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Effect of mobility ratio on interaction between the fingers in unstable growth processes
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We investigate interactions between thin fingers formed as a result of an instability of an advancing front in
growth processes. We show that the fingers can both attract and repel each other, depending on their lengths
and the mobility ratio between the invading and displaced phase. To understand the origin of these interactions
we introduce a simple resistor model of the fingers. The predictions of the model are then compared to the
numerical simulations of two unstable growth processes: dissolution of partially cemented rock fracture and
viscous fingering in a regular network of channels.
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I. INTRODUCTION

Many physical processes involving moving boundaries
produce fingering patterns. Well-known examples include
viscous fingering [1–5], electrochemical deposition [6,7],
growth of bacterial colonies [8–10], crystallization in
supercooled liquids [11,12], or dissolution of porous medium
[13–17]. In all of these processes, the advancing interface
becomes unstable if the mobility of the invading phase is
larger than that of a displaced phase. Small perturbations of
the interface grow and transform into fingers, which compete
for the fluxes which feed them. A paradigm of these processes
is a (two-phase) Laplacian growth problem [18] known also
as the Muskat problem [19], in which the fluxes are associated
with the harmonic field. The equations governing the growth
are then given by (cf. Fig. 1):

∇2�1(x,t) = 0 x ∈ D1, (1)

∇2�2(x,t) = 0 x ∈ D2, (2)

�1(x,t) = �2(x,t) x ∈ �t , (3)

(λ1∇�1(x,t))n = (λ2∇�2(x,t))n x ∈ �t , (4)

Un(t) = α(λ2∇�2(x,t))n x ∈ �t . (5)

In the above, D1 denotes an invading phase, D2 denotes
displaced phase, and �t is an interface. Next, � stands for
the field which is driving the growth (e.g., pressure in viscous
fingering or temperature in solidification). The associated
flux is given by Ji = λi∇�i , where λi is a mobility of phase
i. Both the field and the normal component of the flux are
assumed to be continuous across the interface. Finally, Eq. (5)
links the advancement velocity of the interface (Un) and the
flux, with α being a proportionality constant and subscript
n denoting the component normal to �. We will assume the
system to be (quasi-)two-dimensional.

Equations (1)–(5) should be supplemented with appropriate
far-field boundary conditions, which depend on a particular
geometry in which growth takes place. For rectangular
geometry one usually imposes the condition of a uniform flux
at infinity

lim
x→−∞ λ1∇�1(x,t) = ex = lim

x→∞ λ2∇�2(x,t), (6)

where x is the flow direction.

An important dimensionless parameter characterizing the
system is the mobility ratio, M = λ1/λ2. Whenever λ1 > λ2,
the flux of the field over the crest of a small protrusion of
the interface is larger than that in the surrounding flat regions
and thus initially flat interface breaks into fingers. The aspect
ratio of the fingers tends to increase in time, since the field
gradient is always the largest at their tips. Finally, the fingers
become stabilized by surface tension, kinetic undercooling, or
other short-scale regularization mechanisms, which depend on
a particular problem at hand.

Note that in the limit M → ∞ the problem reduces to
a classical, one-phase Laplacian growth, driven by one field
only (�2) with the condition �2 = 0 imposed on the moving
boundary.

The nonlinear stages of finger dynamics are strongly
dependent on M . In the context of viscous fingering, already
the experiments of Habermann [20] have shown that as M

is increased the pattern becomes progressively irregular with
a strong screening between the fingers, due to which the
longer fingers suppress the growth of the shorter ones. Similar
morphological changes of the fingering pattern with M have
been found in numerical simulations [21–28]. The numerical
approaches differed in the way that randomness is introduced
in the system: either through quenched disorder or fluctuations.
The first approach is taken, e.g., in the pore-network models
of fluid displacement in porous media where the pore throat
diameters are usually randomly distributed [26,28,29]. The
second is the basis of various modifications of DLA algorithm,
which take into account finite mobility of the invading phase
[21–26,28]. One conclusion from these numerical studies is
that low values of M correspond to more compact patterns.
In fact, it has been conjectured that at any finite M there
is a crossover between fractal and compact patterns in the
limit of long time or small grid size. This hypothesis have
subsequently been supported by the results of renormalization
group approaches [30,31]. Using a different approach, Otto
[32] has shown that the “fingering zone” in the rectangular
geometry grows linearly in time, which is also consistent with
its nonfractal character (see Fig. 2 for the definition of leading
edge, trailing edge, and the fingering zone).

As noted by Sherwood [24] an important distinction
between the finite and infinite M case is that in the former
the interface between the two fluids continues to advance,
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FIG. 1. A schematic of the system with an invading phase D1

and a displaced one D2. The interface, � moves with velocity U

proportional to the field gradient.

albeit slowly, at points far behind the finger tips (trailing
edge in Fig. 2). On a level of the interaction between the
fingers this corresponds to the appearance of the stable fixed
point in the phase space, in which the ratio of the growth
velocities approaches a constant [33]. This corresponds to the
incomplete screening, with the shorter fingers continuing to
grow behind the front of the longer ones. This is the reason
why the trailing edge moves with a finite speed, as predicted
by a number of effective models [34–36]. The existence of
the compact region filled entirely with the invading fluid has
been nicely demonstrated in the experiments by Allen and
Boger [37] as well as the recent studies by Bischofberger
et al. [38,39]. The patterns reported in these papers provide a

displaced 
phase

invading 
phase

fingering zone 

leading edge trailing edge 

FIG. 2. Trailing edge marks the completely invaded area, while
leading edge is defined by the tips of the most advanced fingers.

striking illustration of the impact of mobility contrast, showing
a transition between ramified fingers and compact structures
with a corrugated perimeter.

In this paper, we focus on a particular class of fingered
growth systems, in which the emergent fingers are long and
thin. Due to the high field gradients at their tips, these structures
grow predominantly in length but not that much in diameter.
Such structures are observed, e.g., in the electrochemical
deposition experiments [6,40], smoldering combustion [41–
43], side-branches growth in crystallization [11,12], evolution
of seepage channel networks [44,45], wormholes forming in
dissolving rocks [46], or anisotropic viscous fingers [29,33].
The two latter examples will serve to illustrate the theoretical
findings in this paper.

Figure 3 illustrates the patterns in a dissolving fracture for
different values of the mobility ratio, M . We describe this
system in more detail in Sec. III A and in Appendix B, here
we present the patterns in order to illustrate the characteristic
features of the finger-finger interaction. As observed, there is
a notable change in morphology as M is increased. For small
M , the instability produces a chaotic sea of fingers incessantly
merging, shielding, and fading. As M gets larger, the spacing
between the fingers grows, and thus they become less prone to
merging. Instead, shorter fingers get attracted to the base of the
longer ones, which produces characteristic looped structures
with the islands of the receding phase surrounded by the
invaded one. Interestingly, the longest fingers are no longer
attracted to each other but rather repel slightly, as observed
in Fig. 3(b). With a further increase of M , we enter the
hierarchical growth regime, where the fingers do not merge
anymore, but instead grow straight and strongly compete for
the flow. The longer fingers easily screen off the shorter ones in
the neighborhood the size of which is of the same order as the
finger length [13,47]. The process then repeats itself, which
results in a distance between the active fingers increasing in
time and eventually leads to the appearance of a scale-invariant,
power-law distribution of finger lengths [47,48].

The central question that we address here is whether
the structure of the pattern, such as that in Fig. 3 can be
understood in terms of the interaction between the fingers.
In many cases the answer to this question is positive. Krug
et al. [49] have shown that the length distribution of Laplacian
fingers in hierarchical growth regime (large M , right panel of
Fig. 3) can be derived based on the estimate of the screening
time in two-finger problem. Halsey and Leibig [50] derived
the multifractal properties of DLA aggregates based on the
analysis of the finger-finger interaction. However, the above
studies assumed that the boundary between the phases is a
potential isoline, which corresponds to the infinite mobility
contrast between the phases. The present study, on the other
hand, focuses on the impact of finite M values of the patterns.
As we show, the character of the interaction between the fingers
drastically changes as M is increased: from weak repulsion at
small M values, through strong attraction at intermediate M

back to the weak repulsion at large mobility contrasts.
The paper is organized as follows. In Sec. II a simple model

of finger-finger interaction is introduced. In the model both
the fingers of the invading phase as well as the regions of the
displaced phase around them are represented as a collection of
resistors of two different resistivities. The model is then applied
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FIG. 3. Pattern formation in a dissolving fracture infiltrated by a reactive fluid, as described by Eqs. (B1)–(B5) of Appendix B. The dissolved
region is marked in black. The dissolution proceeds in a highly nonuniform manner, with the formation of well-defined fingers in which both
the fluid flow and reactant transport focus. The patterns corresponds to the mobility contrast of M = 2 (a), M = 64 (b), and M = 1000 (c).

in Sec. III to interpret the patterns formed in two systems. The
first is a partially cemented rock fracture gradually dissolved
by an acidic fluid. The second is the unstable infiltration of a
more viscous fluid by a less viscous one in a regular network
of channels. Finally, the conclusions are drawn in Sec. IV.

II. FINGER INTERACTION MODEL

As discussed in a preceding section, the fingers may attract,
screen off, or repel one another, depending on their relative
lengths as well as the value of the mobility ratio M . In order
to understand the origins of this behavior we introduce a
simple theoretical model where the system of growing fingers
is mapped onto a resistor network.

In the model, we track the flow along the main routes
in the system only. Since the highest pressure gradients are
at the finger tips [51], we introduce lateral connectors between
the fingers there, as shown in Fig. 4. The resistors represent
either the invading phase (gray in Fig. 4, with resistivity ρ1 per
unit length) or the displaced phase (white in the figure, with
resistivity ρ2). The mobility contrast is then M = ρ2/ρ1.

To elucidate the mechanism of finger-finger interaction, we
consider a paradigmatic setup with a longer finger (of length
L) and a shorter one (of length l) in a periodic cell of width
W , as illustrated in Fig. 4. The width of the cell can thus be
interpreted as the average distance between the longest fingers
in the system.

The shorter and longer finger are positioned asymmetrically
in the cell, as otherwise they would continue to grow straight,
without deflection, due to the symmetry. The distance between
the fingers is assumed to be equal to one third of the cell
width. Additionally, at a distance W/3 from both the shorter
and the longer finger we introduce the line of resistors (EF)
representing the undissolved matrix in the neighborhood of the
fingers. The introduction of this element is the main difference
between the present model and the one introduced in Ref. [52],
where only the exchange of the flow between the fingers has
been tracked. Constant pressures Pin and Pout are imposed at
the inlet of the system, and on the line positioned at the distance
Leq from the tip of the long finger. The latter represents the
distance at which pressure becomes uniform and the impact
of the fingers is no longer felt. This distance increases as the
pattern coarsens, being proportional to W . For large mobility

contrasts, when the pressure drop along the finger can be
neglected, Leq can be calculated to be (see Appendix A)

Leq = W

2π
. (7)

To keep the model simple, we assume that the hydraulic
resistance is simply a product of resistor length and resistivity.
Thus, for the configuration in Fig. 4 we have, e.g.,

RAB = ρ2LAB, RAC = ρ1LAC, . . . . (8)

FIG. 4. The system consisting of two fingers (upper) and the
corresponding resistor model (lower). Gray resistors, representing
the finger of an invading phase, are of a smaller resistivity than white
resistors (representing the displaced phase).
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FIG. 5. Transverse flows at the tip of the shorter finger as a
function of the mobility ratio M for l/L = 0.3 and W/L = 0.3 in
the resistor model of Fig. 4. The flow QBA is marked by a solid line
whereas QBE is dashed. The flows are normalized by the total flow in
the system.

Here LAB and LAC are the distances between the points A
and B and A and C, respectively. Next, given the constant
pressure difference between the edges, the fluxes in the system
can be calculated by straightforward algebra solving hydraulic
equivalents of Kirchhoff’s circuit rules.

The key parameter, determining the structure of the pattern,
is the balance between the fluxes QBE and QBA at the tip of the
shorter finger. If QBE > QBA, then the shorter finger directs
itself away from the longer one, whereas if QBA > QBE it gets
attracted towards its companion. On the other hand, the ratios
between the transverse fluxes (QBA, QBE) and the longitudinal
one (QBD) determine the amount of the deflection of the finger
trajectory.

Figure 5 shows the transverse fluxes at the tip of the shorter
finger (normalized by the total flow in the system) as a function
of the mobility contrast calculated using the resitor model
of Fig. 4. Other parameters have been taken to be W/L =
0.3 and l/L = 0.3, which corresponds to the typical values
characterizing the interaction between the fingers in Fig. 3(b).

As observed, at intermediate mobility contrasts the flow
towards the longer finger (QBA) dominates over the flow away
from it (QBE). Thus in this regime the shorter finger gets
attracted to the longer one. At M ≈ 100 the situation changes
and the flow away from the finger begins to dominate—the
shorter finger is then repelled from the longer one.

The transition point between these two behaviors depends
on the length of the shorter finger as well as on the cell width.
These two dependencies are characterized by the contour plots
in Figs. 6 and 7, where we also mark the boundary between
the region where attraction dominates (QBA > QBE) and that
where the fingers repel each other. Figure 6 demonstrates that
attraction is the strongest for intermediate M and l/L values
whereas both for l/L ≈ 0 and l/L ≈ 1 repulsion dominates.
A strong repulsion for equal-length fingers is to be expected—
such fingers strive to reach a symmetric position in the cell,
with the distance between them equal to W/2.

Figure 7, on the other hand, shows that magnitude of
the interaction strongly depends on the aspect ratio of the
periodic cell. Small W/L values correspond to the cases were
the fingers are relatively close to each other. This enhances
the finger-finger interaction, mostly attraction, which is at
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FIG. 6. Difference between transverse flows at the tip of the
shorter finger as a function of the mobility ratio and the ratio of
the lengths l/L for W/L = 0.3 in the resistor model of Fig. 4. The
flows are normalized by the total flow in the system. The dashed line
marks the boundary between the regions of attraction and repulsion
between the fingers.

its strongest for W/L � 0.3. Larger distances between the
fingers result invariably in repulsion, but the magnitude of
this effect is quite small, quickly decreasing with W . The
importance of aspect ratio of the system for the dynamics
of the fingering front has been emphasized in a number of
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FIG. 7. Difference between transverse flows at the tip of the
shorter finger as a function of the mobility ratio and the aspect ratio
of the system W/L for l/L = 0.3 in the resistor model of Fig. 4. The
flows are normalized by the total flow in the system. The dashed line
marks the boundary between the regions of attraction and repulsion
between the fingers.
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FIG. 8. Screening between the fingers: the ratio between the axial
flow at the tip of the shorter finger to the flow in the longer one,
QBD/QAC (in the logarithmic scale).

studies [53–56]. In particular, Yang et al. [56] shown that the
system behaves in a fundamentally different way in a small and
large aspect ratio regime. Small aspect ratios lead to negligible
transverse flows, and thus the system reduces to a collection
of noncommunicating layers. Large aspect ratios, on the other
hand, promote strong transverse flows and hence intensive
mixing, which substantiates transverse averaging procedures
proposed in a number of semiempirical approaches to the
description of viscous fingering in porous media [34–36].

Notably, the results of our resistor model are in agreement
with these observations. As observed in Fig. 7, for W/L � 1
(small aspect ratio) the transverse flows vanish and the fingers
hardly interact with each other [as manifested by the fact that
the parameter (QBA − QBE)/Qtot → 0]. This corresponds to
noncommunicating layered system regime of Yang et al. [56].
On the other hand for large aspect ratio (small W/L) the
interaction is very strong (distinct maximum in Fig. 7 for small
values of W/L). Strong transverse flows in this regime lead
to intense merging of the fingers and transverse mixing of the
phases.

Finally, the present model can also be used to quantify the
screening of the shorter finger by the longer one. This effect
is measured by the ratio of the axial flow in the shorter finger,
QBD to the flow in the longer finger, QAC. As observed in
Fig. 8, the screening is at its strongest for large M and small to
intermediate l/L. In fact, in the limit M → ∞ the screening
can be shown to be exponential [51], i.e., QBD/QAC ∼ e−(L−l).
As soon as M becomes finite, the exponential screening is
replaced by a power-law one. The impact of finite mobility
ratio on finger screening has also been analyzed in Ref. [57] by
tracing the dynamics of a pair of the fingers in the coordinates
corresponding to the ratio of their velocities and the ratio of
the lengths. It has been shown that for finite M the stable fixed
point of these dynamics is different from zero, which shows
that the longer finger screens the shorter one only partially.
The same is true for our system—even if l → 0 the ratio of
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FIG. 9. A schematic view of a partially cemented fracture. The
low-pH reactive fluid (marked by arrows) enters the fracture from
the left-hand side and dissolves the carbonate cement (gray) located
in between two inert walls. As a result, the initial aperture of the
fracture (h2) gets gradually enlarged until it reaches the value of h1.
The transition between h1 and h2 takes place over the length scale
lp , corresponding to the penetration length of the reactant (see the
discussion in Appendix B).

hydraulic resistances along the paths BD and AC remains
finite, which results in the finite value of the growth velocity
of the shorter finger in the long-time limit.

III. EXAMPLES: FRACTURE DISSOLUTION
AND VISCOUS FINGERING

In this section we check the predictions of the finger inter-
action model against numerical simulations of two processes,
which can be approximated with the two-phase Laplacian
growth, Eqs. (1)–(5). The first is the dissolution of partially
cemented rock fracture and the second is viscous fingering in
a regular network of channels. What these systems have in
common is that—as a result of an instability of the advancing
front—well pronounced, large aspect ratio fingers are formed.
Further evolution of the system is then controlled by the
interaction between these fingers, the main features of which
we aim to characterize using the resistor model.

A. Dissolution of partially cemented fractures

The first system that we consider is a partially cemented
rock fracture flushed with a reactive fluid. The fluid, usually
acidic, dissolves the cement, thus increasing the aperture of
the fracture. A schematic view of such a system is presented in
Fig. 9—the acidic solution, flowing from the left to the right,
dissolves a layer of cement (marked in gray). The aperture of
the fracture in the dissolved part (h1) is thus larger than the
aperture in the part which has not yet been dissolved (h2). Note
that the pattern in Fig. 3 correspond to the xy projection of the
system, with the fully dissolved areas marked in black.

The details of the mathematical model of a dissolving
fracture are given in Appendix B. As argued there, the
volumetric flux of a thin film of liquid is well approximated
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FIG. 10. Evolution of the dissolution patterns in a cemented fracture for M = 100. The columns correspond to four different moments of
time when the pattern reaches 10%, 35%, 50%, 70%, and 100% of the total length of the system. The patterns have been obtained by solving
Eqs. (B1)–(B5) of Appendix B.

by the Darcy law

q = − h3

12η
∇p, (9)

with the mobility proportional to the third power of the
aperture. Thus in this case

M =
(

h1

h2

)3

. (10)

Such systems have been studied experimentally [58] but they
are also of a practical importance. In some of the shale
reservoirs the amount of carbonate cementation in the fractures
is significant so that it hinders the exchange of the shale
gas between the fracture and the matrix. Acidization of these
fractures might be one of the possible ways of enhancing of
the productivity of such reservoirs.

Let us now go back to Fig. 3, presenting the acidization
patterns, to interpret it in the light of the results of the resistor
model. First, we note that the strongest attraction takes place
at intermediate M [Fig. 3(b)], but only for the finger pairs in
which one finger is significantly shorter than the other one in
full agreement with the predictions of the resistor model.

The appearance of the loops is a fingerprint of the attraction
between the fingers. As shown in Fig. 11 the loops are
abundant for mobility contrasts M ∈ (10−100), i.e., precisely
in the regime where the resistor model predicts the strongest
attraction. Note a characteristic hierarchical structure of the
loops, with the smaller ones nested within the larger ones.
This implies self-similarity of a process: the width of the
fundamental cell (W ) increases in time along with the lengths
and distances between the longest fingers. A finger initially
regarded as a long one in our model system, may later be
viewed as a short one when interacting with another, more
distant neighbor.

Importantly, the character of the interactions between the
fingers in Fig. 3(b) changes with their relative length—while
shorter fingers are forming loops, the longer ones weakly repel
each other, deflecting their trajectories to reach symmetric,
equidistant positions in the cell. This is in accordance with
Fig. 6, where attraction changes to repulsion at about l/L ≈
0.6. This effect can also be observed when analyzing the

time evolution of the pattern (Fig. 10). At the beginning,
when the length differences between the fingers are relatively
small, the repulsion is a prevailing effect (cf. the second
and third frames in Fig. 10). With time, however, as the
length differentiation among the fingers increases, the longest
ones start to attract their shorter neighbors and a nested loop
structure is established.

On the other hand the patterns at small M [Fig. 3(a)]
are rather uniform, without a strong differentiation between
the fingers. There are two reasons for this: first, screening
between the fingers is very weak at small M values, as shown
in Figs. 6 and 7. Second, the characteristic distances between
the longest fingers in the pattern are now much smaller than
their lengths (W/L 	 1), which, according to Fig. 7, leads to
a weak repulsion only.

loop area
number of loops

FIG. 11. The number of loops and the area covered by them
in simulations of chemical erosion of partially cemented fractures,
as described in Appendix B. The area covered by the loops (A)
is normalized by the total area (A0). Simulation results have been
averaged over 16 realizations for each M .
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FIG. 12. Sweeping efficiency: fraction of the total area taken
by the invading phase as a function of the mobility contrast for a
dissolving fracture system. Two different criteria of being a part of a
dissolved phase are used: either full dissolution (h = h1) or twofold
increase of an initial aperture (h = 2h2).

Finally, at very large mobility contrasts [Fig. 3(c)] the
patterns become strongly hierarchical, with the longest fingers
almost completely screening the shorter ones within a distance
equal to their length, in agreement with the prediction of the
resitor model (cf. Fig. 8). On the other hand, according to
Fig. 7, such aspect ratios of the unit cell (W/L ≈ 1) combined
with large M values should result in a very weak repulsion
with only minimal deflection between the fingers.

An important quantity from a practical view point is the so-
called sweeping efficiency, s(M), which measures the percent
of the invading phase in the system at breakthrough, i.e., the
moment when the longest finger reaches the outflow. Large
sweeping efficiencies are essential in engineering applications,
e.g., when using the fluid displacement techniques to recover
oil from the reservoirs [59]. In the case of partially cemented
shale fractures, achieving large sweeping efficiencies is also
important, since the main object here is to uncover as large
area of the shale matrix as possible. As shown in Fig. 12
this is particularly easy to achieve if M is relatively small.
Since M = (h1/h2)3 this implies relatively small thickness of
cement layers. As expected, at M = 1 the sweeping efficiency
approaches one, since the boundary between the phases
remains then planar and advances in a stable way. As M

is increased, s(M) gradually decreases, due to the increased
differentiation in finger lengths due to the competition between
the fingers. There is a plateau in M(s) dependence near M ≈
100, i.e., in the loop formation regime. A closer inspection of
the patterns in this regime shows that a significant amount
of the fluid is then used for the dissolution of transverse
connections between the fingers at the expense of a slower
advancement of the longest fingers. To elucidate this, let us
extend the model of Fig. 4 by allowing for a possibility of a
partial dissolution of BA connector (inset of Fig. 13), which
represents the situation during the loop closure. As shown in
Fig. 13, closing of a loop is associated with a dramatic increase

FIG. 13. Flow through the BA connector, normalized by the total
flow, as a function of length of a dissolved part.

of QBA and the respective speedup of the dissolution rate of
this connector—the loops are closed at an increasingly rapid
pace. On the other hand, the total reactant flux supplied to the
system is kept constant, hence also a total dissolved volume per
unit time remains the same. The faster dissolution of transverse
connectors must then result in a slowdown of the advancement
of the fingers themselves.

There is a subtlety connected with the definition of invading
and receding phase in a dissolved fracture system. As h1 is
increased with respect to h2 it gets progressively longer to
fully dissolve the cement layer and reach h = h1. As a result,
dissolution fingers might be reaching the outflow even before
the layer gets fully dissolved anywhere in the system and the
fully dissolved area no longer provides a good estimate of the
extent of the pattern. As a result, there is certain ambiguity in
the identification of a “dissolved” and “undissolved” phase at
large h1/h2 ratios. In Fig. 12 we use two different criteria for
a dissolved phase: either full dissolution (h = h1) or a twofold
increase of an initial aperture (h = 2h2), the former more
meaningful at small, the latter at large h2/h1 ratios. Within
the first criterion s(M) approaches zero for large M , since it
becomes progressively harder to fully dissolve any given point
in the system. The second criterion gives a finite sweeping
efficiency at infinite M , similarly to the results for viscous
fingering in a porous medium [20,23]. Let us note in this
context that even the limit h1 → ∞ is physically realizable–it
corresponds to the dissolution of a narrow fracture in a large
block of completely soluble material (e.g., limestone rock), a
classical problem in the studies of cave and karst formation
[60–63].

B. Viscous fingering in a regular network

The second process considered in the present work is the
displacement of a more viscous fluid by a less viscous one
in a regular network of cylindrical pores (see Fig. 14). In
classical experiments on the fluid displacement, performed in
a Hele-Shaw cell, a multifinger growth regime is just a short
transient, and soon the fingers coalesce into a single-finger final
state. On the other hand, when the experiments are performed
in a regular network of channels, a well-defined (and long-
lived) fingers are formed, which then interact creating intricate
patterns [29]. Due to anisotropy related to the presence of
the network one obtains relatively thin fingers growing along
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r

inlet outlet

FIG. 14. Viscous fingering in a rectangular network of
channels—schematic view. The network is initially filled with the
fluid of high viscosity. Low viscosity fluid is then injected along the
left hand side (dark circles) where constant pressure is imposed.

the flow direction. Transverse pores, on the other hand, are
responsible for interactions between fingers. The details of
the system together with a comprehensive analysis of its
behavior are given in Refs. [57] and [29] and they are shortly
summarized in Appendix C. Here we just mention that the

equivalent of the Darcy law (9) is in this case given by a
relation

q = − π

128μi

d4∇p, (11)

linking the volumetric flux in the pore, q, with its diameter d.
This time, the geometry of the system is not changing in time,
but there is a viscosity difference between the invading and
displaced phase. The mobility contrast is thus

M = μ2

μ1
. (12)

The time frames presenting the evolution of the system for
different values of M are shown in Fig. 15. Again, the area
occupied by the invading phase is marked in black while the
displaced phase is left transparent. Even though the nature of
this system is quite different from the dissolving fracture, many
features of the patterns are shared across the two. For the largest
mobility contrast (M = 105) a hierarchical pattern forms, due
to a strong screening between the fingers. Initially, a large
number of fingers are formed. However, as soon as the lengths
of the fingers become comparable to the distance between
them, the fingers begin to screen each other off. The strongest
screening interactions arise between the neighboring fingers,

M
 =

 1
00

M
 =

  5
M

 =
 1

05

FIG. 15. Simulation results of viscous fingering in a rectangular network of pores for different mobility contrasts: M = 105 (lower row),
M = 100 (center row), and M = 5 (upper row). The area occupied by a less viscous fluid is black while the rest of the system is transparent.
The size of the network is 100 × 100. The columns correspond to four different moments of time when the pattern reaches 10%, 35%, 70%,
and 100% of the total length of the system.
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hence every second finger, on average, loses the competition
and dies. The other half of the fingers continue to grow. Then,
these longer fingers begin to interact with themselves, again
screening each other off. This leads to the appearance of the
self-affine pattern. The finger width is proportional to the flow
through it and thus it tends to increase in time as the flow
focuses in a decreasing number of active fingers. Apart from a
strong screening between the fingers one can also observe
a weak repulsion between fingers of similar length. This
repulsive effect is manifested in an asymmetrical shape of
neighboring fingers, with the invading fluid preferentially
filling the transverse connectors in the direction away from
the companion finger (see the red circle in Fig. 15).

The most interesting patterns are formed at intermediate
mobility contrasts (cf. the center row in Fig. 15). Once again we
observe a competition between fingers, however it is weaker
than in a hierarchical regime, with more fingers reaching the
outflow. What we see, on the other hand, is the appearance
of transverse connections between the tips of the shorter
fingers and their longer neighbors (cf. the red circle in the
figure), which is equivalent to the loop formation in dissolving
fractures, described in a preceding section. A more blocky,
rectangular geometry of the loops here is the effect of an
underlying lattice. Except for this, the appearance of the pattern
is quite similar to that in a fracture [Fig. 3(b)].

At the other end of mobility spectrum, for M = 5 (upper
row of Fig. 15), the pattern becomes much less ordered, again
in full analogy to the dissolution patterns of Fig. 3(a). The
differentiation of the finger lengths due to screening is now
very weak, nevertheless some coarsening of the pattern in time
is observed, mostly due to the merging of the neighboring
fingers. Another well-visible effect is the appearance of the
trailing front, marking the area fully invaded with the low-
viscosity fluid. Due to the incomplete screening, this front is
moving with a finite velocity, which results in relatively large
sweeping efficiencies in this regime.

FIG. 16. Topology of fingers in simulations of viscous fingering
in a rectangular network of channels. The area covered by loops is
colored red. Loops smaller than five pores have not been taken into
account. Simulation results have been averaged over 50 realizations
for each M.

The dependence of the number of loops and areas covered
by them on the mobility contrast is shown in Fig. 16. Once
again, maximal loop formation occurs for M ≈ 50−100.
However, this time the maximum of loop area is shifted to the
right with respect to the maximum in loop number: for smaller
M loops are numerous but relatively small, whereas for larger
M they become sparse but larger. Such a discrepancy between
viscous fingering and chemical erosion patterns is a result of
the fact that in the latter case merging between channels occurs
more effectively than between viscous fingers and usually no
material is left behind. The channels can, in general, grow at
an arbitrary angles, while in viscous fingering systems only
two directions were allowed. Thus the local maximum around
M ≈ 10 of Fig. 16 is not observed in Fig. 11, as the passage
from merging toward attracting regime is more smooth.

IV. SUMMARY

Moving boundary problems, in which a more mobile phase
invades a less mobile one, are characterized by a strong
instability, which leads to the breakup of the initially planar
front into fingers. These fingers either attract or repel each
other, depending on their lengths, as well as the value of the
mobility contrast between the phases.

We have shown that the mechanism of interaction between
the fingers can be captured by a relatively simple resistor
model, in which the key flowpaths in the system are represented
in terms of resistors of two different resistivities, correspond-
ing to the invading and displaced phase, respectively. The
model predicts that a strong attraction between short fingers
and their longer neighbors appears at intermediate mobility
contrasts. This leads to the formation of characteristic loops,
with the region of displaced phase surrounded by the invading
one. Repulsion, on the other hand, is predicted to happen
between equal-length fingers at large mobility contrasts. The
fingers then deflect to reach an equidistant distribution within
the sample.

The predictions of the resistor model are in a good agree-
ment with the simulation results for two growth processes:
dissolution of partially cemented rock fracture and viscous
fingering in a regular network of channels. Remarkably, not
only have we obtained a qualitative similarity, but also a close
quantitative match: the model correctly predicted the region
of maximum attraction to be in the range of (M ≈ 50−100).
Indeed, in this region, we have observed the most intense loop
formation in both systems. Such an agreement shows that the
mobility contrast is one of the main driving factors in the
evolution of the patterns.

However, it is important to emphasize that the resistor
model, although effective in predicting general features of
the finger-finger interaction, is based on a highly simplified
representation of the fingering pattern. The displaced phase
is represented by a couple of resistors only, neglecting the
transverse flow everywhere except at the finger tips. By using
a constant resistivity per unit length we are also not taking into
account the effects connected with nonuniform width of the
fingers. Next, we neglected interfacial effects, such as surface
tension, and other short-distance regularization mechanisms.
These are present in the model only implicitly, as they control
the characteristic width of the fingers.
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Finally, the paradigmatic Laplacian growth problem (1)–(5)
is in itself an idealization, and the two growth processes consid-
ered here depart from it in a number of details. They also differ
between themselves: in a number of fields involved (pressure in
the viscous fingering vs. pressure, reactant concentration and
aperture in the dissolving fracture) as well as in short-distance
regularizations and anisotropy effects (surface tension and grid
effects in viscous fingering vs. the effects of finite penetration
length in the fracture). Clearly, all these details do influence the
fingering patterns, as can be appreciated by comparing Fig. 3
with Fig. 15. When contemplating all of these effects, it may
seem striking that the relatively simple resistor model works so
well. We hypothesize that the success of the model lies in two
facts. First, in all cases pressure is the main field responsible for
the interaction between the fingers. Even though there are two
more fields (reactant concentration and aperture) involved in a
fracture problem, in the undissolved region between the fingers
concentration vanishes and the aperture is simply constant
(h = h1), thus the fingers communicate via the pressure field
only. Second, as argued elsewhere [33,52] the highest pressure
gradients and largest transverse flows are at the tips of the
fingers, hence the resistor elements placed there can indeed
capture most of the finger-finger interaction.
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APPENDIX A: DERIVATION OF THE
EQUILIBRATION LENGTH

In this Appendix we derive Eq. (7) for the length over
which the pressure outside of the fingers becomes uniform. The
derivation proceeds in the large M limit, in which the fingers
can be assumed to be the equipotential lines. The Laplacian
field around such fingers can be obtained using conformal
mapping techniques. We start with the periodic array of fingers
in the complex plane extending from (−∞,Wik) to (0,Wik)
with k ∈ Z (see Fig. 17). These represent the longest fingers
in our system, with the distance of W between them.

We note that the mapping ω(z) = eπz/W maps the region
outside of the fingers on an area outside the line segment
(−1,1). Additional mapping, ξ (ω) = ω + √

ω2 − 1 maps this
area on a region outside a unit circle in a complex plane. The
solution of the Laplace equation vanishing on a circle is simply
�(ξ ) = αRe log ξ . Taking this back to original variables we

z

FIG. 17. Illustration of the composition of conformal maps
described in the text.

recover

�(x,y) = απx

W
+ αRe log

[
1 +

√
1 − e− 2π

W
(x+iy)

]
. (A1)

The constant α can be fixed by requiring that ∂x� → 1 as
x → ∞. This yields α = W/π and

�(x,y) = x + W

π
Re log

[
1 +

√
1 − e− 2π

W
(x+iy)

]
. (A2)

The first, y independent term describes uniformly raising
pressure with the isolines parallel to y axis. The second term
is a nonuniformity caused by the presence of the fingers. The
characteristic scale over which this term becomes negligible
is Leq = W/2π , which gives the result of (7).

APPENDIX B: DISSOLUTION OF CEMENTED
FRACTURES

Here we summarize the mathematical model of a dissolv-
ing, partially cemented rock fracture. A schematic view of such
a system is presented in Fig. 9—the acidic solution, flowing
from the left to the right, dissolves a layer of cement (marked
in gray) positioned in between two inert (insoluble) walls.
The aperture of the fracture in the dissolved part (h1) is thus
larger than the aperture in the part which has not yet been
dissolved (h2).

The aperture of the fracture is usually orders of magnitude
smaller than its lateral dimensions, thus the system can be
considered as quasi-two-dimensional. This is exploited by
introducing depth-averaged equations of mass, momentum,
and solute conservation, which are obtained by averaging of
the Stokes equation and convection-diffusion equation over
the aperture [61,64,65]. Fluid flow is then described by the
Reynolds equation for the local volume flux (per unit length
across the fracture), q(x,y,t) = ∫ h

0 v(x,y,z,t)dz

q(x,y,t) = −h3(x,y,t)

12μ
∇p(x,y,t), ∇ · q(x,y,t) = 0,

(B1)

where h is the aperture of the fracture, p is the pressure and
μ is the fluid viscosity. The transport of hydrogen ions in the
aqueous phase is described in terms of flow-averaged concen-
tration field, c̃(x,y) = 1

q(x,y)

∫ h

0 v(x,y,z)c(x,y,z)dz, with the
2D transport equation of the form

∇ · (qc̃ − Dh∇c̃) = −R, (B2)

where ∇ is a two-dimensional (2D) (x,y) gradient operator,
D is the diffusion coefficient and R is the sink term related
to the dissolution of carbonate lamina by the acidic solution.
For small pH the dissolution kinetics is well approximated be
a simple one-step reaction [66]:

CaCO3 + H+ → Ca2+ + HCO−
3 . (B3)

with the calcite dissolution rate much faster than the rate of
diffusive transport of H+ ions to the fracture surface (transport-
limited regime). In this case, the reaction rate is transport-
controlled and can be approximated by [65]

R(c) = DSh

2h
cθ (h1 − h), (B4)
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where Sh = 7.54 is the Sherwood number for parallel plate ge-
ometry and θ is the Heaviside step function which guarantees
that the reaction term vanishes in the region where all of the
cement has dissolved (which corresponds to the aperture h =
h1). In this region Eq. (B2) reduces to a convection-diffusion
equation.

Finally, we have an equation for the aperture increase due
to the dissolution of cement

csol
∂h(x,y,t)

∂t
= DSh

2h
cθ (h1 − h), (B5)

where csol is the molar concentration of the solid phase
(CaCO3). Note that, since csol � c, the characteristic time
scale of the cement dissolution is much longer than
the timescale of ion concentration relaxation, which allows
the time dependence in (B2) to be neglected [67,68].

There is a pressure drop 
p imposed between the two ends
of the system, tuned in such a way as to keep the average
flow rate in the fracture (q0) constant. Additionally, at the
inlet (x = 0) the acid concentration is set to a constant value
of c(x = 0,y) = c0. Downstream of the front the reactant
concentration eventually vanishes, while the flow velocity
becomes y independent.

Importantly—as illustrated in Fig. 9—the aperture profile
in a dissolving fracture is changing smoothly between h1 and
h2. The extent of such a partially dissolved region is related to
the reactant penetration length (lp in Fig. 9). The dimensional
analysis gives

lp ∼ qh2

DSh
. (B6)

For the two-phase approximation to work, this length should
be smaller than other lengthscales characterizing the pattern,
such as the lateral extent of the fingers. Due to the smallness of
the aperture of the typical fracture, this condition holds except
at the neighbourhood of the tips of the fingers, where the flow
rates (q) can be exceedingly large.

The results of the simulations presented in Figs. 3 and
10 are obtained for the system of the size 4096h2 × 4096h2.
The aperture-scale Péclet number, Pe = q0/D has been set at
100. Several different lamina thicknesses has been considered,
corresponding to different mobility contrasts, M = (h1/h2)3.

APPENDIX C: VISCOUS FINGERING IN A
RECTANGULAR NETWORK OF CHANNELS

The second system considered here is the displacement of
a more viscous fluid by a less viscous one in a regular, planar
network of cylindrical pores (see Fig. 14).

The mathematical model of this system is based on the
assumption that the fluid flow in each elementary channel is
governed by the Hagen-Poiseuille equation

qij = − π

8μlij
r4
ij
pij , (C1)

where 
pij = (pj − pi) denotes pressure drop along the
channel joining node i with node j , qij is the volumetric
flux in this channel, lij and rij stand for its length and
radius respectively. Combining the above with the continuity
condition ∑

i

qij = 0, (C2)

allows one to find the pressures and flows in the network
for single phase flow. Note that in the above we neglect the
pressure drops associated with the nodes themselves.

When there are two phases in the elementary channel, we
need to take into account the surface tension effects on the
interface. Assuming that the invading fluid fills uniformly a
given portion of the channel [of length l

(1)
ij ], whereas the rest

of the channel [i.e., l(2)
ij = lij − l

(1)
ij ] is filled with the displaced

fluid (cf. Fig. 14), we get for qij

qij = ±π

8

1

μ1l
(1)
ij + μ2

(
lij − l

(1)
ij

) r4
ij Max

[
|pj − pi | − 2σ

rij

,0

]
,

(C3)

where the indices 1 and 2 are used to denote the invading and
displaced fluid, σ is the interfacial tension between the fluids
and the sign depends on the direction of the pressure drop.
Together, Eqs. (C2) and (C3) are the hydraulic equivalents of
Kirchhoff’s circuit rules, and constitute the basic equations
of pore-network models of porous media [69]. This system
of equations is solved iteratively for pressure values at all
nodes. Based on these, the flow rates are calculated, and then
the interface between the fluid is moved with the velocity
corresponding to the mean flow rate in the capillary, i.e.,
vi = qi

πr2
ij

. The model presented above has been verified by

comparison with microfluidic experiments [29] yielding good
qualitative and quantitative agreement.

The simulations have been performed on a system of
100 × 100 elementary channels. The geometry of the system
was anisotropic—the transverse channels (to the direction of
the pressure gradient) were twice shorter than the longitudinal
channels. On the other hand, the cross-sectional area of
the transverse channels was larger than that of longitudinal
channels, again by a factor of two. Such a geometry resulted
in strong interactions between the viscous fingers. A detailed
study of the impact of network geometry on the fingering
patterns can be found in Ref. [29].

[1] S. Hill, Chem. Eng. Sci. 1, 247 (1952).
[2] P. G. Saffman and G. Taylor, Proc. Roy. Soc. Lond. A 245, 312

(1958).
[3] R. A. Wooding, J. Fluid. Mech. 39, 477 (1969).
[4] L. Paterson, J. Fluid. Mech. 113, 513 (1981).

[5] G. Homsy, Annu. Rev. Fluid Mech. 19, 271 (1987).
[6] A. Kuhn and F. Argoul, Phys. Rev. E 49, 4298

(1994).
[7] P. Meakin, Fractals, Scaling and Growth Far from Equilibrium

(Cambridge University Press, Cambridge, 1998).

042218-11

https://doi.org/10.1016/0009-2509(52)87017-4
https://doi.org/10.1016/0009-2509(52)87017-4
https://doi.org/10.1016/0009-2509(52)87017-4
https://doi.org/10.1016/0009-2509(52)87017-4
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1017/S002211206900228X
https://doi.org/10.1017/S002211206900228X
https://doi.org/10.1017/S002211206900228X
https://doi.org/10.1017/S002211206900228X
https://doi.org/10.1017/S0022112081003613
https://doi.org/10.1017/S0022112081003613
https://doi.org/10.1017/S0022112081003613
https://doi.org/10.1017/S0022112081003613
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1103/PhysRevE.49.4298
https://doi.org/10.1103/PhysRevE.49.4298
https://doi.org/10.1103/PhysRevE.49.4298
https://doi.org/10.1103/PhysRevE.49.4298


BUDEK, KWIATKOWSKI, AND SZYMCZAK PHYSICAL REVIEW E 96, 042218 (2017)

[8] I. Golding, Y. Kozlovsky, I. Cohen, and E. Ben-Jacob, Physica
A 260, 510 (1998).

[9] E. Ben-Jacob, H. Shmueli, O. Shochet, and A. Tenenbaum,
Physica A 187, 378 (1992).

[10] E. Ben-Jacob, I. Cohen, and D. Gutnick, Annu. Rev. Microbiol.
52, 779 (1998).

[11] Y. Couder, F. Argoul, A. Arnéodo, J. Maurer, and M. Rabaud,
Phys. Rev. A 42, 3499 (1990).

[12] Y. Couder, J. Maurer, R. González-Cinca, and A. Hernández-
Machado, Phys. Rev. E 71, 031602 (2005).

[13] M. L. Hoefner and H. S. Fogler, AIChE J. 34, 45 (1988).
[14] C. N. Fredd and H. S. Fogler, AIChE J. 44, 1933 (1998).
[15] G. Daccord, Phys. Rev. Lett. 58, 479 (1987).
[16] G. Daccord and R. Lenormand, Nature 325, 41 (1987).
[17] F. Golfier, C. Zarcone, B. Bazin, R. Lenormand, D. Lasseux,

and M. Quintard, J. Fluid Mech. 457, 213 (2002).
[18] S. D. Howison, J. Fluid. Mech. 409, 243 (2000).
[19] M. Muskat, Flow of Homogeneous Fluids through Porous Media

(McGraw–Hill, New York, 1937).
[20] B. Habermann, Trans. AIME 219, 264 (1960).
[21] M. J. King and H. Scher, Phys. Rev. A 41, 874 (1990).
[22] M. Sahimi and Y. C. Yortsos, Phys. Rev. A 32, 3762 (1985).
[23] A. DeGregoria, Phys. Fluids 28, 2933 (1985).
[24] J. Sherwood and J. Nittmann, J. de Phys. 47, 15 (1986).
[25] J. Sherwood, J. Phys. A: Math. Gen. 19, L195 (1986).
[26] M. Blunt and P. King, Phys. Rev. A 37, 3935 (1988).
[27] M. Ferer, R. A. Geisbrecht, W. N. Sams, and D. H. Smith,

Phys. Rev. A 45, R6973 (1992).
[28] M. Ferer, W. N. Sams, R. A. Geisbrecht, and D. H. Smith,

Phys. Rev. E 47, 2713 (1993).
[29] A. Budek, P. Garstecki, A. Samborski, and P. Szymczak,

Phys. Fluids 27, 112109 (2015).
[30] T. Nagatani and H. E. Stanley, Phys. Rev. A 41, 3263 (1990).
[31] J. Lee, A. Coniglio, and H. E. Stanley, Phys. Rev. A 41, 4589

(1990).
[32] F. Otto, SIAM J. Appl. Math. 57, 982 (1997).
[33] M. Pecelerowicz, A. Budek, and P. Szymczak, Europhys. Lett.

108, 14001 (2014).
[34] E. Koval, Soc. Petrol. Eng. J. 3, 145 (1963).
[35] M. J. Todd and W. Longstaff, J. Pet. Tech. 24, 874 (1972).
[36] F. J. Fayers, Soc. Pet. Engs. Reserv. Eng. 3, 551 (1988).
[37] E. Allen and D. V. Boger, in SPE Annual Technical Conference

and Exhibition, 2–5 October 1988, Houston, Texas, Vol. SPE
18097 (Society of Petroleum Engineers, 1988).

[38] I. Bischofberger, R. Ramachandran, and S. R. Nagel, Nat.
Commun. 5, 5265 (2014).

[39] I. Bischofberger, R. Ramachandran, and S. R. Nagel, Soft Matter
11, 7428 (2015).

[40] P. Meakin, Phys. Rev. A 37, 2644 (1988).

[41] O. Zik, Z. Olami, and E. Moses, Phys. Rev. Lett. 81, 3868 (1998).
[42] O. Zik and E. Moses, Phys. Rev. E 60, 518 (1999).
[43] C. Lu and Y. C. Yortsos, Phys. Rev. E 72, 036201 (2005).
[44] O. Devauchelle, A. P. Petroff, H. F. Seybold, and D. H. Rothman,

Proc. Natl. Acad. Sci. USA 109, 20832 (2012).
[45] Y. Cohen, O. Devauchelle, H. F. Seybold, R. Yi, P. Szymczak,

and D. H. Rothman, Proc. Natl. Acad. Sci. USA 112, 14132
(2015).

[46] P. Szymczak and A. J. C. Ladd, J. Geophys. Res. 114, B06203
(2009).

[47] V. K. Upadhyay, P. Szymczak, and A. Ladd, J. Geophys. Res.:
Solid Earth 120, 6102 (2015).

[48] A. Budek and P. Szymczak, Phys. Rev. E 86, 056318 (2012).
[49] P. M. J. Krug, K. Kassner and F. Family, Eurphys. Lett. 24, 527

(1993).
[50] T. C. Halsey and M. Leibig, Phys. Rev. A 46, 7793 (1992).
[51] T. Gubiec and P. Szymczak, Phys. Rev. E 77, 041602 (2008).
[52] P. Szymczak and A. J. C. Ladd, Geophys. Res. Lett. 33, L05401

(2006).
[53] L. W. Lake, Enhanced Oil Recovery (Prentice Hall, Englewood

Cliffs, NJ, 1989).
[54] Y. C. Yortsos, Transport Porous Med. 18, 107 (1995).
[55] Z. Yang and Y. C. Yortsos, SPE J. 3, 285 (1998).
[56] Z. M. Yang, Y. C. Yortsos, and D. Salin, Adv. Water Resour. 25,

885 (2002).
[57] M. Pecelerowicz, A. Budek, and P. Szymczak, Eur. Phys. J.

Spec. Top. 223, 1895 (2014).
[58] F. Osselin, P. Kondratiuk, A. Budek, O. Cybulski, P. Garstecki,

and P. Szymczak, Geophys. Res. Lett. 43, 6907 (2016).
[59] N. Ezekwe, Petroleum Reservoir Engineering Practice (Pearson

Education, Boston, 2010).
[60] W. Dreybrodt, Water Resourc. Res. 98, 639 (1990).
[61] R. B. Hanna and H. Rajaram, Water Resourc. Res. 34, 2843

(1998).
[62] W. Cheung and H. Rajaram, Geophys. Res. Lett. 29, 2075

(2002).
[63] P. Szymczak and A. J. C. Ladd, Earth Planet. Sci. Lett. 301, 424

(2011).
[64] R. L. Detwiler and H. Rajaram, Water Resourc. Res. 43, W04403

(2007).
[65] P. Szymczak and A. J. C. Ladd, Geophys. Res. Lett. 40, 3036

(2013).
[66] S. L. Brantley, J. D. Kubicki, and A. F. White, Kinetics of Water-

Rock Interaction (Springer, Berlin, 2008).
[67] J. Chadam, D. Hoff, E. Merino, P. Ortoleva, and A. Sen, IMA J.

Appl. Math. 36, 207 (1986).
[68] A. J. C. Ladd and P. Szymczak, Water Resour. Res. 53, 2419

(2017).
[69] M. J. Blunt, Curr. Opin. Coll. Int. Sci. 6, 197 (2001).

042218-12

https://doi.org/10.1016/S0378-4371(98)00345-8
https://doi.org/10.1016/S0378-4371(98)00345-8
https://doi.org/10.1016/S0378-4371(98)00345-8
https://doi.org/10.1016/S0378-4371(98)00345-8
https://doi.org/10.1016/0378-4371(92)90002-8
https://doi.org/10.1016/0378-4371(92)90002-8
https://doi.org/10.1016/0378-4371(92)90002-8
https://doi.org/10.1016/0378-4371(92)90002-8
https://doi.org/10.1146/annurev.micro.52.1.779
https://doi.org/10.1146/annurev.micro.52.1.779
https://doi.org/10.1146/annurev.micro.52.1.779
https://doi.org/10.1146/annurev.micro.52.1.779
https://doi.org/10.1103/PhysRevA.42.3499
https://doi.org/10.1103/PhysRevA.42.3499
https://doi.org/10.1103/PhysRevA.42.3499
https://doi.org/10.1103/PhysRevA.42.3499
https://doi.org/10.1103/PhysRevE.71.031602
https://doi.org/10.1103/PhysRevE.71.031602
https://doi.org/10.1103/PhysRevE.71.031602
https://doi.org/10.1103/PhysRevE.71.031602
https://doi.org/10.1002/aic.690340107
https://doi.org/10.1002/aic.690340107
https://doi.org/10.1002/aic.690340107
https://doi.org/10.1002/aic.690340107
https://doi.org/10.1002/aic.690440902
https://doi.org/10.1002/aic.690440902
https://doi.org/10.1002/aic.690440902
https://doi.org/10.1002/aic.690440902
https://doi.org/10.1103/PhysRevLett.58.479
https://doi.org/10.1103/PhysRevLett.58.479
https://doi.org/10.1103/PhysRevLett.58.479
https://doi.org/10.1103/PhysRevLett.58.479
https://doi.org/10.1038/325041a0
https://doi.org/10.1038/325041a0
https://doi.org/10.1038/325041a0
https://doi.org/10.1038/325041a0
https://doi.org/10.1017/S0022112002007735
https://doi.org/10.1017/S0022112002007735
https://doi.org/10.1017/S0022112002007735
https://doi.org/10.1017/S0022112002007735
https://doi.org/10.1017/S0022112099007740
https://doi.org/10.1017/S0022112099007740
https://doi.org/10.1017/S0022112099007740
https://doi.org/10.1017/S0022112099007740
https://doi.org/10.1103/PhysRevA.41.874
https://doi.org/10.1103/PhysRevA.41.874
https://doi.org/10.1103/PhysRevA.41.874
https://doi.org/10.1103/PhysRevA.41.874
https://doi.org/10.1103/PhysRevA.32.3762
https://doi.org/10.1103/PhysRevA.32.3762
https://doi.org/10.1103/PhysRevA.32.3762
https://doi.org/10.1103/PhysRevA.32.3762
https://doi.org/10.1063/1.865133
https://doi.org/10.1063/1.865133
https://doi.org/10.1063/1.865133
https://doi.org/10.1063/1.865133
https://doi.org/10.1051/jphys:0198600470101500
https://doi.org/10.1051/jphys:0198600470101500
https://doi.org/10.1051/jphys:0198600470101500
https://doi.org/10.1051/jphys:0198600470101500
https://doi.org/10.1088/0305-4470/19/4/005
https://doi.org/10.1088/0305-4470/19/4/005
https://doi.org/10.1088/0305-4470/19/4/005
https://doi.org/10.1088/0305-4470/19/4/005
https://doi.org/10.1103/PhysRevA.37.3935
https://doi.org/10.1103/PhysRevA.37.3935
https://doi.org/10.1103/PhysRevA.37.3935
https://doi.org/10.1103/PhysRevA.37.3935
https://doi.org/10.1103/PhysRevA.45.R6973
https://doi.org/10.1103/PhysRevA.45.R6973
https://doi.org/10.1103/PhysRevA.45.R6973
https://doi.org/10.1103/PhysRevA.45.R6973
https://doi.org/10.1103/PhysRevE.47.2713
https://doi.org/10.1103/PhysRevE.47.2713
https://doi.org/10.1103/PhysRevE.47.2713
https://doi.org/10.1103/PhysRevE.47.2713
https://doi.org/10.1063/1.4935225
https://doi.org/10.1063/1.4935225
https://doi.org/10.1063/1.4935225
https://doi.org/10.1063/1.4935225
https://doi.org/10.1103/PhysRevA.41.3263
https://doi.org/10.1103/PhysRevA.41.3263
https://doi.org/10.1103/PhysRevA.41.3263
https://doi.org/10.1103/PhysRevA.41.3263
https://doi.org/10.1103/PhysRevA.41.4589
https://doi.org/10.1103/PhysRevA.41.4589
https://doi.org/10.1103/PhysRevA.41.4589
https://doi.org/10.1103/PhysRevA.41.4589
https://doi.org/10.1137/S003613999529438X
https://doi.org/10.1137/S003613999529438X
https://doi.org/10.1137/S003613999529438X
https://doi.org/10.1137/S003613999529438X
https://doi.org/10.1209/0295-5075/108/14001
https://doi.org/10.1209/0295-5075/108/14001
https://doi.org/10.1209/0295-5075/108/14001
https://doi.org/10.1209/0295-5075/108/14001
https://doi.org/10.2118/450-PA
https://doi.org/10.2118/450-PA
https://doi.org/10.2118/450-PA
https://doi.org/10.2118/450-PA
https://doi.org/10.2118/3484-PA
https://doi.org/10.2118/3484-PA
https://doi.org/10.2118/3484-PA
https://doi.org/10.2118/3484-PA
https://doi.org/10.1038/ncomms6265
https://doi.org/10.1038/ncomms6265
https://doi.org/10.1038/ncomms6265
https://doi.org/10.1038/ncomms6265
https://doi.org/10.1039/C5SM00943J
https://doi.org/10.1039/C5SM00943J
https://doi.org/10.1039/C5SM00943J
https://doi.org/10.1039/C5SM00943J
https://doi.org/10.1103/PhysRevA.37.2644
https://doi.org/10.1103/PhysRevA.37.2644
https://doi.org/10.1103/PhysRevA.37.2644
https://doi.org/10.1103/PhysRevA.37.2644
https://doi.org/10.1103/PhysRevLett.81.3868
https://doi.org/10.1103/PhysRevLett.81.3868
https://doi.org/10.1103/PhysRevLett.81.3868
https://doi.org/10.1103/PhysRevLett.81.3868
https://doi.org/10.1103/PhysRevE.60.518
https://doi.org/10.1103/PhysRevE.60.518
https://doi.org/10.1103/PhysRevE.60.518
https://doi.org/10.1103/PhysRevE.60.518
https://doi.org/10.1103/PhysRevE.72.036201
https://doi.org/10.1103/PhysRevE.72.036201
https://doi.org/10.1103/PhysRevE.72.036201
https://doi.org/10.1103/PhysRevE.72.036201
https://doi.org/10.1073/pnas.1215218109
https://doi.org/10.1073/pnas.1215218109
https://doi.org/10.1073/pnas.1215218109
https://doi.org/10.1073/pnas.1215218109
https://doi.org/10.1073/pnas.1413883112
https://doi.org/10.1073/pnas.1413883112
https://doi.org/10.1073/pnas.1413883112
https://doi.org/10.1073/pnas.1413883112
https://doi.org/10.1029/2008JB006122
https://doi.org/10.1029/2008JB006122
https://doi.org/10.1029/2008JB006122
https://doi.org/10.1029/2008JB006122
https://doi.org/10.1002/2015JB012233
https://doi.org/10.1002/2015JB012233
https://doi.org/10.1002/2015JB012233
https://doi.org/10.1002/2015JB012233
https://doi.org/10.1103/PhysRevE.86.056318
https://doi.org/10.1103/PhysRevE.86.056318
https://doi.org/10.1103/PhysRevE.86.056318
https://doi.org/10.1103/PhysRevE.86.056318
https://doi.org/10.1209/0295-5075/24/7/004
https://doi.org/10.1209/0295-5075/24/7/004
https://doi.org/10.1209/0295-5075/24/7/004
https://doi.org/10.1209/0295-5075/24/7/004
https://doi.org/10.1103/PhysRevA.46.7793
https://doi.org/10.1103/PhysRevA.46.7793
https://doi.org/10.1103/PhysRevA.46.7793
https://doi.org/10.1103/PhysRevA.46.7793
https://doi.org/10.1103/PhysRevE.77.041602
https://doi.org/10.1103/PhysRevE.77.041602
https://doi.org/10.1103/PhysRevE.77.041602
https://doi.org/10.1103/PhysRevE.77.041602
https://doi.org/10.1029/2005GL025334
https://doi.org/10.1029/2005GL025334
https://doi.org/10.1029/2005GL025334
https://doi.org/10.1029/2005GL025334
https://doi.org/10.1007/BF01064674
https://doi.org/10.1007/BF01064674
https://doi.org/10.1007/BF01064674
https://doi.org/10.1007/BF01064674
https://doi.org/10.2118/51257-PA
https://doi.org/10.2118/51257-PA
https://doi.org/10.2118/51257-PA
https://doi.org/10.2118/51257-PA
https://doi.org/10.1016/S0309-1708(02)00043-X
https://doi.org/10.1016/S0309-1708(02)00043-X
https://doi.org/10.1016/S0309-1708(02)00043-X
https://doi.org/10.1016/S0309-1708(02)00043-X
https://doi.org/10.1140/epjst/e2014-02234-7
https://doi.org/10.1140/epjst/e2014-02234-7
https://doi.org/10.1140/epjst/e2014-02234-7
https://doi.org/10.1140/epjst/e2014-02234-7
https://doi.org/10.1002/2016GL069261
https://doi.org/10.1002/2016GL069261
https://doi.org/10.1002/2016GL069261
https://doi.org/10.1002/2016GL069261
https://doi.org/10.1029/98WR01528
https://doi.org/10.1029/98WR01528
https://doi.org/10.1029/98WR01528
https://doi.org/10.1029/98WR01528
https://doi.org/10.1029/2002GL015196
https://doi.org/10.1029/2002GL015196
https://doi.org/10.1029/2002GL015196
https://doi.org/10.1029/2002GL015196
https://doi.org/10.1016/j.epsl.2010.10.026
https://doi.org/10.1016/j.epsl.2010.10.026
https://doi.org/10.1016/j.epsl.2010.10.026
https://doi.org/10.1016/j.epsl.2010.10.026
https://doi.org/10.1029/2006WR005147
https://doi.org/10.1029/2006WR005147
https://doi.org/10.1029/2006WR005147
https://doi.org/10.1029/2006WR005147
https://doi.org/10.1002/grl.50564
https://doi.org/10.1002/grl.50564
https://doi.org/10.1002/grl.50564
https://doi.org/10.1002/grl.50564
https://doi.org/10.1093/imamat/36.3.207
https://doi.org/10.1093/imamat/36.3.207
https://doi.org/10.1093/imamat/36.3.207
https://doi.org/10.1093/imamat/36.3.207
https://doi.org/10.1002/2016WR019263
https://doi.org/10.1002/2016WR019263
https://doi.org/10.1002/2016WR019263
https://doi.org/10.1002/2016WR019263
https://doi.org/10.1016/S1359-0294(01)00084-X
https://doi.org/10.1016/S1359-0294(01)00084-X
https://doi.org/10.1016/S1359-0294(01)00084-X
https://doi.org/10.1016/S1359-0294(01)00084-X



