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S.1 Splay energy

Here we show that the elastic splay energy density (Eq. 3)

Esp =
1
2

Aspκ2cos2 ξ (S.1)

can be conveniently expressed in terms of the angle between BS
and BB bond,χ (see Fig. S.1). As observed from the Figure,
~l ·~b =~l‖ ·~b, thus

cosχ = cosξ cos
ϕ
2

(S.2)

whereϕ is the angle between two consecutive~b vectors.
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Fig. S.1 Schematic illustrating the relation between the anglesξ , χ
andϕ

.

Next, lett andt +dt be the two consecutive tangent vectors
along the backbone (corresponding, in our case, to the two con-
secutiveBB bonds). Then, from the lower panel of Fig. S.1,

tanϕ∗ =
|dt|
|t| = κ , (S.3)

whereϕ∗= π−ϕ has been assumed to be small and the Frenet-
Serret equation dt = κn has been used. Thus

cos2
ϕ
2
=

1
2
(1− 1√

1+κ2
)

κ<<1≈ κ2

4
(S.4)

and the splay energy can be written as

Esp = 2Asp cos2 χ (S.5)

S.2 Curvature, pitches, and radii of the helices

The curvature of an ideal helix with helical angleα and radius
R is κ = sin2 α

R . Hence, using eq. S.3, the radius is:

R =
sin2 α
tanϕ∗ (S.6)

and pitch of the helix (P = 2πRcotα):

P =
2π cosα
tanϕ∗ . (S.7)

Both, α andϕ∗ can be retrieved from the simulation data.
The distributions of pitch values obtained from eq. S.7 is pre-
sented in Fig. S.2. As observed, the average pitch is almost in-
dependent of the value of the internal twist of the individual fil-
aments,λ0. It oscillates between 23.15◦ and 23.45◦. Hence, it
was assumed to be constant in the simplified theoretical model
presented in the main text.

Fig. S.2 Distribution of pitch values of the tubular structures
obtained in the simulations for severalλ0 values.

S.3 Force field parameters

The force field in the model is constructed analogously to that
in Ref. 34. The total bond energy is the sum of four contribu-
tions:

Ubond = UlBB +UlBS +Uϕ +Uχ +Uθ + Uλ , (S.8)
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with:

UlBB =
klBB

2
(lBB − lBB

0 )2

UlBS =
klBS

2
(lBS − lBS

0 )2

Uϕ =
kϕ

2
(ϕ −ϕ0)

2

Uχ =
kχ

2
(χ − χ0)

2

Uθ = 1+a2θ 2+θ 4+a6θ 6

Uλ =
kλ
2
(λ −λ0)

2 (S.9)

wherelBB and lBS are the distances between the neighboring
backbone beads and between theB bead and the adjacentS
bead respectively. Next, the bond anglesϕ andχ are the angles
between three successiveB beads (BBB) and betweenS bead
and twoB beads (as marked in Fig. S.1). Dihedral angles (see
Fig. 1 in the main text) are denoted byλ andθ . The parameters
of the force field are given in Table S.1. The values ofa2 and
a6 were computed for eachθ0 to get the potential with minima
at±θ0 and a barrier height of∆E = 5/2.

term beads affected parameters
UlBB B−B klBB = 100,lBB

0 = 1

UlBS B−S klBS = 50, lBS
0 = 2

Uϕ S−B−B kϕ = 200,ϕ0 = π/2

Uχ B−B−B kχ = 50, χ0 = π

Uλ S−BiBi+2−S kλ = 10

Uθ S1−BiBi+1−S2 a2 anda6 - see the text
LJ B ε = 1, σB = 4
LJ S1,S2 ε = 1, σS = 1

Table S.1 Force field parameters

The energy contributions presented in Figs. 12 and 14 in the
main text are the mean values of the above terms over the entire
3-filament cluster, e.g.

ulBB =
1
n ∑

BB bonds

UlBB

uϕ =
1
n ∑

ϕ
Uϕ

and analogously for other components. Here the sums are taken
over all bonds, angles, dihedrals or bead pairs in the 3-filament
cluster. The sum is then divided byn = 180, which is the num-
ber of elementary units in the system (3 chains 60B beads each)
to get the energy per unit length of the chain. The individ-
ual contributions to the internal energy of different structural

forms, additionally averaged over the simulation trajectory, are
presented in Fig. S.3 below.

S.4 Binding energies for different structural forms

As mentioned in the main text, the cohesive interactions be-
tween the filaments are relatively strong (compared to the en-
ergy of elastic deformations), which leads us to assume that
the energy of each contact between the beads is simply−ε
(corresponding to the depth of the energy well). There are ap-
proximately 450 contacts in 3-filament clusters of a tubularand
helicoidal form (180 B-B contacts, 90 S-S contacts and 180 S-
B contacts), which gives on the average 2.5 contacts per unit
length of each filament. An analogous calculation for the rib-
bons gives the value of 1.67 contacts per unit length. In factit is
a rough estimate only, since it neglects the interactions between
the beads from different layers. Summing up:

Eint/L;=

{

−2.5ε helicoid, tubule
−1.67ε ribbon

(S.10)

S.5 Bending energies and splay

In Eq. 3 in the main text, the elastic energy has been put in the
form

Eel =
1
2

∫ L

0
(A1κ2(s)+Aspκ2(s)cos2(ξ )+C(τ(s)− τ̂0)

2)ds.

(S.11)
with the first term standing for the isotropic bending, whereas
the second (splay) gives the extra energy which is associated
with bending along one axis in comparison to the other. The
above terms are easily related to the energy contributions in
the numerical model: the isotropic part will be the one asso-
ciated with bending of the backbone (i.e.ϕ angles) whereas
the anisotropic part is connected with the presence of the side
strand (i.e.χ angles). Thus:

A1 = kϕ Asp =
1
4

kχ (S.12)

(see Sec. S.1 for the origin of the factor of 4).

S.6 Twist rigidity constant

Twist elasticity enters the system Hamiltonian through thetwo
dihedral angles,θ andλ (see Eq. S.9 and Fig. 1 in the main
text). However, in different structures these angles are con-
strained in a different way:

• For helicoidal structures in binding moden = 1 (Fig. 5a)
the interaction seam is maintained by every other back-
bone bead, with their relative location controlled byλ ,
whereasθ angles are effectively unconstrained. In this
case the angular elasticity is controlled by theUλ term in
the Hamiltonian, henceC = kλ is assumed.
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• For helicoidal structures in binding moden = 5 (Fig. 5b)
both side-strands participate in the interaction seam,
which constraints the values of bothθ andλ angles. How-
ever, the curvature of theUθ potential at the minimum,
kθ = 2U ′′

θ (θ0) is much larger thankλ , thusC ≈ kθ can be
assumed here

• In the twisted ribbon structures (Fig. 2c) each side strand
interact with its counterpart on the other filament, which
again constraintsλ , thusC = kλ can be taken here. The
elastic energy of these structures is simplykλ τ̂2

0 .

• Tubular structures (Fig. 2d) are maintained by the contact
involving both side-strands, henceC = kθ is assumed here.

S.7 Videos

Two videos are available as a supplementary material to the
present article:

• helicoid to tubule.mpg - a video illustrating the helicoid
to tubule transition

• tubule to helicoid.mpg - a video illustrating the tubule to
helicoid transition
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Fig. S.3 Bond, angle, dihedral and LJ energies per monomer in the
tubule (black) and helicoidal (green) systems for different values of
internal twist of the filaments,λ0.
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