an aqueous phase A infiltrates
another aqueous phase B and A reacts with B to form a precipitate, there is a localized decrease in porosity
in the reaction front separating A and B. The reduced mobility generates an instability in the interface with
the more mobile upstream solution A, leading to fingering. In contrast, the precipitation-dissolution system
described in this paper is initially destabilized on the downstream (dissolution) front.

7. Discussion

The reactive-infiltration instability is an important source of pattern formation in geology [Ortoleva, 1990].
During infiltration-driven dissolution the reaction front is destabilized by the upstream permeability increase,
which results from porosity generated by the passing dissolution front. In this paper we have shown that
a replacement front is similarly unstable whenever the secondary mineral is more permeable than the pri-
mary one (𝜌 < 1). Moreover, for convection-dominated systems (H<1) a precipitation-driven replacement is
unstable even when the secondary phase is the less permeable (𝜌> 1). The appearance of an instability in this
case is linked to the creation of a region of increased porosity in the vicinity of the front, something which can
also observed in the field [Banerjee and Merino, 2011; Lucke et al., 2012]. The size of the porous zone reflects the
length scale over which the slowest reaction comes to equilibrium. The localized region of enhanced porosity
destabilizes a planar front, even when the secondary phase is less permeable (𝜌 ≥ 1) than the primary min-
eral. However, in this case long-wavelength perturbations are stabilized by the favorable permeability contrast
between bulk phases and only perturbations on the scale of the thickness of the zone of enhanced porosity
(Figure 4) are unstable. This is reminiscent of certain kinds of viscous fingering and precipitation experiments
(section 6). Both viscous and reactive instabilities are generated by mobility contrast, with a mobile upstream
phase penetrating a less mobile downstream one.

We have previously argued [Kondratiuk et al., 2015] that in cases where the secondary phase has a smaller
molar volume than the primary mineral a replacement front cannot be synchronized by crystallization pres-
sure. Instead, we suggested two chemical mechanisms by which a steadily propagating front could be
obtained. In this paper we studied the buffering mechanism (23), which can operate when replacement
is driven by an oversaturation of secondary ions. However, when the two minerals share a common ion,
replacement can also be initiated by undersaturated solutions of secondary ions, as for example in KCl-for-KBr
replacement [Putnis, 2009]. The rising concentration of the common ion, by dissolution of the primary min-
eral, then leads to precipitation of the secondary mineral. The stability of these fronts [Kondratiuk et al., 2015]
will be investigated in future work. Interestingly, recent studies [Raufaste et al., 2011; Kar et al., 2016] report
fingering at a microscopic scale (∼100 μm), presumably connected with self-generated convective flows by
the process of diffusion osmosis [Kar et al., 2016; Ajdari and Bocquet, 2006].

Although the high permeability of the upstream phase destabilizes the front, the growth of an instability
depends on its length scale and the lateral dimensions of the replacement front. If the lateral span of the
front is too small in comparison with the wavelength of the instability, its growth is quenched by diffu-
sion. For example, serpentinite carbonation is characterized by sharp, almost flat fronts [Beinlich et al., 2012],
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with no suggestion of fingering. This is because serpentinite is highly impermeable; Kawano et al. [2011] sug-
gests a permeability of 0.1–1μD for unconfined serpentinite, corresponding to flow velocities v0 ∼ 10−10 cm/s.
In that case the replacement reactions are entirely transport limited (H ≫ 1) and a sharp discontinuity
between the two phases is to be expected [Ortoleva et al., 1987]. The characteristic length scale of the insta-
bility (21) is then of the order of kilometers and the time scale for the growth of perturbations (20) exceeds
1012 years. Even over geological times, instabilities of such large length scales cannot develop and the front
will remain flat. The sharpness of the serpentinite front is therefore consistent with the diffusion-dominated
(H≫1) character of this replacement process.

The qualitative features of the dispersion curves are insensitive to details of the chemical kinetics, provided
that the high-porosity zone is present. However, the subsequent, nonlinear stages of the dynamics can be
markedly different, as shown by the figures in section 5. When an isovolumetric replacement is imposed by
fiat (section 2) the fingering patterns (Figure 7) do not resemble the shapes observed in nature (Figure 6).
Much more realistic morphologies (Figures 9 and 11) are obtained by allowing the isovolumetric condition
to emerge naturally via the buffering reaction (23). The instability leads to the breakup of the front and the
formation of finger-like funnels in the replacement zone. Once formed, the fingers continue to grow, focusing
an ever-increasing portion of the flow but also competing with each other: the shorter fingers are attracted to
the longer ones and eventually merge with them. As a result the pattern coarsens with time, and the widths
of the fingers and characteristic distance between them increase as

√
t (Figure 10). Thus, as suggested by

Merino and Banerjee [2008], chemical replacement can in principle trigger the formation of large-scale karst
structures. However, there are caveats to these conclusions. First, we have assumed that the only source of
protons is the precipitation reaction (1), but in reality other sources of acidity can be present, such as meteoric
carbonic acid or soil waters. Second, the assumption of equal porosities of product and parent phase [Merino
and Banerjee, 2008] can be treated as an approximation only. For both of the above reasons, one would expect
that both the reactive-infiltration instability and the replacement-associated instability could contribute to
karst formation in terra rossa-covered limestone terrains.

Appendix A: The Scaled Equations and Their One-Dimensional Solutions

In one dimension the equations for reactant transport (3c) and (3d) can be integrated directly, noting that
v(x) = v0ex . For example, from equations (3c) and (3e)

c1D
S

cin
S

= 1 − ex′∕lu

1 + Pe
, 𝜙1D

S = 𝜙max
S x′ < 0, (A1)

c1D
S

cin
S

= e−x′∕ld

1 + Pe−1
,

𝜙1D
S

𝜙max
S

= e−x′∕ld x′ > 0, (A2)

where x′ = x − Ut is the spatial coordinate in the reference frame moving with the front. The upstream
penetration length is lu = D∕v0, and the downstream penetration length of the secondary ions is

ld = 2D∕(
√

v2
0 + 4𝛼precD − v0) [Szymczak and Ladd, 2013]. We define the Péclet number with respect to the

downstream penetration length,

Pe =
v0ld

D
=

2v0√
v2

0 + 4𝛼precD − v0

, (A3)

and the Damköhler number similarly,

Da =
𝛼precld

v0
=

2𝛼precD

v0

(√
v2

0 + 4𝛼precD − v0

) . (A4)

The ratio of upstream and downstream length scales, ld∕lu = 2∕(
√

1 + 4H − 1), is a function of H only
(equation (13)); in fact, both Pe and Da can be expressed as functions of H [Szymczak and Ladd, 2013],

Pe = 2√
1 + 4H − 1

, Da =
√

1 + 4H + 1
2

. (A5)
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The flow and transport equations can now be simplified by scaling space by the downstream penetration
length, ld (10), and time by the characteristic time for secondary phase precipitation, tp (11). We define
dimensionless coordinates:

𝜉 = x′∕ld, 𝜂 = y∕ld, (A6)

and time

𝜏 = t∕tp. (A7)

Next, we rescale the concentration, velocity, and volume fractions:

v̂ = v∕v0, (A8)

ĉS = cS∕cin
S , ĉH = cH∕cin

S , (A9)

𝜙̂S = 𝜙S∕𝜙max
S , 𝜙̂P = 𝜙P∕𝜙max

S , 𝜑̂ =
𝜑 − 𝜑min

1 − 𝜑min
. (A10)

The rescaled volume fractions are bounded on [0, 1]. The dimensionless equations are then as follows:

∇̂ ⋅ v̂ = 0 (A11a)

v̂ = −K̂(𝜑̂)∇̂p̂ (A11b)

∇̂ ⋅ (ĉSv̂) − 1
Pe

∇̂2ĉS = −𝜃(1 − 𝜙̂S)Da ĉS (A11c)

∇̂ ⋅ (ĉHv̂) − 1
Pe

∇̂2ĉH = 𝜈𝜃(1 − 𝜙̂S)Da ĉS − 𝜅𝜃(𝜙̂P)Da ĉH (A11d)

(𝜕𝜏 − Û𝜕𝜉)𝜙̂S = 𝜃(1 − 𝜙̂S)Da ĉS (A11e)

𝜈𝜌(𝜕𝜏 − Û𝜕𝜉)𝜙̂P = −𝜅𝜃(𝜙̂P)Da ĉH (A11f)

1 − 𝜑̂ = 𝜙̂S + 𝜙̂P, (A11g)

where K̂ = K∕Kmin and p̂ = p∕𝜕x̂p0.

In the moving reference frame the initial conditions ((4d)–(4e)) transform into boundary conditions and
together with the conditions (4a)–(4c) read as follows:

v̂|𝜉→−∞ = e𝜉 û𝜂

|||𝜉→∞
= 0 (A12a)

ĉS
||𝜉→−∞ = 1 𝜕𝜉 ĉS

|||𝜉→∞
= 0 (A12b)

ĉH
||𝜉→−∞ = 0 𝜕̂𝜉cH

|||𝜉→∞
= 0 (A12c)

𝜙̂S
|||𝜉→∞

= 0 𝜙̂P
|||𝜉→∞

= 𝜌−1. (A12d)

There is the additional condition at the front,

𝜙̂S(𝜉 = 0) = 1, (A12e)

which follows from the requirement that the front velocity remains constant (see the discussion in Szymczak
and Ladd [2014]). A number of matching conditions are necessary to close the equations. The concentration
fields and their first derivatives must be continuous to enforce continuity of reactant flux across each front.
The pressure and normal component of the fluid velocity also have to be continuous across the front.

We use the one-dimensional solutions as the base state for the linear stability analysis. In the scaled variables,
the secondary ion profile and the secondary mineral volume fraction profile, equation (A2), take the form

ĉ1D
S (𝜉) =

{
1 − (DaPe)−1 ePe 𝜉 , 𝜉 < 0
Da−1e−𝜉 , 𝜉 > 0

(A13)

𝜙̂1D
S (𝜉) =

{
1, 𝜉 < 0
e−𝜉 , 𝜉 > 0.

(A14)
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It can be seen that the concentration and porosity profiles satisfy the continuity conditions at the interface
(𝜉 = 0).

In the absence of the buffering reaction, the dissolution front (xP in Figure 1) is located at an arbitrary posi-
tion with respect to the precipitation front (xS), depending on the amount of porosity initially present in
the system. Here we will assume that their positions coincide, which leads to profiles for ĉH and 𝜙̂P with the
following form:

ĉ1D
H (𝜉) =

{
𝜈

𝜅−1

(
Da−1 − Da−1

𝜅

)
ePe 𝜉 , 𝜉 < 0

𝜈

𝜅−1

(
Da−1e−𝜉 − Da−1

𝜅
e−Pe 𝜉∕Pe𝜅

)
, 𝜉 > 0

(A15)

𝜙̂1D
P (𝜉) =

{
0, 𝜉 < 0
1
𝜌
− 1

𝜌(𝜅−1)

(
𝜅e−𝜉 − e−Pe 𝜉∕Pe𝜅

)
. 𝜉 > 0

(A16)

The Péclet and Damköhler numbers associated with the dissolution of the primary mineral are

Pe𝜅 =
2v0√

v2
0 + 4D𝛼diss − v0

= 2√
1 + 4𝜅H − 1

, (A17)

Da𝜅 =
2D𝛼diss

v0

(√
v2

0 + 4D𝛼diss − v0

) =
√

1 + 4𝜅H + 1
2

. (A18)

Appendix B: The Linear Stability Analysis Framework

The linear stability analysis proceeds by considering an infinitesimal perturbation to a planar reaction front,

𝜉0(𝜂, 𝜏) = 𝜁 sin(k̂𝜂) exp(𝜎̂𝜏) (B1)

In the above, 𝜁 ≪ 1 is the amplitude of the perturbation, k̂ is its dimensionless wave number, and 𝜎̂ is
the (dimensionless) growth rate. The pressure, Darcy velocity, concentration, and volume fraction fields are
similarly perturbed, e.g.,

𝜙̂S(𝜉, 𝜂, 𝜏) = 𝜙̂1D
S (𝜉) + f𝜙S

(𝜉) sin(k̂𝜂) exp(𝜎̂𝜏). (B2)

and analogously for the other fields. The perturbed fields are then inserted back into equation (3), with bound-
ary conditions (A12) and continuity conditions across the front. The resulting equations for the perturbations
are linearized by neglecting terms which are of the second and higher order in the perturbation amplitudes.

Due to the presence of step functions in the transport equation, one needs to solve the resulting differential
equations separately in the upstream (𝜉 < 0) and the downstream (𝜉 > 0) domains. In the upstream domain
the porosity perturbations vanish and, as a result, the equations can be solved analytically. In the down-
stream domain, however, the problem is more complex. One can note that all the (downstream) perturbation
amplitudes can be derived from the f𝜙S

amplitude,

fcS
= Da−1(𝜎̂ − 𝜕𝜉)f𝜙S

(B3)

fv𝜉
= Da−1(𝜎̂ − 𝜕𝜉)f𝜙S

(B4)

fp = (Da k̂2K̂(𝜑̂1D))−1𝜕𝜉(𝜎̂ − 𝜕𝜉)f𝜙S
(B5)

f𝜙P
= −

(
1 − 1

k̂2Da

( 1
W

∇̂2 − (𝜕𝜉𝜑̂1D)𝜕𝜉
)(𝜎̂ − 𝜕𝜉)

)
f𝜙S

(B6)

fcH
= 𝜈𝜌

𝜅Da

(
1 − 1

k̂2Da
(𝜎̂ − 𝜕𝜉)

( 1
W

∇̂2 − 𝜑̂′𝜕𝜉

)
)
(𝜎̂ − 𝜕𝜉)f𝜙S

(B7)

where  = −(𝜕𝜉 ĉ1D
S )−1

(
Da + 𝜕𝜉 − Pe−1∇̂2

)
, ∇̂2 = 𝜕2

𝜉
− k̂2, and

W(𝜉) = 𝜕𝜑̂1D ln K̂(𝜑̂1D). (B8)
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The set of coupled equations for the f∗(𝜉) amplitudes can be combined into a single eighth-order ODE for
f𝜙S

(𝜉), (
𝜅Da + 𝜕𝜉 − Pe−1∇̂2

)
(𝜎̂ − 𝜕𝜉)

( 1
W

∇̂2 −
(
𝜕𝜉𝜑̂

1D
)
𝜕𝜉

)(𝜎̂ − 𝜕𝜉)f𝜙S

= k̂2Da

(
𝜅Da(1 − 𝜌−1) + 𝜕𝜉 − Pe−1∇̂2 +

(
𝜕𝜉 ĉ1D

H

) 𝜅

𝜈𝜌

)
(𝜎̂ − 𝜕𝜉)f𝜙S

, 𝜉 > 0,
(B9)

which can be only solved numerically. The boundary conditions for equation (B9) follow from boundary con-
ditions (A12) and the linearized continuity conditions across the (now perturbed) reaction front. Eventually,
three boundary conditions at 𝜉 = 0 can be constructed:

⎛⎜⎜⎝𝜕𝜉 − Pe
2

⎛⎜⎜⎝1 +

√
1 +

(
2k̂
Pe

)2⎞⎟⎟⎠
⎞⎟⎟⎠ fcS

(0) −
(
𝜕𝜉 ĉ1D

S

)
(0)

⎛⎜⎜⎝1 + Pe

2k̂
−

√
1 +

(
Pe

2k̂

)2⎞⎟⎟⎠ fv𝜉
(0) = −𝜁Pe (B10)

⎛⎜⎜⎝𝜕𝜉 − Pe
2

⎛⎜⎜⎝1 +

√
1 +

(
2k̂
Pe

)2⎞⎟⎟⎠
⎞⎟⎟⎠ fcH

(0) −
(
𝜕𝜉 ĉ1D

H

)
(0)

⎛⎜⎜⎝1 + Pe

2k̂
−

√
1 +

(
Pe

2k̂

)2⎞⎟⎟⎠ fv𝜉
(0)

= −𝜉0
𝜈Pe
𝜅 − 1

(
1 − Pe

Pe𝜅

) (B11)

(𝜕𝜉 − k̂)fv𝜉
(0) = 0 (B12)

as well as five at 𝜉 → ∞,

f𝜙S

|||𝜉→∞
= 0 (B13)

f𝜙P

|||𝜉→∞
= 0 (B14)

fcS

|||𝜉→∞
= 0 (B15)

fcH

|||𝜉→∞
= 0 (B16)

fv𝜉
|||𝜉→∞

= 0. (B17)

Note that the amplitude of the perturbation, 𝜁 , is arbitrary, which is to be expected, since the perturbation
equation (B9) is linear. The above boundary conditions allow us to find the solution to (B9) and then the
stationarity condition (7), which can be put in the form

f𝜙S
(0) = 𝜉0, (B18)

allows us to obtain the dispersion curve 𝜎̂(k̂). We solve the problem numerically using the pseudospec-
tral, boundary-bordering method [Boyd, 2001], and a cubic permeability model. As a result, we obtain the
dispersion curves shown in Figures 3–5.

Appendix C: Linear Stability Analysis for Small Permeability Contrasts

In some cases the change in porosity across the front may be small, such that the porosity contrast

Δ =
𝜑max − 𝜑min

𝜑min
(C1)

is much less than 1. It is then more convenient to rescale the porosity by 𝜑max − 𝜑min,

𝜑̂ =
𝜑 − 𝜑min

𝜑max − 𝜑min
, (C2)

rather than by 1 − 𝜑min (A10), so that 𝜑̂ remains bounded in [0, 1]. The linear stability analysis still follows
Appendix B but with the rescaled porosity now defined by (C2). When the porosity contrast is sufficiently
small, the permeability varies approximately linearly with 𝜑̂,

K̂(𝜑̂) = 1 + W𝜑̂ + (Δ2). (C3)
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Figure C1. Dispersion curves for the replacement system with the exponential permeability model assumed, for
W = 0.1, 𝜅 = 2, H = 0 (convection-limited case), and 𝜌 = 0.63, 0.71, 0.83, 1.0, and 1.25 (top to bottom). Solid lines—exact
numerical solutions; dashed lines—the approximate analytical results, equation (C7).

For the cubic permeability law, K ∝ 𝜑3, W = 3Δ. Here we show that when W is small the dispersion relation
can be solved analytically, adding additional insight.

If the permeability contrast is not too large it is possible to obtain an approximate dispersion relation by
expanding f𝜙S

(𝜉) and 𝜎̂ in powers of W [Szymczak and Ladd, 2014],

f𝜙S
= f0 + Wf1 + W2f2 +… (C4)

𝜎̂ = 𝜎̂0 + W𝜎̂1 + W2𝜎̂2 +… . (C5)

Neglecting diffusion (H → 0), analytical solutions up to first order can be relatively easily obtained. At zeroth
order

𝜎̂0 = 0, (C6)

so 𝜎̂ is of the order of W . To first order in W , the dispersion relation is given by

𝜎̂ = W𝜎̂1 = W
k̂[𝜅

(
𝜌−1 − 1

)
(𝜅 + 1 + k̂) − k̂]

2(𝜅 + 1)(k̂ + 1)(𝜅 + k̂)
. (C7)

As shown in Figure C1, equation (C7) is a good approximation to 𝜎̂ when W < 1. For this comparison we used
an exponential permeability model

K̂(𝜑̂) ∝ eW𝜑̂, (C8)

which also has a constant W but a nonlinear dependence of K̂ on 𝜑̂. It is sometimes used to model the per-
meability of partially soluble rocks [Hinch and Bhatt, 1990], for example, sandstones containing carbonate
cement. The dispersion curves for small W share some common features with the cubic permeability model.
The system again becomes more unstable with decreasing 𝜌 (Figure C1), but when 𝜌 ≥ 1 the front is always
stable, with 𝜎̂ ≤ 0 for all k̂.

At long wavelengths the dispersion curves are linear in k̂, with a slope

d𝜎̂

dk̂

||||k̂=0
= 1

2

(
𝜌−1 − 1

)
W = W

2

(
𝜙max

P − 𝜙max
S

𝜙max
S

)
=

1 − Γ∞

2
, (C9)

again making use of the linearly varying permeability (C3). The stability of the front with respect to
long-wavelength (kld ≪ 1) perturbations is solely determined by the permeability difference between the
bulk mineral phases, as in equation (17); the two expressions are equivalent when Γ∞ ≃ 1.

Unstable systems (𝜌 < 1) have a characteristic wave number

k̂max =
𝜅

𝜅 + 1

(
𝜅 (𝜌 − 1)−1 +

√
𝜌−1 (𝜅2 (𝜌−1 − 1) + 1) − 1

)
, (C10)

corresponding to the largest growth rate. All wavelengths are unstable if the porosity contrast is small enough,
𝜌−1 < 1 + 𝜅−1. For intermediate values of 𝜌, i.e., 1 < 𝜌−1 < 1 + 𝜅−1, long-wave (k̂ < k̂cr) perturbations are
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unstable but short-wave (k̂ > k̂cr) perturbations are stable. The critical wave number k̂cr separating stable and
unstable regions is

k̂cr =
1 + 𝜅

(𝜅 (𝜌−1 − 1))−1 − 1
. (C11)

The stabilization of short waves by chemical reactions is fundamentally different from the stabilization by
diffusion, which was discussed in section 4.

Appendix D: Total Porosity Balance

Let us calculate the time derivative of the total porosity in the system:

d
dt̂ ∫ ∫

S

dS 𝜑̂(x̂, ŷ, t̂) = ∫ ∫
S

dS 𝜕t̂𝜑̂ = −∫ ∫
S

dS (𝜕t̂𝜙̂S + 𝜕t̂𝜙̂P)

= −∫ ∫
S

dS

(
−∇ ⋅ jS +

1
𝜈𝜌

(
𝜈∇ ⋅ jS + ∇ ⋅ jX

))
= ∫

𝜕S

dl n̂ ⋅
((

1 − 𝜌−1
)

jS −
1
𝜈𝜌

jX

)
= ∫ dŷ (−ex̂) ⋅ lim

x̂→−∞

((
1 − 𝜌−1

)
jS −

1
𝜈𝜌

jX

)
+ ∫ dŷ ex̂ ⋅ lim

x̂→∞

((
1 − 𝜌−1

)
jS −

1
𝜈𝜌

jX

)
=
(
𝜌−1 − 1

)
∫ dŷ.

(D1)

The fluxes of aqueous species are jS = û ĉS − Pe−1∇̂ĉS and jX = û ĉX − Pe−1∇̂ĉX . Total porosity increases for
𝜌 < 1 and decreases for 𝜌> 1. In the special case of 𝜌 = 1, the total porosity in the system remains constant.

References
Aharonov, E., J. Whitehead, P. Kelemen, and M. Spiegelman (1995), Channeling instability of upwelling melt in the mantle, J. Geophys. Res.,

100, 433–455.
Ajdari, A., and L. Bocquet (2006), Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond,

Phys. Rev. Lett., 96(18), 186102.
Banerjee, A., and E. Merino (2011), Terra rossa genesis by replacement of limestone by kaolinite: III. Dynamic quantitative model, J. Geol.,

119(3), 259–274.
Bear, J. (1972), Dynamics of Fluids in Porous Media, Dover Publ., New York.
Beinlich, A., O. Plümper, J. Hövelmann, H. Austrheim, and B. Jamtveit (2012), Massive serpentinite carbonation at Linnajavri, N-Norway,

Terra Nova, 24(6), 446–455.
Bickle, M., and J. Baker (1990), Migration of reaction and isotopic fronts in infiltration zones: Assessments of fluid flux in metamorphic

terrains, Earth Planet. Sci. Lett., 98(1), 1–13.
Boyd, J. (2001), Chebyshev and Fourier Spectral Methods, Dover Publ., New York.
Catchpoole, H., R. Shalliker, G. Dennis, and G. Guiochon (2006), Visualising the onset of viscous fingering in chromatography columns,

J. Chromatogr. A, 1117(2), 137–145.
Chadam, D., D. Hoff, E. Merino, P. Ortoleva, and A. Sen (1986), Reactive infiltration instabilities, IMA J. Appl. Math., 36, 207–221.
Daccord, G., and R. Lenormand (1987), Fractal patterns from chemical dissolution, Nature, 325, 41–43.
Daripa, P. (2008), Studies on stability in three-layer Hele-Shaw flows, Phys. Fluids, 20(11), 112101.
De Wit, A., Y. Bertho, and M. Martin (2005), Viscous fingering of miscible slices, Phys. Fluids, 17(5), 054114.
Hejazi, S., P. Trevelyan, J. Azaiez, and A. De Wit (2010), Viscous fingering of a miscible reactive A + B → C interface: A linear stability analysis,

J. Fluid Mech., 652, 501–528.
Hinch, E., and B. Bhatt (1990), Stability of an acid front moving through porous rock, J. Fluid Mech., 212, 279–288.
Hoefner, M., and H. Fogler (1988), Pore evolution and channel formation during flow and reaction in porous media, AIChE J., 34, 45–54.
Hofmann, A. (1972), Chromatographic theory of infiltration metasomatism and its application to feldspars, Am. J. Sci., 272(1), 69–90.
Jamtveit, B., M. Krotkiewski, M. Kobchenko, F. Renard, and L. Angheluta (2014), Pore-space distribution and transport properties of an

andesitic intrusion, Earth Planet. Sci. Lett., 400, 123–129.
Jennings, J. (1985), Karst Geomorphology, Basil Blackwell, Oxford.
Jonas, L., T. Müller, R. Dohmen, L. Baumgartner, and B. Putlitz (2015), Transport-controlled hydrothermal replacement of calcite by

Mg-carbonates, Geology, 43(9), 779–782.
Kar, A., M. McEldrew, R. F. Stout, B. E. Mays, A. Khair, D. Velegol, and C. A. Gorski (2016), Self-generated electrokinetic fluid flows during

pseudomorphic mineral replacement reactions, Langmuir, 32(21), 5233–5240.
Kawano, S., I. Katayama, and K. Okazaki (2011), Permeability anisotropy of serpentinite and fluid pathways in a subduction zone, Geology,

39, 939–942.
Kondratiuk, P., H. Tredak, A. Ladd, and P. Szymczak (2015), Synchronization of dissolution and precipitation fronts during infiltration-driven

replacement in porous rocks, Geophys. Res. Lett., 42, 2244–2252, doi:10.1002/2015GL063146.

Acknowledgments
This work was supported by the
National Science Centre (Poland) under
research grant 2012/07/E/ST3/01734
and by the U.S. Department of
Energy Office of Science, Office of
Basic Energy Sciences under award
DE-FG02-98ER14853. We would like
to thank Enrique Merino for bringing
our attention to the problem and
many helpful discussions. We also
thank Ken Grimes and David Farmer
for their help with the exploration
of terra rossa-filled solution pipes
in Coonawarra region of Southern
Australia. All data and related meta-
data underlying the findings reported
can be requested by e-mail from
piotr.szymczak@fuw.edu.pl.

KONDRATIUK ET AL. FINGER FORMATION IN MINERAL REPLACEMENT 5990

http://dx.doi.org/10.1002/2015GL063146
mailto:piotr.szymczak@fuw.edu.pl


Journal of Geophysical Research: Solid Earth 10.1002/2017JB014169

Lake, L., S. Bryant, and A. Araque-Martinez (2002), Geochemistry and Fluid Flow, Elsevier, Amsterdam.
Lichtner, P. (1988), The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous media,

Geochim. Cosmochim. Acta, 52, 143–165.
Lucke, B., H. Kemnitz, and R. Bäumler (2012), Evidence for isovolumetric replacement in some Terra Rossa profiles of northern Jordan, B. Soc.

Geol. Mex., 64(1), 21–35.
Maliva, R., and R. Siever (1988), Diagenetic replacement controlled by force of crystallization, Geology, 16, 688–691.
Meert, J., F. Pruett, and E. Merino (2009), An “inverse conglomerate” paleomagnetic test and timing of in situ terra rossa formation

at Bloomington, Indiana, J. Geol., 117(2), 126–138.
Menon, G., and F. Otto (2005), Dynamic scaling in miscible viscous fingering, Commun. Math. Phys., 257(2), 303–317.
Merino, E., and A. Banerjee (2008), Terra rossa genesis, implications for karst, and eolian dust: A geodynamic thread, J. Geol., 116, 62–75.
Merino, E., and A. Canals (2011), Self-accelerating dolomite-for-calcite replacement: Self-organized dynamics of burial dolomitization and

associated mineralization, Am. J. Sci., 311, 572–607.
Merino, E., D. Nahon, and Y. Wang (1993), Kinetics and mass transfer of pseudomorphic replacement: Application to replacement of parent

minerals and kaolinite by Al, Fe, and Mn oxides during weathering, Am. J. Sci., 293, 135–135.
Minguez, J., and J. Elorza (1994), Diagenetic volume-for-volume replacement: Force of crystallization and depression of dissolution, Mineral.

Mag., 58(390), 135–142.
Mishra, M., M. Martin, and A. De Wit (2008), Differences in miscible viscous fingering of finite width slices with positive or negative

log-mobility ratio, Phys. Rev. E., 78(6), 066306.
Nagatsu, Y., Y. Ishii, Y. Tada, and A. De Wit (2014), Hydrodynamic fingering instability induced by a precipitation reaction, Phys. Rev. Lett.,

113(2), 024502.
Ortoleva, P., J. Chadam, E. Merino, and A. Sen (1987), Geochemical self-organization: II. The reactive-infiltration instability, Am. J. Sci., 287,

1008–1040.
Ortoleva, P., G. Auchmuty, J. Chadam, J. Hettmer, E. Merino, C. H. Moore, and E. Ripley (1986), Redox front propagation and banding

modalities, Phys. D, 19(3), 334–354.
Ortoleva, P. J. (1990), Self-organization in geological systems, Earth Sci. Rev., 29, 241–248.
Palmer, A. N. (1991), Origin and morphology of limestone caves, Geol. Soc. Am. Bull., 103, 1–21.
Petrus, K., and P. Szymczak (2016), Influence of layering on the formation and growth of solution pipes, Front. Phys., 3, 92.
Plan, L., C. Tschegg, J. De Waele, and C. Spötl (2012), Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave

(Kraushöhle, Austria), Geomorphology, 169, 45–54.
Plümper, O., and A. Putnis (2009), The complex hydrothermal history of granitic rocks: Multiple feldspar replacement reactions under

subsolidus conditions, J. Petrol., 50, 967–987.
Pramanik, S., and M. Mishra (2015), Viscosity scaling of fingering instability in finite slices with Korteweg stress, Europhys. Lett., 109(6), 64001.
Putnis, A. (2009), Mineral replacement reactions, Rev. Mineral. Geochem., 70(1), 87–124.
Raufaste, C., B. Jamtveit, T. John, P. Meakin, and D. K. Dysthe (2011), The mechanism of porosity formation during solvent-mediated phase

transformations, Proc. R. Soc. A, 467(2129), 1408–1426.
Shalliker, R. A., H. J. Catchpoole, G. R. Dennis, and G. Guiochon (2007), Visualising viscous fingering in chromatography columns:

High viscosity solute plug, J. Chromatogr. A, 1142(1), 48–55.
Shukla, P., and A. De Wit (2016), Fingering dynamics driven by a precipitation reaction: Nonlinear simulations, Phys. Rev. E, 93(2), 023103.
Szymczak, P., and A. J. C. Ladd (2006), A network model of channel competition in fracture dissolution, Geophys. Res. Lett., 33, L05401,

doi:10.1029/2005GL025334.
Szymczak, P., and A. J. C. Ladd (2013), Interacting length scales in the reactive-infiltration instability, Geophys. Res. Lett., 40, 3036–3041,

doi:10.1002/grl.50564.
Szymczak, P., and A. J. C. Ladd (2014), Reactive infiltration instabilities in rocks: Part 2. Dissolution of a porous matrix, J. Fluid Mech., 738,

591–630.
Wooding, R. (1969), Growth of fingers at an unstable diffusing interface in a porous medium or Hele-Shaw cell, J. Fluid Mech., 39(3),

477–495.
Woods, A. (2014), Flow in Porous Rocks, Cambridge Univ. Press, Cambridge

KONDRATIUK ET AL. FINGER FORMATION IN MINERAL REPLACEMENT 5991

http://dx.doi.org/10.1029/2005GL025334
http://dx.doi.org/10.1002/grl.50564

	Abstract
	Plain Language Summary
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


