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Stabilizing effect of tip splitting on the interface motion
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Pattern-forming processes, such as electrodeposition, dielectric breakdown, or viscous fingering, are often
driven by instabilities. Accordingly, the resulting growth patterns are usually highly branched fractal structures.
However, in some of the unstable growth processes the envelope of the structure grows in a highly regular
manner, with the perturbations smoothed out over the course of time. In this paper we show that the regularity
of the envelope growth can be connected to small-scale instabilities leading to the tip splitting of the fingers
at the advancing front of the structure. Whenever the growth velocity becomes too large, the finger splits into
two branches. In this way it can absorb an increased flux and thus damp the instability. Hence, somewhat
counterintuitively, the instability at a small scale results in a stability at a larger scale. The quantitative analysis
of these effects is provided by means of the Loewner equation, which one can use to reduce the problem of
the interface motion to that of the evolution of the conformal mapping onto the complex plane. This allows an
effective analysis of the multifingered growth in a variety of different geometries. We show how the geometry
impacts the shape of the envelope of the growing pattern and compare the results with those observed in natural
systems.
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I. INTRODUCTION

A variety of natural growth processes, including viscous
fingering, solidification, and electrodeposition, can be modeled
in terms of Laplacian growth. Laplacian growth patterns are
formed when the boundary of a domain is advancing with a
velocity proportional to the gradient of a field that satisfies the
Laplace equation outside the domain. A characteristic feature
of these processes is a strong instability of the interface motion:
If the interface is an isoline of the harmonic field and the
growth rate is proportional to the gradient of the field, small
perturbations of the interface have a tendency to grow and
eventually transform into fingers. At short wavelengths, the
interface growth is stabilized by regularization mechanisms
such as surface tension or kinetic undercooling, but the
longer wavelengths are generally unstable. There are two
main processes responsible for the pattern formation in these
systems. The first is the screening between the nearby branches
mediated by the harmonic field. As a result, longer branches
tend to grow at an increased rate, whereas the growth of the
shorter ones is impeded. The second process is tip splitting,
when the branch bifurcates giving rise to a pair of daughter
branches. The interplay of these two processes results in a
highly ramified fractal structure of the advancing front.

In spite of such a strong instability of the interface, in
many cases the emerging patterns show surprising regularities
on a coarser scale, with a smooth envelope advancing in a
stable way and forming a perfect circle (in radial geometry)
or remaining planar (in rectangular geometry). Examples of
such patterns are presented in Fig. 1. Arguably, the best
known among them is the so-called dense-branched morphol-
ogy observed in some of the electrodeposition experiments
at increased voltages and electrolyte concentrations [1–8]
[Fig. 1(a)]. However, similar regular envelopes have also
been observed in bacterial colony growth [9] [Fig. 1(c)],
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smoldering in quasi-two-dimensional (2D) systems [10,11]
[Fig. 1(e)], or viscous fingering in a Hele-Shaw cell [12–16].
Impressive examples of viscous fingering patterns with regular
envelopes develop in layered window panes with imperfect
sealing [17,18], which can be observed, for example, in some
of the stations of Vienna’s underground [Figs. 1(b), 1(d),
and 1(f)].

A number of different stabilizing mechanisms have been
proposed over the years to serve as a theoretical explanation
of this phenomenon. Grier et al. [2,6] argued that, in the
context of electrodeposition, the growth is stabilized by the
electrical potential drop across the filamentary pattern. A key
element here is the anisotropic conductivity of the deposit, with
the current flowing preferentially along the fingers. However,
the anisotropic conductivity in the deposit can only stabilize
the growth of the envelopes in circular geometry, but not in
the planar geometry. To explain a stable growth in the latter
setting, Lin and Grier [1] invoked the effect of finite diffusion
length. Namely, if the interface advances with velocity v,
then beyond the length scale ld = D/v the fingers do not
screen each other and long-wavelength modes of the interface
motion become stabilized. Other mechanisms proposed to
explain the stabilization of the envelope include the effects
of electroconvection [7] or the impact of a large concentration
gradient near the interface, which can introduce an effective
interfacial energy and the associated capillarity effects [4]. In
the context of viscous fingering, Couder [19] suggested that
the regular growth observed by Ben-Jacob et al. [12] might
be connected to the flexion of the plexiglass plates forming
a Hele-Shaw cell in their experiments. The flexion makes the
fingers move in a gap of varying thickness, stabilizing the
extremity of all the branches at a well-determined position of
the widening gap. Overall, it seems likely that the stable growth
forms such as those depicted in Fig. 1 can be an example of
equifinality, i.e., different combinations of processes or causes
producing a similar form.

In this paper we propose a very general yet simple
mechanism leading to the stabilization of the envelopes of the
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FIG. 1. Examples of unstable growth patterns with stable envelopes: (a) electrochemical deposition of zinc ions [1], (c) a colony of the
tip-splitting morphotype bacteria of Paenibacillus dendritiformis [9], (e) pattern generated in combustion in a Hele-Shaw cell [10], and (b), (d),
and (f) the viscous fingering patterns in the windows of Vienna underground stations, created as the air invades the polyvinyl film separating
the window panes.

growing patterns. The only prerequisite for it to be applicable
is that high growth velocity should trigger tip splitting of the
fingers, which is a property shared by many pattern-forming
systems [20–26]. Thus, somewhat paradoxically, the regularity
at a large scale is not despite but because of a highly unstable
behavior at a small scale.

II. THIN-FINGER MODEL

For a theoretical description of a growing interface, we
adopt a thin-finger model, in which the fingers are approx-
imated by thin lines growing in response to the Laplacian
field �(r) [27–30]. There are several advantages of such a
model. First, it is analytically tractable and yields closed-form
solutions in single- and two-finger cases. Second, it avoids
the ultraviolet catastrophe at small wavelengths without the
need to introduce a short-scale regularization such as surface
tension. At the same time, the model preserves all the key
features of the Laplacian growth such as long-range interaction
between the fingers, which leads to their mutual screening.
Models of this kind have been successfully used to simulate
a number of pattern-forming processes with an underlying
Laplacian field, such as the growth of the seepage channel
networks [31–33], modeling of smoldering combustion [29],
growth of anisotropic viscous fingers [34], and diffusion-
limited growth [30,35,36].

However, there is a consequence of the simplification: Since
the finger is assumed to be infinitely thin, there is a singularity
in a field gradient at its tip. Namely, at a small distance r from
the tip of the ith finger, the field takes the form

�i(r,t) = Ci(t)
√

r cos(θ/2), (1)

where the coefficients Ci(t) depend on the lengths and shapes
of all the fingers. In the above, the origin of coordinates is
located at the tip of the finger and the polar axis is directed
along it. The pressure gradient will then have r−1/2 singularity.
To address this issue, following Derrida and Hakim [37], we
introduce a small circle of radius r0 around the tip and define
the finger growth rate as the integral of the field gradient over
the circle

vi(t) =
∮

n̂ · ∇�(r,t)ds = 2
√

r0Ci(t). (2)

The parameter r0 should be of the order of the finger width;
its exact value does not influence the dynamics as long as we
assume it to be the same for each finger. In such a case, the
factor 2

√
r0 may be absorbed into the definition of time and

we subsequently take vi(t) equal to Ci(t).
Because of the quasi-2D geometry of the system, the

Laplace equation is conveniently solved by the conformal
mapping techniques [38]. To this end, one finds a mapping
gt (z = x + iy) that transforms the region outside the fingers
onto the empty system (ω plane in Fig. 2). The solution of the
Laplace equation in the ω plane, vanishing on the real axis,
is simply �(ω) = β Im(ω), with the coefficient β = |∇�∞|
prescribing the value of the field gradient at infinity. This
yields the potential of the form �(z) = β Im[g(z)] when
transformed back onto the original domain. The description
of the system in terms of gt is remarkably convenient, as
gt can be shown to obey a first-order ordinary differential
equation (deterministic Loewner equation), which represents
a considerable simplification in comparison to the partial
differential equation describing the boundary evolution.
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FIG. 2. Mapping gt of the exterior of the fingers onto the empty
system (ω plane). The images of the tips γi(t) are located on the real
line at the points ai(t). The gradient lines of the Laplacian field in the
z plane are mapped onto the vertical lines in the ω plane. At a given
moment of time, the fingers grow along the gradient lines, the images
of which pass through the points ai .

The exact form of Loewner equation depends on the shape
of the domain in which the growth takes place [39,40]. For
example, for the growth of thin fingers in the channel with
periodic boundary conditions, it reads [29]

ġt =
n∑

i=1

di(t)
π

W
cot

( π

W
[gt (z) − ai(t)]

)
, (3)

with W standing for the width of the channel and the initial
condition g0(z) = z corresponding to the empty space with
no fingers. Loewner equations for other geometries are given
in Appendix B. Note that the poles of the right-hand side of
Eq. (3) are located at the images of the tips ai(t) = gt (γi) (cf.
Fig. 2). The functions di(t) are the so-called growth factors,
controlling the speed with which the fingers are growing. By
Taylor expanding the inverse mapping ft = g−1

t around ai(t)
the exact relation between di(t) and vi(t) can be shown to
be [28,29] di(t) = vi(t)/|f ′′

t (ai(t))|. On the other hand, the
field amplitudes Ci(t) in (1) can also be expressed in terms
of the conformal mapping ft [29] as Ci(t) = √

2/|f ′′
t (ai(t))|.

Hence, eventually,

vi(t) =
√

2|∇�∞||f ′′
t (ai(t))|−1/2 (4)

and

di(t) =
√

2|∇�∞||f ′′
t (ai(t))|−3/2. (5)

On the other hand, the evolving pole positions ai(t) in the
Loewner equation (3) control the shape of the growing fingers.
If the latter grow along the field lines, then the pole positions
need to obey [33]

f ′′′
t (ai(t)) = 0, i = 1,N. (6)

In a periodic channel, Eq. (6) is fulfilled provided that the poles
move according to [29]

ȧj =
∑
i �=j

di

π

W
cot

( π

W
(aj − ai)

)
. (7)

III. TIP SPLITTING

Experimental and numerical observations on Laplacian
growth systems suggest that, at least in some of the cases,
tip splitting is triggered as the propagation velocity of a finger
exceeds some critical velocity vc [21–26]. On the theoretical
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FIG. 3. Three conformal mappings used in the text: (a) mapping
from the interior of an empty channel to the region outside of a single
finger and mapping from an upper half space to the region around
the tip of a finger just (b) before the bifurcation and (c) after the
bifurcation.

side, it has been shown that viscous fingers are linearly
stable up to the critical propagation velocity at which they
tip split [41,42]. The exact value of this velocity depends on
the amount of noise present in the system [23,41,42].

Within the thin-finger model, tip splitting corresponds to
the creation of a pair of poles out of a single one. Thus we will
assume that whenever vi � vc finger i will be split into i1 and
i2 with

ai1 (t0) = ai(t0) + ε,

ai2 (t0) = ai(t0) − ε,

where ε is an infinitesimal positive constant. The shape of the
finger in the vicinity of the bifurcation can be obtained by
noting that the conformal mapping ft that maps the upper half
plane to the region outside of the single symmetric bifurcation
with the opening angle α [Fig. 3(c)] reads [28]

fbif(ω) = ωα/π

(
ω −

√
2π

α
a1

)1−α/2π(
ω +

√
2π

α
a1

)1−α/2π

,

(8)
where a1 = −a2 is the pole position. Imposing (6) gives a
universal bifurcation angle α = 2/5π as noted in a number of
previous studies [28,33,35]. The ratio of velocities after and

before the bifurcation is given by χ =
√

| f ′′
s (0)

f ′′
bif (a1) | = 2−3/10 ≈

0.812, where fs(ω) = ω2 is the respective mapping for a
mother finger before the bifurcation [cf. Fig. 3(b)]. Hence,
during the evolution, the velocities of the active fingers
oscillate between vs = 0.812vc and vc.
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FIG. 4. Growth patterns in a channel geometry with (right) and
without (left) tip splitting. The width of the system is W = 2, the
critical velocity is vc = 1/

√
2π and the field gradient at infinity

∇�∞ = ey .

IV. RESULTS

Figure 4 presents a typical growth pattern in a channel
geometry obtained using the above model with and without
tip splitting. There is a stark contrast between the two cases.
Without tip splitting the main process controlling the evolution
of the pattern is screening between the neighboring fingers.
The longer fingers collect an increasingly larger portion of
the total flow and thus grow with an increasing velocity
at the expense of the shorter ones. The distance between
the active (growing) fingers constantly increases. Finally,
when it becomes comparable to the system width, a single
winning finger remains. Its asymptotic growth velocity can be
calculated by noting that a conformal transformation that maps
the interior of an empty channel to the region outside a single
finger is [cf. Fig. 3(a)]

fchann(z) = W

π
arcsin

[
sin2

( π

W
z
)

cosh2
( π

W
H (t)

)

− sinh2
( π

W
H (t)

)]1/2
, (9)

where H (t) is the height of the finger at a given moment of
time. Using (4) one gets the growth velocity of a finger as

v(H ) =
√

2
W

π

[
coth

(π

2
H

)]−1/2
|∇�∞|, (10)

which asymptotically converges to

vas = lim
H→∞

v(H ) =
√

2W

π
|∇�∞|. (11)

On the other hand, when tip splitting is allowed, the screening
between the fingers is compensated by the creation of new
ones and the system quickly reaches a stationary state, with
a constant average number of fingers across the width. The
density of the fingers in such a situation can be estimated
based on Eq. (11) by noting that each of N fingers is growing

FIG. 5. Front advancement velocity (equal to the growth velocity
of the longest finger) vs time for the system without tip splitting
(dashed line) and with tip spitting (solid line).

effectively in a strip of width wN = W/N , hence

v ≈
√

2W

Nπ
|∇�∞| =

√
2

nπ
|∇�∞|, (12)

where n = N/W is the density of the fingers in a given place
along the envelope. On the other hand, the active fingers are
always on the edge of splitting, hence v ≈ vc. This leads to the
following estimate of the finger density:

n ≈ 2

π

|∇�∞|2
v2

c

. (13)

The differences between the case with and without the tip
splitting are further elucidated by the analysis of the time
dependence of the front advancement speed, defined as the
velocity of the longest finger. As observed in Fig. 5, without tip
splitting the front velocity, after an initial sharp rise, saturates
near the value of 0.25vas. This is the moment when all of the
16 fingers in the system [cf. Fig. 4(a)] are of a similar height,
each growing with a velocity of 1/

√
16vas, in accord with the

analysis presented above. Then, however, the fingers begin to
screen each other off and the number of active ones decreases,
which is accompanied by a respective rise in the front speed
(following the rule v ∼ 1/

√
Nact). The second pronounced

plateau in v(t) dependence corresponds to the situation when
only two fingers remain and v ≈ 1/

√
2vas. Finally, a single

active finger is left in the system and its speed reaches vas.
A markedly different situation is encountered in the case

with tip splitting. Here, after an initial sharp rise of the growth
velocity, the system reaches a steady state, where the speed
of the leading finger oscillates between vc and vs ≈ 0.8vc, as
elucidated in Sec. III.

Equation (13) suggests that the density of the fingers
scales quadratically with the driving current. This is further
confirmed by the analysis of Fig. 6, which indeed shows that
the average number of fingers per width of the system increases
approximately twofold, as the far-field gradient is increased by
a factor of

√
2. At the same time the advancement velocity of

the pattern remains constant (both panels of Fig. 6 present the
patterns captured at the same moment in time).

The above considerations elucidate the mechanism of
the stable movement of the envelope, as observed in
Figs. 4–6. Namely, if the tip splitting is absent, an increased
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FIG. 6. Growth patterns in a rectangular geometry for two
different intensities of a driving field captured at the same moment
in time. The width of the system is W = 2 and the critical velocity
vc = 1/

√
2π . The complete evolution of the pattern is shown in a

corresponding movie in the Supplementary Material [43].

flux J impinging at a finger leads to its faster growth (v ∼ J )
and screening of its neighbors. On the other hand, in the
presence of tip splitting, the increased flux in a given point at
the boundary results in an increased frequency of the splitting
events. As a result, the relaxation of the flux proceeds through
an increased density of the fingers (n ∼ J 2), but the envelope
of the pattern moves steadily (v ∼ vc).

V. INHOMOGENEOUS SYSTEMS

The periodic channel considered in the previous section is
characterized by a high degree of homogeneity: The emerging
pattern is uniform, except for the fluctuations connected
with the splitting-screening cycle. To go beyond this case,
in this section we consider the growth in two different
inhomogeneous systems.

First, let us analyze the growth in the channel with reflective
sidewalls. As observed in Fig. 7, far from the wall the pattern is
similar to that in the periodic channel. Near the walls, however,
the fingers look qualitatively different.

If the finger grows in close proximity to a reflecting wall, it
strongly interacts with its image behind the wall. In the absence
of other fingers in the system, this interaction would repel the
finger from the wall at an angle of π/10 with respect to the
vertical. This is because the angle between two interacting
lines in a half plane tends to π/5 in the long-time limit [29]. If
such a slanted finger splits, the two daughter branches are now
not moving symmetrically with respect to the vertical axis and
the one closer to the wall wins. The process then repeats itself,
finally resulting in an almost vertical finger growing close to
the wall occasionally releasing sidebranches towards the bulk
of the system. Structures of this kind are commonly observed
in experimental systems (cf. the inset of Fig. 7). Importantly,
these structures arise only if the main branch of the finger
grows sufficiently close to the wall so that the interaction with
the image is stronger than that with the sibling branch. For
larger distances between the main branch and the wall, the

FIG. 7. Growth patterns in a channel with reflecting walls with
a characteristic asymmetric structure at the left wall. The width of
the system is W = 2, the critical velocity is vc = 1/(2

√
π) and the

field gradient at infinity ∇�∞ = ey . Similar structures are observed
near the walls in the combustion experiments of Zik and Moses [11]
(inset).

effect ceases to be present, as it is the case near the right wall
of the system in Fig. 7.

Finally, let us look at the growth taking place in a half plane
bounded by an isopotential line with a constant field gradient
at infinity (Fig. 8). Starting from a single seed, we observe
the growth of a treelike structure, with intense bifurcations.
Importantly, in this case the field gradient is nonuniform along
the boundary of the structure, with the highest value at its
top. Nevertheless, the envelope forms a perfect semicircle,
expanding uniformly and preserving its shape in time. The
density of the fingers (and frequency of splittings) is larger at
the top as more flux needs to be absorbed there. This effect can
also be observed in the window patterns of Figs. 1(d) and 1(f)
with the average distance between the fingers on the side of
the structures significantly larger than along the top.

More quantitatively, the Laplace potential around a
grounded semicircle of radius r is

�(z) = Im

(
z + r2

z

)
, (14)

FIG. 8. Evolution of the growing pattern in a half-plane geometry.
The critical velocity is vc = √

6 and the field gradient at infinity
∇�∞ = ey . A corresponding movie can be found in the Supplemen-
tary Material [43].
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FIG. 9. Cumulative distribution of the fingers along the boundary
of the Laplacian tree of Fig. 8 counting all of the fingers (red circles)
or only the active ones (blue squares). The dashed line marks the
theoretical prediction of the number of active fingers [Eq. (17)] for
r = 58, whereas the solid line corresponds to twice the theoretical
prediction.

where a unit gradient at infinity has been assumed. The field
gradient at the surface is then

|∇�| = 2 sin(θ ), (15)

where θ is an angle from a real axis. Based on considerations
similar to before, the density of the active fingers is expected
to behave as

n ≈ 2

π

4 sin(θ )2

v2
c

, (16)

with the total number of fingers scaling linearly with r . Figure 9
presents the cumulative distribution of the fingers N (r,θ ) =∫ θ

0 n(θ ′)r dθ ′ measured in the simulations compared with the
theoretical prediction

N (r,θ ) =
∫ θ

0
n(θ ′)r dθ ′ = 4r

πv2
c

(θ − sin θ cos θ ). (17)

Good agreement between the two shows that the simple
model presented here indeed captures the key elements of
the dynamics of these systems. Note that the comparison with
Eq. (13) requires counting not all of the fingers present in the
pattern, but only the active ones, i.e., the ones that are growing
and would eventually split. This can be assessed based on the
velocity of the fingers: The active ones would invariably have
velocities between vs and vc (see Sec. III), whereas the dying
branches move with much lower speeds. However, the data in
Fig. 9 show that the distribution of the total number of fingers
is of a very similar form to N (θ ) above, only rescaled by a
factor close to 2. This can be rationalized by noting that the
strongest screening interactions arise between the neighboring
fingers, very often the daughter branches emerging from the
same mother finger. As a result of such mutual screening, every
second finger, on average, loses the competition and dies.

Returning to the evolution of the shape of the system, it
is worth noting that if the envelope were evolving according
to the standard Laplacian growth law v ∼ ∇�, the semicircle
would not preserve its shape but instead would transform into
a half oval of eccentricity increasing in time, since the field
gradient is highest at the top of the structure (for θ = π/2)

FIG. 10. Two Laplacian trees growing near each other in the half
plane. The initial distance between the trees is D = 40, the critical
velocity is vc = √

6 and the field gradient at infinity ∇�∞ = ey .

and then tapers towards the sides. Thus, in the case of tip-
splitting systems the naive upscaling of the growth law from
the microscopic (single-finger) scale towards the macroscopic
(envelope) scale does not lead to the correct growth law. In fact,
the motion of the envelope is rather governed by the relation

vn = min

(
vc,

√
2

nπ
(∇�)⊥

)
, (18)

where the subscript ⊥ stands for the velocity component
normal to the envelope and we have used Eq. (12) linking
the propagation velocity and the local density of the fingers.

VI. INTERACTION OF THE ENVELOPES

Finally, let us consider the interaction of two growing
structures as their envelopes approach each other. In order
to analyze it, we place two trees in the half plane relatively far
from each other so that initially they both grow freely and do
not interact [Fig. 10(a)]. However, as they get closer to each
other, the frequency of splitting on the interior sides drastically
decreases. Nevertheless, the growth velocity remains constant
[Fig. 10(b)]. As the region between the envelopes becomes
strongly screened from both sides, the growth velocity drops
below vc and the splitting stops. This results in a creation of a
group of long nonsplitting branches, which progressively slow
down and finally stop growing. At the same time, the outer parts
of both trees grow outward with a steady velocity. Finally, both
trees merge together and the envelope of a resulting structure
becomes semicircular itself [Fig. 10(c)].

Analogous dynamics can be observed in the viscous
fingering patterns in Vienna U-Bahn windows. Individual
patterns formed in the central parts of the window, far from
the neighbors, are highly circular [cf. Fig. 1(b)]. However, if
two such patterns form close to each other [Fig. 11(a)], their
neighboring sides flatten out, until they merge [Fig. 11(b)].
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FIG. 11. Interacting viscous fingering patterns in Vienna U-Bahn windows.

VII. SUMMARY

In this paper we have presented a simple mechanism that
leads to the stabilization of the envelope motion in the fingered
growth system. In the model, a local increase in the field
gradient at the boundary of a growing structure does not
result in an accelerated growth. Instead, the frequency of
splitting events is increased, which leads to a higher density
of the fingers. This ultimately stabilizes the global growth of
the pattern as a whole by absorbing the excess flux without
increasing the advancement velocity. There are two main
prerequisites for the model to be applicable. First, the tip
splitting needs to be associated with the threshold velocity
of the advancement of the fingers. Second, the fingers should
have a well-defined width, which should not change during the
growth. An increase of the width might constitute an alternative
way of relaxing the excessive flux, however, in the present
model r0 is assumed to be constant [cf. Eq. (2)].
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APPENDIX A: NUMERICAL METHOD

Similarly to the previous works on the subject [29,44],
we construct the solution of the Loewner equation by the
composition of elementary slit mappings, each extending a
given finger over the time interval τ . For the growth in the

cylinder, such a slit mapping reads

φi(z; τ ) = W

π
arcsin

[
tanh2

( π

W

√
2τdi

)

+ sin2
( π

W
(z − ai)

)
cosh−2

( π

W

√
2τdi

)]1/2
+ ai,

(A1)

which is essentially an inverse of the mapping (9). Since
there are n fingers, each time step involves the composition
of n slit mappings φi , each characterized by a corresponding
position of the pole ai and the growth factor di . To calculate
the growth factors the mapping ft , inverse to gt , is needed [cf.
Eq. (5)]. This mapping can also be obtained by the composition
of elementary mappings φ̃, which are the inverses of slit
mappings φ, i.e., φ̃(φ(z)) = z.

Two points need to be mentioned here. First, the order of
compositions of slit mappings corresponding to different fin-
gers matters, since φj (φi(z; τ ),τ ) − φi(φj (z; τ ),τ ) = O(τ 2).
To prevent the appearance of cumulative systematic error, we
randomize the order in which slit mappings are applied in
each time step. Second, special care needs to be taken while
tracking the fingers just after the tip-splitting event, due to
the presence of singularities in the pole evolution equation (7)
whenever ai ≈ aj . The direct composition of single-finger slit
mappings leads then to significant errors. Instead, we apply
then the V-shaped mapping (8) [Fig. 3(c)] with the opening
angle α = 2π/5 between the branches.

APPENDIX B: LOEWNER EQUATION FOR DIFFERENT
GEOMETRIES

Below we summarize the form of the Loewner equation for
different geometries considered in the present study.

1. Half plane

In this case the domain in which the growth takes place is
the upper half of the complex plane H = {ω ∈ C|Im(ω) > 0}.
The Laplace equation is solved in the region outside the fingers
�t = H\Kt . Here Kt is the configuration of the branches in
the physical plane at time t . The mapping gt takes �t onto H,

gt : �t → H, (B1)
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with the normalization

gt (z) → z + O(1/z) as z → ∞. (B2)

The Loewner equation in this case reads [45]

ġt (z) =
n∑

i=1

di(t)

gt (z) − ai(t)
. (B3)

If the fingers are to grow along the field lines, the pole positions
need to obey [28]

ȧj (t) =
n∑

i=1,i �=j

di(t)

aj (t) − ai(t)
. (B4)

Finally, an elementary slit mapping for this geometry reads

φi(z; τ ) =
√

(z − ai)2 + 2τdi + ai. (B5)

2. Cylinder (channel with periodic boundary conditions)

The domain in which the growth takes place is

P = {z = x + iy ∈ C : y > 0, x ∈ [−W/2,W/2[}, (B6)

with the Dirichlet boundary condition for the harmonic
potential on both the fingers and the bottom wall [−1,1[ and pe-
riodic boundary conditions at the lateral sides �(x + W,y) =
�(x,y), which makes the system topologically equivalent to
the surface of a semi-infinite cylinder. The mapping gt takes
�t = P\Kt onto P

gt : �t → P, (B7)

with the normalization

gt (z) → z + O(1) as z → ∞. (B8)

The Loewner equation in this case reads [29]

ġt = π

W

n∑
i=1

di

π

W
cot

( π

W
(gt − ai)

)
, (B9)

whereas the equation of motion of the poles is

ȧj = π

W

n∑
i=1
i �=j

di cot
( π

W
(aj − ai)

)
. (B10)

An elementary slit mapping for this geometry is given by
Eq. (A1).

3. Channel with reflecting boundary conditions

The domain in which the growth takes place is again
P defined in (B6), but this time with Neumann boundary
conditions ∂�

∂x
= 0 at the lateral sides. The Loewner equation

in this case reads [29]

ġt = π

W

n∑
i=1

di

cos
(

π
W

gt

)
sin

(
π
W

gt

) − sin
(

π
W

ai

) , (B11)

whereas the condition for the motion of the poles is

ȧj = − π

2W
dj tan

( π

W
aj

)
+ π

W

n∑
i=1
i �=j

di

cos
(

π
W

aj

)
sin

(
π
W

aj

)− sin
(

π
W

ai

) .

(B12)
An elementary slit mapping for this geometry has been derived
in Ref. [29] [Eqs. (28)–(30)]. The final expression is somewhat
lengthy and thus we do not reproduce it here.
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