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The Rotne–Prager–Yamakawa approximation is one of the most commonly used
methods of including hydrodynamic interactions in modelling of colloidal suspensions
and polymer solutions. The two main merits of this approximation are that it
includes all long-range terms (i.e. decaying as R−3 or slower in interparticle
distances) and that the diffusion matrix is positive definite, which is essential
for Brownian dynamics modelling. Here, we extend the Rotne–Prager–Yamakawa
approach to include both translational and rotational degrees of freedom, and derive
the regularizing corrections to account for overlapping particles. Additionally, we
show how the Rotne–Prager–Yamakawa approximation can be generalized for other
geometries and boundary conditions.
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1. Introduction

Particles moving in a viscous fluid induce a local flow field that affects other
particles. These long-range, many-body interactions, mediated by the solvent are
commonly called ‘hydrodynamic interactions’ (HI). The presence of HI is known
to affect the dynamic properties of soft matter: they modify the values of diffusion
coefficients in colloidal suspensions (Dhont 1996), affect the characteristics of the
coil–stretch transition in polymers (Larson & Magda 1989), change the kinetic
pathways of phase separation in binary mixtures (Tanaka 2001), alter the kinetics
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of macromolecule adsorption on surfaces (Wojtaszczyk & Avalos 1998) or cause
the polymer migration in microchannels (Usta, Butler & Ladd 2007). They are also
important in the dynamics of biological soft matter, such as DNA (Shaqfeh 2005),
proteins (Frembgen-Kesner & Elcock 2009; Szymczak & Cieplak 2011) or lipid
membranes (Ando & Skolnick 2013).

A proper account of hydrodynamic interactions is thus essential in simulation
studies of soft matter flow. Unfortunately, HI depends in a complicated nonlinear
way on the instantaneous positions of all particles in the system. For a system of
spheres, exact explicit expressions for the hydrodynamic interaction tensors exist in
the form of the power series in interparticle distances, which may be incorporated
into the simulation scheme (Mazur & van Saarloos 1982; Brady & Bossis 1988;
Felderhof 1988; Kim & Karrila 1991; Cichocki et al. 1994). These are however
relatively expensive numerically, thus various approximations are resorted to in order
to make the computations more tractable. The simplest one is based on the Oseen
tensor, which assumes that the particles can be regarded as point force sources
in the fluid. However, the diffusion matrix constructed in this way is not suitable
for Brownian dynamics simulations, because it becomes non-positive definite when
separations between the particles become small. This is not only unphysical (since the
positivity of diffusion is a consequence of the second law of thermodynamics) but also
leads to numerical problems in the Brownian dynamics simulations, where a square-
root of the diffusion matrix is needed. Another commonly used approximation is
the Rotne–Prager–Yamakawa (RPY) tensor (Rotne & Prager 1969; Yamakawa 1970),
which takes into account all the HI terms up to O(a/rij)

3 in the expansion in the
inverse distance between the particles (where a is the particle radius). Nevertheless,
if the particles overlap, rij < 2a, the RPY tensor again loses its positive definiteness.
To avoid this, a regularization for rij < 2a has been proposed by Rotne & Prager
(1969), which is not singular at rij = 0 and is positive definite for all the particle
configurations. The RPY tensor with this regularization is by far the most popular
method of accounting for HI in soft matter modelling (Nägele 2006).

The present paper takes a close look at the Rotne–Prager–Yamakawa approximation
and generalizes it in a number of ways. First, we re-derive the original RPY tensor
using direct integration of force densities over the sphere surfaces. When the spheres
overlap then this method gives us automatically the regularization correction. In this
way we derive the RPY regularizations not only for the translational degrees of
freedom (already obtained by Rotne & Prager 1969) but also for rotational degrees
of freedom, as well as for the shear disturbance matrix C – another hydrodynamic
tensor, which gives the response of the particles to the external shear flow. The
mobility evaluated using our technique may be applied to calculate the diffusion tensor
of complex molecules (de la Torre, del Rio Echenique & Ortega 2007; Adamczyk
et al. 2012) using bead models which include overlapping spheres. Finally, we show
how these results can be generalized for other boundary conditions and corresponding
propagators.

2. The mobility problem under shear flow

We consider a suspension of N identical spherical particles of radius a, in an
incompressible fluid of viscosity η at a low Reynolds number. The particles are
immersed in a linear shear flow

v∞(r)= K∞ · r, (2.1)
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where K∞ is the constant velocity gradient matrix, e.g. for a simple shear flow

K∞ =

0 0 γ̇

0 0 0
0 0 0

 , γ̇ = const. (2.2)

Due to the linearity of the Stokes equations, the forces and torques exerted by
the fluid on the particles (F j and T j) depend linearly on the translational and
rotational velocities of the particles (U i, Ωi). This relation defines the generalized
friction matrix ζ :(

F j

T j

)
=−

∑
i

(
ζ tt

ji ζ tr
ji ζ td

ji

ζ rt
ji ζ rr

ji ζ rd
ji

)
·

v∞(Ri)− U i

ω∞(Ri)−Ωi

E∞

 , (2.3)

where ζ pq (with p= t, r and q= t, r, d) are the Cartesian tensors and the superscripts t,
r and d correspond to the translational, rotational and dipolar components, respectively.
The tensor E∞ is the symmetric part of K∞ in (2.2) and ω∞ = (∇ × v∞(Ri))/2 =
ε/2 : K∞ is the vorticity of the incident flow. Finally Ri corresponds to the position of
particle i. The reciprocal relation giving velocities of particles moving under external
forces/torques in the external flow v∞ is determined by the generalized mobility matrix
µ written, after Dhont (1996),(

U i

Ωi

)
=

(
v∞(Ri)

ω∞(Ri)

)
+

∑
j

[(
µtt

ij µtr
ij

µrt
ij µrr

ij

)
·

(
F j

T j

)]
+

(
C t

i

Cr
i

)
: E∞, (2.4)

where the elements of the shear disturbance tensor C are defined as

C t
i =

∑
j

µtd
ij , Cr

i =

∑
j

µrd
ij . (2.5a)

In the case of a single particle the mobility matrices reduce to

µtt
ii =

1
ζ tt

1, µrr
ii =

1
ζ rr

1, µtr
ii = µ

rt
ii = 0, (2.6)

where the friction coefficients for a spherical particle are given by ζ tt
= 6πηa and

ζ rr
= 8πηa3.

Finding the mobility matrix (or the associated diffusion matrix, D = kBTµ, where kB

is the Boltzmann constant and T is the temperature) is the problem of a fundamental
importance in constructing the numerical algorithms for tracking the motion of the
particles in viscous fluid. The two main numerical methods used for this purpose are
the Stokesian Dynamics, which corresponds to the numerical integration of (2.4) and
the Brownian dynamics, used whenever the Brownian motion of the particles cannot
be neglected (Nägele 2006). In the latter, the random displacements of the particles,
Γi(1t) need to be added to the deterministic displacements governed by (2.4). The
fluctuation–dissipation theorem implies that the covariance of Γ is connected to the
mobility matrix, e.g. for the translational displacements〈

Γi (1t)Γj (1t)
〉
= 2kBTµtt

ij1t. (2.7)

Hence the calculation of Γi(1t) requires finding a matrix d such that µtt
= ddT.

This is possible only when the mobility matrix is positively defined. Any valid

731 R3-3



E. Wajnryb, K. A. Mizerski, P. J. Zuk and P. Szymczak

approximation scheme for the hydrodynamic interactions should then not only
correctly reproduce the particle mobilities but also guarantee the positive definiteness
of the mobility tensors.

3. The Rotne–Prager–Yamakawa form of µ and C for systems with shear

In principle the HI tensors can be calculated with arbitrary precision, following e.g.
the multipole expansion or boundary integral method (Kim & Karrila 1991; Pozrikidis
1992). In practice, however, the exact approach turns out to be too demanding
computationally, so various approximation procedures have to be resorted to. The most
commonly used is the Rotne–Prager–Yamakawa approximation (Rotne & Prager 1969;
Yamakawa 1970), based on the following idea: when a force (or torque) is applied to
particle i, that particle begins to move, inducing flow in the bulk of the fluid. The
extent to which this additional flow affects translational and rotational velocities of
another particle (j) is then calculated using Faxen’s laws (Kim & Karrila 1991). In that
way one neglects not only the multi-body effects (involving three and more particles)
but also the higher-order terms in two-particle interactions (e.g. we do not consider
the impact of the movement of particle j back on particle i). Below, we follow this
procedure to derive in a systematic way hydrodynamic tensors for both translational
and rotational degrees of freedom.

3.1. The mobility matrix µ
The Stokes flow generated by a point force in the unbounded space is given by the
Oseen tensor (Kim & Karrila 1991)

T 0 (r)=
1

8πηr

(
1+ r̂r̂

)
. (3.1)

Since T 0 (r) is a Green function for Stokes equations, one can use it to calculate the
translational vt

0(r) and rotational vr
0(r) flows generated by a sphere situated at Rj, to

which we apply force F and/or torque T :

vt
0 (r)=

∫
Sj

T 0

(
r− r′

)
·

F
4πa2

dσ ′

=



(
1+

a2

6
∇

2

)
T 0

(
ρ j

)
·F =

1
8πηρj

[(
1+

a2

3ρ2
j

)
1

+

(
1−

a2

ρ2
j

)
ρ̂ jρ̂ j

]
·F , ρj > a,

1
ζ tt

F , ρj 6 a,

(3.2)

vr
0 (r)=

∫
Sj

T 0

(
r− r′

)
·

3
8πa3

T × n′ dσ ′

=


1
2
∇ × T 0

(
ρ j

)
·T =

1
8πηρ3

j

T × ρ j, ρj > a,

1
ζ rr

T × ρ j, ρj 6 a,
(3.3)

where ρ j = r − Rj is the distance from the sphere centre, r′ denotes the integration
variable, n′ is the unit normal vector to the sphere at point r′ and

∫
Sj

denotes an
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integral over the surface of the sphere situated at Rj. The curl of a tensor is defined in
the following way:

(∇ × T )αβ = εαγ ζ∂γT ζβ (3.4)

where the Greek letters denote the Cartesian components.
The Faxen laws (Kim & Karrila 1991) allow the velocity U i and angular velocity Ωi

of a sphere i immersed in an external flow v0, placed at Ri to be expressed as

U i =
1

4πa2

∫
Si

v0

(
r′
)

dσ ′ =
(

1+
a2

6
∇

2

)
v0

∣∣∣∣
r=Ri

, (3.5)

Ωi =
3

8πa3

∫
Si

n′ × v0

(
r′
)

dσ ′ =
1
2
∇ × v0

∣∣∣∣
r=Ri

, (3.6)

where the integration is performed over the sphere surface Si. Thus substituting (3.2)
and (3.3) into (3.6) we obtain the contribution to velocity U ′i and angular velocity Ω ′i
of a sphere i due to the force/torque acting on a sphere j

U ′i =
1

4πa2

∫
Si

vt
0

(
r′
)

dσ ′ +
1

4πa2

∫
Si

vr
0

(
r′
)

dσ ′

=
1

4πa2

∫
Si

dσ ′
∫

Sj

dσ ′′T 0

(
r′ − r′′

)
·

[
F

4πa2
+

3
8πa3

T × n′′
]
, (3.7)

Ω ′i =
3

8πa3

∫
Si

n′ × vt
0

(
r′
)

dσ ′ +
3

8πa3

∫
Si

n′ × vr
0

(
r′
)

dσ ′

=
3

8πa3

∫
Si

dσ ′
∫

Sj

dσ ′′n′ × T 0

(
r′ − r′′

)
·

[
F

4πa2
+

3
8πa3

T × n′′
]
. (3.8)

At this stage let us introduce the tensors

w t
i (r)=

1
4πa2

1δ
(
ρj − a

)
, w r

i (r)=
3

8πa3
ε · ρ̂ jδ

(
ρj − a

)
, (3.9)

where (ε · ρ̂ j)αβ = εαβγ ρ̂jγ . Above tensors multiplied by force w t ·F and torque w r ·T
have the interpretation of the force densities on the surface of the sphere due to the
force and torque acting on the sphere. We can now write down the following general
formulae for the mobility matrix:

µtt
ij = 〈w

t
i|T 0|w

t
j〉, µrr

ij = 〈w
r
i |T 0|w

r
j 〉, µrt

ij = 〈w
r
i |T 0|w

t
j〉, µtr

ij = 〈w
t
i|T 0|w

r
j 〉, (3.10)

where we use the bra-ket notation defined in the following way:

µ
pq
ij =

〈
wp

i |T 0|w
q
j

〉
=

∫
dr′
∫

dr′′
[
wp

i

(
r′
)]T
· T 0

(
r′ − r′′

)
·wq

j

(
r′′
)
, (3.11)

with p, q = r, t and T denoting tensor transposition. The method of calculation of the
integrals in (3.7)–(3.8) is presented in the supplementary material available at http:
//dx.doi.org/10.1017/jfm.2013.402. Here, we simply quote the final results denoting
Rij = Ri − Rj. Fortunately there is no need to integrate explicitly for non-overlapping
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spheres. For the translational–translational mobility, we get

µtt
ij =



(
1+

a2

3
∇

2

)
T 0
(
Rij
)
=

1
8πηRij

[(
1+

2a2

3R2
ij

)
1+

(
1−

2a2

R2
ij

)
R̂ijR̂ij

]
, Rij > 2a,

1
ζ tt

[(
1−

9Rij

32a

)
1+

3Rij

32a
R̂ijR̂ij

]
, Rij 6 2a,

(3.12)

which, in the limit of Rij→ 0, yields the self-mobility

µtt
ii = µ

tt
jj = lim

Rij→0
µtt

ij =
1
ζ tt

1. (3.13)

Next, for the rotational degrees of freedom

µrr
ij =


−

1
4
∇

2T 0

(
Rij

)
=−

1
16πηR3

ij

(
1− 3R̂ijR̂ij

)
, Rij > 2a,

1
ζ rr

[(
1−

27
32

Rij

a
+

5
64

R3
ij

a3

)
1+

(
9
32

Rij

a
−

3
64

R3
ij

a3

)
R̂ijR̂ij

]
, Rij 6 2a,

(3.14)

with the self-mobility given by

µrr
ii = µ

rr
jj = lim

Rij→0
µrr

ij =
1
ζ rr

1. (3.15)

Finally, the translational–rotational mobility is described by the following tensor:

µrt
ij =

[
µtr

ij

]T
=


1
2
∇ ×

(
1+

a2

6
∇

2

)
T 0
(
Rij
)
=

1
2
∇ × T 0

(
Rij
)
=

1

8πηR2
ij

ε · R̂ij, Rij > 2a,

1

16πηa2

(
Rij

a
−

3
8

R2
ij

a2

)
ε · R̂ij, Rij 6 2a,

(3.16)

with

µtr
ii = µ

tr
jj = µ

rt
ii = µ

rt
jj = lim

Rij→0
µtr

ij = lim
Rij→0

µrt
ij = 0. (3.17)

Note that the formulae (3.12) for the translational mobility matrix, both for Rij > 2a
and for Rij < 2a were derived earlier by Rotne & Prager (1969) and Yamakawa (1970)
and are known as Rotne–Prager–Yamakawa mobility approximation. The expressions
for the other components of the mobility matrix µrr

ij and µtr
ij are also known (Kim

& Karrila 1991; Dhont 1996; Reichert 2006; de la Torre et al. 2007) but only for
Rij > 2a. However, to our knowledge, the regularizing corrections for µrr

ij and µtr
ij for

the overlapping particles (Rij < 2a) have not been derived so far. Importantly, as we
will demonstrate in § 3.3, only with the use of these corrections does the mobility
matrix µ remain positive definite for all configurations of the particles.

Contrastingly, in the point-force (Stokeslet) model which is sometimes used for
modelling the dynamics of colloidal suspensions (Pear & McCammon 1981), the
mobility matrix, defined as

µtt
ij =

1
8πηRij

(
1+ R̂ijR̂ij

)
, i 6= j, µtt

ii =
1
ζ tt

1, (3.18)

is not positive definite even for non-overlapping spheres and does not possess the
property (3.13).
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3.2. The shear disturbance tensor C

The formula for the third-rank convection tensor C can be obtained in the following
way. Kim & Karrila (1991) provide a solution for the excess flow vc

0(r), produced by
a free sphere situated at Rj in the ambient shear flow K∞ · r, which is the difference
between the total flow v (r) and the ambient flow

vc
0 (r)= v (r)− K∞ · r=

20
3
πηa3

{[(
1+

a2

10
∇

2

)
T 0

(
ρ j

)]←−
∇

}
: E∞, (3.19)

where [T (r)←−∇ ]αβγ = ∂γTαβ(r). The contribution to the surface force density due to the
straining fluid motion is 3ηδ

(
ρj − a

)
E∞ · ρ̂ j; thus introducing tensor w c (r)

w c (r) : E∞ = 3ηδ
(
ρj − a

)
E∞ · ρ̂ j, (3.20)

and using the Green’s formula we may express the excess flow over the shear flow
K∞ · r in the following way:

vc
0 (r)= 3η

∫
Sj

T 0

(
r− r′

)
·E∞ ·n′ dσ ′

=


20
3
πηa3

{[(
1+

a2

10
∇

2

)
T 0

(
ρ j

)]←−
∇

}
: E∞, ρj > a,

−E∞ ·ρ j, ρj 6 a.
(3.21)

Now, by the Faxen laws (3.6) the contribution to the velocity and angular velocity of
another sphere (say number i) immersed in such flow is

U ′i =
〈
w t

i|T 0|w
c
j

〉
: E∞ =

1
4πa2

∫
Si

vc
0

(
r′
)

dσ ′ = µtd
ij : E∞, (3.22)

Ω ′i =
〈
w r

i |T 0|w
c
j

〉
: E∞ =

3
8πa3

∫
Si

n′ × vc
0

(
r′
)

dσ ′ = µrd
ij : E∞. (3.23)

For the case of Rij > 2a, the form of µtd
ij , µrd

ij is expressed using (3.6) and (3.21) in
terms of differential operators

µtd
ij : E∞ =

20
3
πηa3

{[(
1+

4a2

15
∇

2

)
T 0

(
Rij

)]←−
∇

}
: E∞, (3.24)

µrd
ij : E∞ =

10
3
πηa3

{[
∇ × T 0

(
Rij

)]←−
∇

}
: E∞, (3.25)

where ∇ denotes derivation with respect to Rαij and [T (Rij)
←−
∇ ]

αβγ
= ∂γTαβ(Rij). This

allows the final results to be written in the following form:

[
µtd

ij

]
αβγ
=


5
6

a

[
−

16
5

a4

R4
ij

R̂γijδαβ +

(
−3

a2

R2
ij

+ 8
a4

R4
ij

)
R̂αijR̂

β
ij R̂

γ
ij

]
, Rij > 2a,

5
6

a

[(
−

3
5

Rij

a
+

1
4

R2
ij

a2

)
R̂γijδαβ −

1
16

R2
ij

a2
R̂αijR̂

β
ij R̂

γ
ij

]
, Rij 6 2a,

(3.26)
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with the respective limit in the self-mobility case

µtd
ii = µ

td
jj = lim

Rij→0
µtd

ij = 0, (3.27)

and

[
µrd

ij

]
αβγ
=


−

5
2

(
a

Rij

)3

εαβζ R̂
ζ
ijR̂

γ
ij , Rij > 2a,

−
5
2

(
3
16

Rij

a
−

1
32

R3
ij

a3

)
εαβζ R̂

ζ
ijR̂

γ
ij , Rij 6 2a,

(3.28)

and in the self-mobility case as limit

µrd
ii = µ

rd
jj = lim

Rij→0
µrd

ij = 0. (3.29)

The expressions for Rij < 2a in (3.26) and (3.28) vanish for Rij = 0 and match with the
Rij > 2a expressions at Rij = 2a.

Note that (3.24) and (3.25) do not determine µtd and µrd uniquely, since they define
only the symmetric and traceless parts of the mobility matrix. Given this freedom, in
(3.26)–(3.29) we take the matrices in the simplest algebraic form.

This completes our derivation making all the terms in mobility equation (2.4)
directly computable under the Rotne–Prager–Yamakawa approximation.

3.3. Positive definiteness
It is now a straightforward task to demonstrate the positive definiteness of the mobility
matrix given by (3.11). Cichocki et al. (2000) provide a simple proof of positive
definiteness of a quadratic form such as in (3.11), which we will now summarize.
Consider the following quadratic form:

〈g|T 0|g〉 =
∫

dr
∫

dr̄g(r)∗ · T 0 (r− r̄) · g (r̄) , (3.30)

where g(r) is a complex-valued function and the asterisk denotes complex conjugation.
We will show that from the positive definiteness of T 0 it follows that µpq is positive
definite. Let

d(r)=
∑

i,p

wp
i (r) · d

p
i , (3.31)

where dp
i denotes an arbitrary vector. Now we write

0 6 〈d|T 0|d〉 =
∑

i,p

∑
j,q

dp
i
∗
·µ

pq
ij · d

q
j , (3.32)

which ends the proof.
Note that the above proof of positivity does not hold for the point-force model

(3.18). In this case the off-diagonal (i 6= j) terms of the mobility matrix can be cast
in the form (3.11) using w t

i(r) = 1δ(r − Ri). The diagonal terms, however, would then
become infinite due to the singularity at Rij = 0. This problem is circumvented in
the formulation (3.18) by using single-particle mobilities 1/ζ tt for the diagonal terms.
However, the resulting point-force mobility matrix is not positive definite for arbitrary
configuration, thus cannot be used in Brownian dynamics simulations.
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4. Generalization of the Rotne–Prager–Yamakawa mobility for arbitrary
propagator

In this section we consider a general case of particles interacting hydrodynamically
e.g. in confined geometry, periodic boundary conditions or in the presence of
interfaces. We assume that for a given geometry a positive-definite Green’s function,
T (r, r′), can be derived. Such solutions have indeed been constructed, e.g. for systems
bounded by a cylinder and a sphere (Lorentz 1896; Oseen 1927; Liron & Shahar
1978), for periodic system (Hasimoto 1959) as well as for the system bounded by one
(Blake 1971) and two walls (Bhattacharya, Bławzdziewicz & Wajnryb 2005).

We define the Rotne–Prager–Yamakawa approximation for the positive-definite
mobility matrix in analogous way to (3.11):

µ
pq
ij = 〈w

p
i |T |w

q
j 〉 =

∫∫
dr′ dr′′[wp

i (r
′)]

T
· T (r′, r′′) ·wq

j (r
′′). (4.1)

To clarify notation we introduce differential operators

−→
Dt (R)= 1

(
1+

a2

6
∇

2
R

)
,
←−
Dt (R)= 1

(
1+

a2

6
←−
∇

2

R

)
, (4.2)

[
−→
Dr(R)

]
αβ
=−

1
2
εαβγ

∂

∂Rγ
,
[
←−
Dr(R)

]
αβ
=

1
2
εαβγ

←−−
∂

∂Rγ
, (4.3)

where the arrow points in the direction of action of the differentiation operator. We
rewrite (3.2) and (3.3) using these operators:

vt
0(r)= T 0(r− Rj) ·

←−
Dt (Rj) ·F , vr

0(r)= T 0(r− Rj) ·
←−
Dr(Rj) ·T , |r− Rj|> a. (4.4)

For the external flow v0(r) which is regular (has no sources within sphere i), by the
use of the definition of wp

i (3.9), the Faxen laws may be written in analogy to (3.6):

U i =

∫
Si

[
w t

i(r
′)
]T
·v0(r′) dσ ′ =

−→
Dt (Ri) ·v0(Ri),

Ωi =

∫
Si

[
w r

i (r
′)
]T
·v0(r′) dσ ′ =

−→
Dr(Ri) ·v0(Ri).

 (4.5)

We can now write down the Rotne–Prager–Yamakawa mobilities for the unbounded
space (for Oseen propagator T 0) for Rij > 2a using the differential operators

µ
pq
ij =
−→
Dp(Ri) · T 0(Ri−Rj) ·

←−
Dq(Rj). (4.6)

Now we decompose the arbitrary propagator T (r′, r′′) as follows:

T (r′, r′′)=
[
T (r′, r′′)− T 0(r′ − r′′)

]
+ T 0(r′ − r′′)= T ′(r′, r′′)+ T 0(r′ − r′′). (4.7)

The operator T ′ = T − T 0 has no singularities at r′ = r′′, thus, see (4.5), it has the
property

〈wp
i (r
′)|T ′(r′, r′′)|wq

j (r
′′)〉 =

−→
Dp(Ri) · T

′(Ri,Rj) ·
←−
Dq(Rj). (4.8)

Using (4.7) and (4.8) we can cast the mobility µpq
ij in the following form:

µ
pq
ij =
−→
Dp(Ri) · T (Ri,Rj) ·

←−
Dq(Rj)+

[〈
wp

i |T 0|w
q
j

〉
−
−→
Dp(Ri) · T 0(Ri−Rj) ·

←−
Dq(Rj)

]
=
−→
Dp(Ri) · T (Ri,Rj) ·

←−
Dq(Rj)+ Y pq(Rij). (4.9)
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The correction

Y pq(Rij)=
〈
wp

i |T 0|w
q
j

〉
−
−→
Dp(Ri) · T 0(Ri−Rj) ·

←−
Dq(Rj), (4.10)

is non-zero only for |Rij| < 2a and is independent of the propagator T (ri,rj). We write
down explicitly the corrections for all components of the mobility matrix (3.12) and
(3.14),(3.16):

Y tt(Rij)=Θ(2a− Rij)

{
1
ζ tt

[(
1−

9Rij

32a

)
1+

3Rij

32a
R̂ijR̂ij

]
−

1
8πηRij

[(
1+

2a2

3R2
ij

)
1+

(
1−

2a2

R2
ij

)
R̂ijR̂ij

]}
, (4.11)

Y rr(Rij)=Θ(2a− Rij)

{
1
ζ rr

[(
1−

27
32

Rij

a
+

5
64

R3
ij

a3

)
1+

(
9
32

Rij

a
−

3
64

R3
ij

a3

)
R̂ijR̂ij

]

+
1

16πηR3
ij

(
1− 3R̂ijR̂ij

)}
, (4.12)

Y rt(Rij)= Y tr(Rij)=Θ(2a− Rij)

{
1

16πηa2

(
Rij

a
−

3
8

R2
ij

a2

)
ε · R̂ij −

1
8πηR2

ij

ε · R̂ij

}
.

(4.13)

For the self case, i= j, the mobility µpq
ii is obtained from (4.9) (upper line) in the limit

Rj→ Ri:

µ
pq
ii = lim

Rj→Ri

〈
wp

i (r
′)|T ′(r′, r′′)|wq

j (r
′′)
〉
+

1
ς

pq
0

= lim
Rj→Ri

[
−→
Dp(Rj) · T (Rj,Ri) ·

←−
Dq(Ri)−

−→
Dp(Rj) · T 0(Rj − Ri) ·

←−
Dq(Ri)

]
+

1
ς

pq
0

. (4.14)

To sum up, we have shown how to evaluate the Rotne–Prager–Yamakawa
approximation for an arbitrary propagator T (ri, rj), applying to T (ri, rj) differential
operators in order to avoid the explicit and often infeasible surface integration. This
allows one to construct the positive-definite hydrodynamic tensors in systems with non-
trivial geometry (e.g. in the presence of a wall, in a channel or in periodic systems).
For example, taking in (4.9) the Green’s function for a Stokeslet in the presence of a
wall (Blake 1971) leads (for non-overlapping spheres) to a Rotne–Prager–Blake tensor
derived before by Bossis, Meunier & Sherwood (1991), see also Kim & Netz (2006),
Gauger, Downton & Stark (2009) and Sing et al. (2010). However, these authors did
not derive the regularizing correction for this tensor, which also prevented them from
obtaining the self-term in a manner analogous to our (4.14). On the contrary, the
self-term in the aforementioned works was inserted by hand, based on intuition, in
which case great care must be taken since the resulting mobility matrix is, in general,
not necessarily positive definite.

On a final note, let us stress that the regularizing correction (4.10) has the same
simple analytical form in all cases, independently of the particular Green’s function
T (ri, rj).
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5. Concluding remarks

In this paper, we have re-visited the problem of constructing the Rotne–Prager–
Yamakawa approximation for mobility and shear disturbance matrices. A systematic
method was presented which allows one to derive the RPY approximation in a
systematic way, for translational, rotational and dipolar components of the generalized
mobility matrix, both for non-overlapping and overlapping particles. The regularization
corrections for translational–rotational and rotational–rotational mobility tensors have
not been previously derived. These regularizations are crucial in obtaining positive-
definite hydrodynamic matrices, which is essential for the Brownian dynamics
simulations. The positive definiteness also allows the evaluation of the diffusion
tensor and mobility for the bead models (including overlapping beads) of complicated
molecules. Additionally, we have shown how our approach can be generalized to other
boundary conditions and corresponding propagators.
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