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A B S T R A C T

In this comment we draw attention to an elementary but consequential mathematical error in this recently
published article.

The recent paper “Validity of using large-density asymptotics for
studying reaction-infiltration instability in fluid-saturated rocks” (Zhao
et al., 2018), hereafter referred to as ZHO, attempts to undermine our
critique (Ladd and Szymczak, 2017) of previous work by the same
authors (Zhao et al., 2008, 2010, 2013b; Zhao, 2014; Zhao et al., 2014,
2015). However, the main conclusions of ZHO are based on an ele-
mentary mathematical error and must therefore be discarded.

In Eq. (8) of ZHO, the authors have confused Lagrangian and
Eulerian descriptions of the fluid motion. Although partial differential
equations describing reactive transport can be written in either frame
(Bear, 1972), in Ladd and Szymczak (2017), hereafter referred to as LS,
an Eulerian (or laboratory) frame was chosen; ZHO also use an Eulerian
coordinate system, as indicated by Eqs. (22)–(24). In an Eulerian (or
laboratory) frame r and t are independent variables; therefore, contrary
to Eq. (8) of ZHO, rd dt/ is zero and unrelated to the fluid velocity. The
core of ZHO (Sections 2 and 3) follows directly from Eq. (8) and
therefore their conclusions are not valid. Moreover, the result =γH 1
from Eq. (12) of ZHO makes no physical sense, because γH is a product
of six independent quantities.

ZHO also err in their criticism of the scaling in LS, apparently not
understanding the difference between independent and dependent
variables. Scaling r and t (the independent variables) introduces a
change of length and time scales into the equations via the differential
operators. But scaling the velocity (a dependent variable) merely in-
troduces a multiplicative factor, which just needs to be kept track of in
the equations. That is why the parameter H has v0 in it. It is simple to
check that Eqs. (22)–(24) from LS are equivalent to the dimensional

form given in Eqs. (1)–(3) of the same paper.
It might escape the reader’s notice that the origin of our disagree-

ment with Zhao, Hobbs and Ord does not lie in mathematical details,
important as they are. The source of the disagreement comes from their
repeated insistence (Zhao et al., 2008, 2010, 2013b,a; Zhao, 2014; Zhao
et al., 2014, 2015) that the thickness of a dissolution front is de-
termined solely by the ratio of aqueous to mineral concentrations, the
small parameter denoted by γ. According to Zhao et al., in the limit

→γ 0 the dissolution front is inevitably sharp. In this, they are simply
repeating a mistake from 30 years ago. Contrary to Chadam et al.
(1986), Ortoleva et al. (1987b), it is well-established in the reactive-
transport literature that the thickness of the dissolution front is not
determined by γ, but by a combination of fluid velocity, reaction rate,
and diffusion constant (Bear, 1972; Lichtner, 1988; Phillips, 1990;
Steefel and Lasaga, 1990). A number of authors (Hinch and Bhatt, 1990;
Steefel and Lasaga, 1990; Wangen, 2013; Szymczak and Ladd, 2014)
have noted that the reaction-infiltration model in Chadam et al. (1986),
Ortoleva et al. (1987b) is only valid in the limit of fast reactions. In LS
we located the error in the asymptotic analysis of Chadam et al. (1986),
Ortoleva et al. (1987b) and by implication in the work of Zhao et al..
The validity of the critique made in LS is unaffected by the erroneous
analysis presented in ZHO.

Finally, we note that the stability analysis from (Zhao, 2014),
summarized in Section 4, is equivalent to previously published work
Chadam et al. (1986), Ortoleva et al. (1987b). After correcting a ty-
pographical error, Eq. (32) of ZHO reads (Zhao, 2014)

https://doi.org/10.1016/j.jhydrol.2018.07.029
Received 8 May 2018; Accepted 12 July 2018

⁎ Corresponding author.
E-mail address: tladd@che.ufl.edu (A.J.C. Ladd).

Journal of Hydrology 564 (2018) 414–415

Available online 18 July 2018
0022-1694/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2018.07.029
https://doi.org/10.1016/j.jhydrol.2018.07.029
mailto:tladd@che.ufl.edu
https://doi.org/10.1016/j.jhydrol.2018.07.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2018.07.029&domain=pdf


=

+ −

− + + −ω
γZh

ϕ ϕ
Zh Zh m m

(1 Γ)( )
[ 4 (1 Γ) ].

1 0

2 2

(1)

As was shown in Section 5 of LS (Eq. (47)), the apparent dependence
of the growth rate ω on the dimensionless parameter Zh is illusory.
Using the definitions of length and time scales from Eqs. (25) and (26)
of ZHO and the definition =Zh v Dksγ/0 (Zhao et al., 2013a; Zhao,
2014), the dimensionless growth rate ω and wavenumber m can be
written in terms of dimensional quantities as
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After canceling the common factor of Zh2 from both sides of Eq. (1),
we recover the original result from Ortoleva et al. (1987a) (Eq.
(VIII.3)),
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which is independent of reaction rate. Thus the plots of Figs. 1 and 2 of
ZHO only repeat the same result with different scalings of the axes. In
order to account for finite reaction rates, a more complex theory, in-
cluding both upstream and downstream concentration fields, is needed
(Szymczak and Ladd, 2013, 2014).
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