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Stochastic model of translocation of knotted proteins
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Knotted proteins, when forced through the pores, can get stuck if the knots in their backbone tighten under
force. Alternatively, the knot can slide off the chain, making translocation possible. We construct a simple energy
landscape model of this process with a time-periodic potential that mimics the action of a molecular motor. We
calculate the translocation time as a function of the period of the pulling force, discuss the asymptotic limits and
biological relevance of the results.
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I. INTRODUCTION

It is increasingly realized that topology plays an im-
portant role in the functional and dynamical properties of
biomolecules. Knots and tangles are rather unavoidable in the
DNA chain, due to its huge length and large density, with
2 meters of DNA squeezed in a tiny cell nucleus. However,
topology can also be important for function, dynamics, and
stability of proteins, although the exact function of the entan-
glement in proteins is still under debate [1–4]. In about 1% of
the proteins the polypeptide chain [5,6], which forms a protein
backbone, adopts a knotted configuration. It was reported that
the presence of knots can increase the thermal and mechanical
stability of proteins [7,8] or help them in their enzymatic ac-
tivity [9–11], but it can also be hindering, particularly during
folding [12–14], unfolding [15], and passing through narrow
constrictions[16,17]. The latter happens when the protein is
degraded in proteasome or translocated through the intercellu-
lar membranes, e.g., during import into mitochondria [18–22].
The unfolding and import of proteins into mitochondria or
proteasome are facilitated by molecular motors that act with
forces of the order of 30 pN [23]. However, as shown in a
number of studies, both experimental and numerical [24–26],
the protein knots tend to tighten under the action of the force.
The radius of gyration of the tight knot has been estimated
to be around 7–8 Å for the simplest protein knot (a trefoil)
and correspondingly larger for more complicated knots. On
the other hand, the smallest constrictions in mitochondrial
pores or proteasome openings are 6–7 Å in radius [27,28],
thus proteins with knotted backbones might have problems
navigating them.

Assuming that the translocation of a knot is impossible,
from the macroscopic point of view two possibilities remain:
Either the knot would slide off the rope or it would block
the opening. Sewing afficionados know that very well, as they
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make thread knots using a narrow space between the fingers
through which the thread goes easily, but the knot jams and
tightens. (Fig. 1). However, proteins are not like ropes or
sewing threads in one important respect. Different parts of the
protein chain attract each other, and as a result, the molecule—
if left on its own, with no forces acting on it—folds into its
native conformation (a specific spatial configuration which is
critical to its biological function).

As proposed in Ref. [29], such a folding propensity of
proteins, together with the repetitive nature of the forces pro-
duced by molecular motors, can allow the knotted molecules
to translocate successfully. The molecular motors work in an
on-off manner: During an “on” part of the cycle, they attempt
to pull the knotted protein into the pore. During pulling, the
knot slides towards the free end of the chain [17,30]. If it
succeeds in sliding off the chain before it tightens, the protein
translocates successfully. The tightened knot, on the other
hand, jams the pore, but not permanently. During the next off-
cycle of the force, as the protein begins to refold, some stored
length is inserted into the knotted core, and the knot loosens,
thus escaping the tightened configuration. Subsequently, dur-
ing the next force-on period the protein makes another attempt
at the translocation, with an eventual success after sufficiently
many attempts.

Reference [29] looked at this system through a series of
molecular dynamics simulations that resolved the interactions
between individual amino acids as well as between amino
acids and the pore walls. It seems, however, that the main
physical mechanism behind this process can be captured in
a much more simple one-dimensional model in the spirit of
reaction rate theory. The construction of such a description is
the objective of the present paper.

II. MODEL

We will model the dynamics of our system in terms
of reaction rate theory [31] with a one-dimensional (1D)
reaction coordinate x, indicating the state of the system.
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FIG. 1. Tightening of the knot on a rope while pushing it through
an opening with the diameter smaller than that of a tightened knot.

Within this model, the dynamics of the system along the
reaction coordinate is assumed to follow the overdamped
Langevin equation [32]

dx

dt
= −μ

dV (x, t )

dx
+

√
μkT ξ (t ), (1)

where ξ (t ) is the Gaussian white noise satisfying 〈ξ (t )〉 = 0
with 〈ξ (t )ξ (s)〉 = δ(t − s), μ is the effective mobility along
the reaction coordinate, and T is the temperature.

The initial position of the knotted protein in front of the
pore corresponds to the point x = 0 in our 1D reaction model.
At this point, the protein is in its native conformation: Its
backbone is knotted, but the knot is not tightened. In the
following, we will denote this state as KL (knotted loose). The
point x = L1, on the other hand, represents the protein with a
fully tightened knot (KT, knotted tightened), which is blocking
the pore. To represent this blockage, we place an impermeable
(reflecting) wall at x = L1. Finally, the point x = −L2 repre-
sents the protein which has successfully translocated through
the pore and left the system. Since in this process the knot
slides off the chain, such a state will be called U (unknotted)
in subsequent considerations. We assume that translocation is
only possible under the action of the force, so we make the
wall at x = −L2 absorbing only in the first part of the period
(when the force is on). In the second part of the force cycle
this wall will be reflecting.

To mimic the repetitive nature of molecular motors, we
will introduce a potential V (x, t ) which switches between two
states with period 2T . To describe it, we find it convenient to
introduce an additional variable:

T = mod(t, 2T ), (2)

which measures the time from the beginning of the present
force period. Using this variable, the periodic potential can be
written as

V (x, t ) =
{

Vpull(x), T (t ) < T,

Vfree(x), T (t ) � T,
(3)

where Vpull(x) and Vfree(x) are time-independent, piecewise
linear potential wells (see Fig. 2), with

Vpull(x) =
{− fT x, x < 0,

− fDx, x � 0 (4)

and

Vfree(x) =
{− fT x, x < 0,

fU x, x � 0.
(5)

In the first half of the force period T < T , the potential
Vpull(x) corresponds to the situation when the molecular motor

FIG. 2. Potential given by Eq. (3) under pulling (a) and in the
free state (b). The marked conformations correspond to the state with
a loose knot (KL), tightened knot (KT), and untied knot (U).

exerts the force on a protein chain, pulling it in. The ap-
pearance of this force is represented by a potential well of
depth fDL1 at x = L1. As mentioned above, the trapping of
the particle at this position corresponds to tightening of the
knot under the action of the force. The other possible pathway
corresponds to a successful translocation through x = −L2

wall. Getting there is much less likely than entering the kinetic
trap at x = L1. To represent that, we assume that there is an
energy barrier ( fT L2) to overcome to reach the absorbing wall
at x = −L2.

The second part of the force period, when the force is off,
is described by the potential Vfree(x). The minimum at x =
L1 disappears and is replaced by a maximum of height fU L1.
This creates a potential ramp pulling the particle towards the
origin, which represents the effective action of the interactions
between the aminoacids, which are trying to refold the protein
into its native conformation. The other part of the potential
(for x < 0) is the same as in the first part of the force period,
with the only difference that now the boundary at x = −L2

is assumed to be reflecting. This represents the fact that it is
impossible to translocate through the pore in the absence of
force.

Before proceeding, let us introduce the dimensionless vari-
ables

x̃ = x/L1, t̃ = tμkT/L2
1 (6)
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and rescaled parameters,

f̃i = fiL1/kT, L̃ = L2/L1. (7)

After such a transformation, the motion is restricted to the
(−L̃, 1) interval, with the forces rescaled by the characteristic
thermal forces. For convenience, from now on, we will drop
tildes and consequently use dimensionless units.

III. ASYMPTOTIC REGIMES

To characterize the escape dynamics of the system, we
analyze the distribution of the first exit times. The latter is
defined as

〈τ 〉 = 〈min{t : x(0) = 0 ∧ x(t ) � −L}〉. (8)

Due to the time dependence of the potential V (x, t ), the
general solution is difficult to obtain. Nevertheless, one may
obtain a number of useful results for the limit of slowly chang-
ing potential, i.e., T → ∞. In this limit, the first escape time
is dominated by waiting for the state when escape is possible.
Therefore, mean first exit time (MFET) is proportional to the
average number of force periods before the particle escapes:

〈τ 〉 = 2〈n〉T . (9)

To calculate 〈n〉 we assume that fD is sufficiently deep so that
the force pulling the particle towards the KT state for x > 0 is
so high that the escape chance is negligible and we inevitably
end up in the trap at x = 1. In this case

1

〈n〉 =
∫ 0

−L
p(x)πL(x)dx, (10)

where p(x) is the probability density of finding the particle
in x at T = 0 and πL(x) is the probability that the particle
escapes through the left boundary, assuming that it started
at x.

The general formula for the probability that the particle
starting in the (−L, 0) interval escapes through the left barrier
is given by [32]

πL(x) =
∫ 0

x ψ (y)dy∫ 0
−L ψ (y)dy

, (11)

where, for potential (3),

ψ (x) = exp

(∫ x

−L
fT dy

)
= exp [ fT (x + L)]. (12)

In the limit of T → ∞ the particle probability density will
have sufficient time during the off-force period to relax to-
wards the stationary distribution, pst (x). For the potential of
the form Vfree(x) the stationary distribution is

pst (x) =
{

A exp ( fT x), x < 0,

A exp (− fU x), x � 0,
(13)

with a normalization factor

A = fU
fU − fU e− fT L

fT
+ sinh( fU ) − cosh( fU ) + 1

. (14)

On the other hand, during the on-force period, if the pulling
force is sufficiently high ( fD � fT ), the distribution relaxes to

the stationary distribution in the linear potential well with a
slope fD:

p(x) = fDe fD (L+x)

e fDL+ fD − 1
. (15)

Inserting Eqs. (11) and (13) into Eq. (10) one may obtain
the formula for the average number of force periods before
escape:

〈n〉 = 2e fT L( fT sinh fU − fT cosh fU + fU + fT ) − 2 fU
fU (e fT L − 1)

.

(16)
Another important timescale in the system is the mean time

necessary to return to the origin from x = 1 in the absence of
the pulling force. Biologically, this corresponds to the protein
refolding time. The latter can be calculated analogously to
the left barrier problem considered above, using a formula for
MFET from the interval limited by a reflecting boundary from
one side [32]:

τ (x) =
∫ x

0

dy

ψ (y)

∫ 1

y
ψ (z)dz, (17)

where

ψ (x) = exp

(∫ x

0
fU dy

)
= exp (− fU x). (18)

Performing the integration in (17) leads to

τfold = fU + e− fU − 1

f 2
U

(19)

For large fU the folding proceeds deterministically, in a down-
hill manner, and τfold ≈ f −1

U .
In the limit of very short force periods, t 	 τfold, the

translocation time can again be estimated analytically. This
time, the starting point is the jammed configuration (x = 1),
where the system is trapped after the first force period. The
probability that the particle, starting at x = 1, can reach x =
−L over time T can be estimated in the following manner.
First, we note that in the limit of very short times, the deter-
ministic drift of a particle under the action of fU and fT can
be neglected with respect to diffusion, since the latter scales
as

√
t and the former as t . The diffusive current at x = −L due

to the source near a reflective wall at x = 1 is given by

J (t ) = − 2√
2πt

∂x

(
e− (x−1)2

2t − e− (x+2L+1)2

2t

)
x=−L

= 23/2(L + 1)√
πt3

e− (L+1)2

2t . (20)

By integrating this over t , we obtain the escape probability
over a single force period of the form

P(T ) =
∫ T

0
J (t )dt = 4 Erfc

(
L + 1√

2T

)
(21)

with the mean escape time proportional to the inverse of P,
i.e.,

〈τ 〉 = T

P
∼ (L + 1)

√
πT

4
√

2
e

(L+1)2

2T (22)

where the asymptotic behavior of the error function was used.
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FIG. 3. MFET (top panel) and the average number of force peri-
ods needed for a successful translocation (bottom panel) as a function
of half-period T for fT = 1, fU = 1, and fD = 320. The solid line
corresponds to the asymptotic solution given by Eq. (16).

As we see, both long and short force periods result in
very long translocation times; with 〈τ 〉 ∼ T for large T and
〈τ 〉 ∼ exp(1/T ) for short T . We thus expect that between
these two extremes there exists an optimal force period, Tmin

for which the translocation is the fastest. One can anticipate
that Tmin should be of the order of the folding time, to allow
enough time for the system to reach the KL state and then
attempt the barrier crossing. In the next section, we investigate
the existence of the minimum numerically.

IV. NUMERICAL RESULTS

The intermediate force periods, between the asymptotes
considered in the previous section, do not lend themselves to
analytical analysis and we need to resort to numerical meth-
ods. To obtain a result for arbitrary T , the Euler-Maruyama
method [33,34] of integration of the Eq. (1) was used. The
trajectories were simulated with the time-step �t = 10−5 un-
til particle crosses barrier located in L = 0.25 when the first
exit time was registered. MFET was subsequently obtained by
averaging the first exit times over N = 105 trajectories.

We begin with an examination of the mean exit time as a
function of half-period T . Figure 3 shows 〈τ (T )〉 dependence
for fT = 1, fU = 1, and fD = 320. As expected, we see an
exponential increase of 〈τ 〉 for small periods and linear growth
for large periods, with a minimum in between. For the exam-

FIG. 4. Probability densities for T/2, when the protein is pulled
into the pore (top panel), and 5T/4, when the force is switched off
(bottom panel), for fT = 1, fU = 1, fD = 320, and T = 2. Points
correspond to the numerical results whereas solid lines represents
approximated analytical solutions given by Eq. (15) (top panel) and
by Eq. (13) (bottom panel) respectively.

ple presented in Fig. 3 the minimum corresponds to τ ≈ 6 and
is located at Tmin ≈ 0.2. Note that this is slightly shorter than
the protein refolding time, which, based on (17) for this choice
of parameters, is τfold = e−1 ≈ 0.37. The linear growth of
〈τ (T )〉 can be directly verified by inspection of 〈n〉. As can
be seen in the bottom panel of Fig. 3, the solution tends
rapidly to the asymptotic behavior given by Eq. (16). The
good agreement between the numerical data and the analytical
solution for large force periods can also serve as a test of the
approximations adopted when deriving Eq. (9), in particular
the assumption that the distribution can be approximated as
stationary, Eq. (13). This is further confirmed by the analysis
of the particle distributions, as shown in Fig. 4. As we see, in
the first half of the period, the particles are pulled towards the
KT state, relaxing to a deltalike distribution, due to the large
depth of the energy well. On the other hand, in the second
part of the period, the particles move towards the KL mini-
mum, with the distribution relaxing towards that described by
Eq. (13).

The potential (3) used in the model is described by three
characteristic forces: fT controlling the exit probability, fU
connected to the folding, and fD describing the action of the
molecular motor, which—combined with steric interactions
between the protein and the pore—tend to tighten the knot
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FIG. 5. Mean first exit time as a function of the force period T
for fT = 1, fD = 320, and a range of different fU .

and block the pore. The exact value of fD does not affect the
MFET, as long as it can be considered large; i.e., the system
trapped by this force is basically unable to escape from KT
state. Weaker fD forces would be expected to facilitate escape
from the system, since the particle would be able to reach
the absorbing barrier at x = −L even after venturing into the
region of potential well, i.e., x > 0.

Contrary to fD, increasing fU results not only in faster
escape times but also in the emergence of a deeper minimum
of MFET, shifted towards shorter force periods, as observed
in the upper panel of Fig. 5. This behavior can be explained
by the shorter time required on average for the particle to
return to the origin after being trapped in KT state at x = 1.
Since this timescale is related to a refolding time, τfold, we
can expect that rescaling by it should account for the most
of MFET dependence on fU . This is indeed the case, as
illustrated in Fig. 5; however, for large fU the escape times
become significantly shorter than expected by a simple rescal-
ing by τfold. This can be rationalized by noting that, for the
particle to have a chance of escaping, it needs to reach the
left part of the potential x < 0. The higher values of fU not
only shorten the time necessary to reach this region but also
increase the fraction of particles in the negative (x < 0) part
of the potential, relative to those in the positive (x > 0) part
during the off-force period.

Finally, fT controls the probability of unknotting; i.e., the
larger fT is, the slower is the particle escape from the topolog-
ical trap. To the leading order, the dependence of MFET on fT

FIG. 6. Mean first exit time as a function of fT for fU = 1, fD =
320, and T = 0.2.

is given by the Arrhenius law, thus even a small increase of fT

results in an exponential growth of MFET. In the asymptotic
regime, T → ∞, this behavior is predicted by Eq. (16); how-
ever, it holds in a much wider range of force period values.
This is confirmed by Fig. 6, which shows the dependence
of MFET on the transition force fT for fU = 1, fD = 320,
and T = Tmin = 0.2 (the latter corresponds to the minimum
MFET as a function of T for fU = fT = 1 and fD = 320).
Despite the fact that T is relatively small, definitely not in the
T → ∞ asymptotic regime, one can still observe the linear
behavior in the logarithmic plot.

V. SUMMARY AND CONCLUSIONS

We have constructed a simple energy landscape model of
the protein translocation process, with a time-periodic poten-
tial, mimicking the cyclic nature of biological motors. The
modal is solvable both in the limit of very short and very
long periods of the driving force. In both of these limits the
translocation time diverges, which suggests that there is an
optimum force period corresponding to the shortest transloca-
tion time. We find this time numerically and show that it is
of the order of the protein refolding time, τfold (for relatively
low folding forces), or shorter than τfold (for large folding
forces resulting in folding times shorter than the force pe-
riod). Importantly, the dwell times between the power strokes
of the biological motors are distributed rather broadly, with
two characteristic timescales: One of the order of hundreds
of milliseconds and the other of about ten seconds [35,36].
On the other hand, protein folding times are also broadly
distributed [37], with smaller two-state proteins folding on a
millisecond scale, while more complex molecules folding on
the scale of seconds. Similar timescales of motor action and
protein folding suggest that translocases act near the optimum.

These results are in agreement with molecular dynamics
results of Ref. [29], but the stochastic model has the benefit
of being simple and easily interpretable in terms of a handful
of parameters only (folding time, motor force intensity and
frequency), making it easier to understand the key factors
controlling system dynamics.

Finally, we note that, in principle, an analogous model
can also be used to simulate the escape of translocating
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proteins from other kinetic traps, not necessarily of a topo-
logical nature. One such example was reported in Ref. [38],
which shows that, during the translocation of barnase through
a mitochondrial pore, the protein can get trapped in a long-
lived intermediate state, which blocks the pore and stalls the
translocation. Again, the repetitive forces can lead the system
out of such a kinetic trap, and it seems that the model pre-
sented here can be applied if one interprets KT as an unfolding
intermediate which acts as a kinetic trap, and KL as a native
state of this protein.

The data that support the findings of this study are available
from one of the authors (K.C.) upon reasonable request.
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