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Boundary conditions for stochastic solutions of the convection-diffusion equation
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Stochastic methods offer an attractively simple solution to complex transport-controlled problems, and have
a wide range of physical, chemical, and biological applications. Stochastic methods do not suffer from the
numerical diffusion that plagues grid-based methods, but they typically lose accuracy in the vicinity of inter-
facial boundaries. In this work we introduce some ideas and algorithms that can be used to implement
boundary conditions in stochastic simulations of the convection-diffusion equation with accuracies comparable
to the bulk phase. The algorithms have been tested in two-dimensional channel flows over a range of Peclet
numbers, and compared with independent finite-difference calculations.
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[. INTRODUCTION Here the concentration profile is represented by a set of mov-
ing particles, which are advected according to the velocity
The convection-diffusion equation field, while the diffusive displacements of the particles are
sampled from a random distribution. Particle-tracking meth-
de(r,t)+v(r,t)-Ve(r,t)=DVc(r,t) (1)  ods are stable, easy to implement, and free of numerical dis-

persion and grid-generation problems. In this paper we ad-
is the basic transport equation for a wide range of physicaldress one of the major difficulties of random-walk methods,
chemical, and biological processes. H&rds the diffusion  namely, the imposition of appropriate boundary conditions
coefficient andv is the fluid velocity field, which is taken to on the concentration field.
be incompressible Y-v=0). In this work we interpret The other major drawback of a random walk is its sto-
c(r,t) as a concentration field, but E@L) may equally well  chastic nature, so that the results include statistical errors
describe heat transfét] or the evolution of fluid vorticity  proportional toN~? whereN is the number of particles in
[2]. In spite of its relatively simple form, a numerical solu- the simulation. Mixed Euler-Lagrange methods have been
tion of Eqg. (1) can be computationally demandifg,4]. In proposed to eliminate the statistical errors in random walks,
particular, a strongly convective flow gives rise to an addi-for example the method of characteristjid®—-14. Here the
tional length scale in the vicinity of an interface, which canconvection term is accounted for by particle tracking while
be difficult to resolve. The thickness of this boundary layer isdiffusion is taken care of by finite difference. A different
of the order ofL Pe 3, whereL is the channel width, Pe approach is taken by the particle-strength-exchange method
=VL/D is the Peclet number, and is a characteristic ve- [15,16], where the differential diffusion operator is replaced
locity of the flow. Peclet numbers for mass transport areby an integral operator that is discretized by using the posi-
typically three orders of magnitude larger than the corretions of the particles as quadrature points. The concentration
sponding Reynolds number of the flow, this being the ratio ofassociated with each particle is then modified to account for
the kinematic viscosity of the fluid to the molecular diffusion the diffusion process. In contrast to the method of character-
coefficient. Thus the concentration field near an interfacialstics, a fixed grid is not needed. Although these schemes
boundary varies on a length scale that is an order of magnigenerally perform better than finite-difference methods for
tude less than the velocity field. convection-dominated problems, some implementations of
The convection-diffusion equation, E(L), can be solved the method of characteristics may lead to artificial oscilla-
by finite-element analysi&], but although very accurate re- tions whereas others suffer from numerical dispersion and
sults are possible for diffusion-dominated problems, at highviolation of mass conservatiorf17]. Particle-strength-
Peclet numbers grid-based methods suffer from numericaxchange methods require frequent remeshing of particle po-
dispersion(if upwind differencing is usedor oscillatory and  sitions, as convection distorts the uniformity of the particle
even unstable solution@ central differencing is used Al- distribution and causes loss of accuracy in the quadratures.
though there are methods to circumvent these difficulbés  This issue becomes more important in highly nonuniform
their implementation is problematic in complex geometriesflows or in complex geometries where remeshing may not be
where it is difficult to control the potential sources of error. straightforward. However, in the computational fluid dynam-
To avoid such problems, Lagrangian particle tracking methics community there is a growing consensus in favor of
ods have been frequently used, the most straightforwargarticle-strength-exchange methdds], based on their effi-
implementation being the random-walk methdd2,6-11. cient representation of fluid vorticity fields. Nevertheless, in
this work we will continue to use random walks, because in
our applications the convective velocity field is independent
*On leave from Institute of Theoretical Physics, Warsaw Univer-of the concentration field. Thus random errors in concen-
sity, 00-681 Hoa 69, Poland. tration are not amplified by correlated errors in velocity as
"Email address: ladd@che.ufl.edu they are in the vortex method. The focus of this paper is on
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developing boundary conditions for stochastic solutions ofor sufficiently smallAt. Global convergence of order is
the convection-diffusion equation, but our results may als@uaranteed if the local error at each time step is bounded by
be applicable to other Lagrangian schemes. [19]

Although stochastic methods can lead to accurate solu-
tions of the convection-diffusion equation in bulk phases, [(g(Xe A1) —g(X(AD)))|= S(A)" "1, 5
they typically lose accuracy in the region of interfacial
ggzgdgr'eilg]é c:r?vtehclﬁ o%égi?frugg ndi\(lqilgt[i) c[tl?quu'n(dl?]r,y acr?g di proximation to the solution of Eq2). .Hi.gher.-order approxi-
consider their spatial and temporal convergence. We focus o ations can t.)e constructed along similar Il[@@],.but these_
the simplest boundary conditions on the concentration field®'© computatlon.ally more c_omp.lex and EXPENSIVE. More im-
namely, zero-flux(refiection and zero-concentratioiab- portantly, the fluid velocity field is usually obtained by some

sorption interfaces. The absorbing boundary has also beeﬁort of numerical approximation, so that higher derivatives of

generalized to simulate a finite-concentration reservoir con? € known with less precision thanitself. Consequently,

dition. In subsequent work we will consider more generaImOSt higher-order algorithms are of the predictor-corrector

mass-transfer conditions corresponding to complex chemicawpe' the simplest of Wh'c.h is the Heun method, with trajec-
kinetics at the solid surfaces. tories constructed according to

The paper is organized as follows. In Sec. Il we summa- 1
rize basic results concerning stochastic solutions of the X(t+At)=X(t)+ E{V(X(t))-I—V(Xp(H—At))}At
convection-diffusion equation. In Sec. Ill we introduce the
different types of boundary conditions and sketch the basic +2DAW(t). (6)
ideas behind their implementation. We then show how the
reflection boundary condition can be modified to account forThe predictor step foXP is an Euler stepEq. (3)] with the
convection near the interfag&ec. IV). In Sec. V we con- same random incremerAW(t). The Heun method is
sider the difficulties that occur in implementing an outflow weakly second order convergent when the diffusion coeffi-
condition. In Sec. VI, additional errors introduced by usingcient is independent of spatial position, but higher-order al-
non-Gaussian distributions of displacements are analyzedjorithms for spatially varying diffusion coefficients are con-
these are much more severe in the vicinity of the interfacgiderably more complicatel@0,21.
than in the bulk. The algorithms are tested using two- Since the velocity field typically changes on much longer
dimensional channel flows, for which independent numericalength scales than the concentration field, an alternative al-
solutions can be compute@ec. VII), and conclusions are gorithm can be constructed based on the assumption that the
drawn in Sec. VIII. fluid velocity field is locally linear,

Equation(3) can be proved to be a weakly first-order ap-

Il. CONVECTION DIFFUSION IN THE BULK V() =v(ro) +(r=ro)- VV(ro). @)
A stochastic processX(t), associated with the Then inthe frame moving with velocity(ro) tracer particles

convection-diffusion equatiofEq. (1)], obeys the stochastic Satisfy the Ornstein-Uhlenbeck equation

differential equation

dX+X-Vvdt=+y2DdW, (8)
dX+v(X)dt=y2DdW, (2 which has an exact solutid22] that can be used as a local

approximation to the solution of E@2). On the other hand,

wheredW is the differential of a Wiener process with unit the order of convergence of this method for nonlinear flow

oped[19-21], including intricate schemes with higher-order 4eun method. In a number of test problet@ec. VI)) the
convergencefor a thorough review see ReR0]). The sim-  gifferences between the concentration profiles obtained with
plest numerical approximation to E) is the Euler method  the Heun and Ornstein-Uhlenbeck methods were within the
range of the statistical errors. Since the Heun method is
X(t+At)=X(t) +V(X(1))At+ 2DAW(1), (3)  faster and simpler to implement, we decided to use it in our
subsequent simulations.
where the incremenmk W (t) =W (t+At)—W(t) is a Gauss- It has not been possible to extend the Ornstein-Uhlenbeck
ian random variable with varianct. Since we are inter- analysis to include any physically relevant boundary condi-
ested in the evolution of a distribution function rather thantions. Nor has it been possible to devise second-order ap-
individual trajectories, we use the notion of weak conver-proximations in the presence a general flow field. However,
gence[20,2]] to characterize the accuracy of a particularby considering flows that occur under relevant physical con-
numerical scheme. Specifically, an approximatloris said  ditions we have been able to obtain second-order approxima-
to be weakly convergent with order to the exact solution tions to the stochastic processes near reflecting and absorb-
Xex if there exists a positive constaéitsuch that the error in  ing walls. This has been accomplished for two characteristic

any polynomial function o is bounded by flow fields: a linear shear flow, which typifies the flow near a
solid interface, and a locally uniform flow, which occurs near
[{g(Xex(D))—g(X(D))|< S(AL)” (4 an inflow or outflow boundary.
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It is frequently argued19,2( that finite-range increments Mo e
are preferable to Gaussian distributions in stochastic simula- L G
tions. They are simpler to generate and avoid the occasional
long jumps generated from Gaussian distributions, which
may be troublesome in systems of finite size. However, near ¢

an interfaceanynon-Gaussian increment reduces the order of 0.3

local convergence to 1/29], and does not guarantee global

convergence even in thiet—0 limit. In describing our al-

gorithms for imposing boundary conditions on the 0 : :

convection-diffusion equatiofSecs. IlI-\), we will assume 2 4

that the displacements are being sampled from Gaussian dis- X

tributions, which simplifies the analysis. Additional errors

introduced by finite-range increments will be examined in FIG. 1. Comparison of different reflecting boundary algorithms

Sec. VI. after a single time step: specular reflection and rejectamiid),

interruption (dashegdl and multiple rejectior(dot-dot-dot-dashed

The graphs show concentration profile&x,1) evolving from an

initial concentrationc(x,0)=1 with a reflecting wall situated at
We consider a domaiw, bounded by the surfacg and =0. The unit of Iength\/ﬁ is the root-mean-square-displacement

use a system of units such that the root-mean-square di# unit time.

placement in unit timey/2D, is unity. The boundary condi-

tions to be considered in this paper are as follows: ing the planex=0. In the general case, a stochastic trajec-
(1) A zero-flux (reflection condition: tory X(t), in the region of a reflecting boundary defined by

the local surface normai, evolves according to

IIl. BOUNDARY CONDITIONS

n(r)-ve(r)=0, red, 9)
wheren(r) is a unit vector normal to the surface. X(t+AD=X(D)+AW(D), X(O)+AW()eV
(2) A constant-concentration boundary condition:

X(t+AD)=R-[X()+AW()], X()+AW(t) &V,

c(r,t)=cq, res. (10 (15)
The special casey=0 describes a totally absorbing bound- .
ary, whereR is the mirror reflection operatd®=1—2nn.
Specular reflection is commonly used for simulating a
c(r,t)=0, res. (1) zero-flux boundary conditiori8,18,29, but a number of

- : other methods have also been proposed. For an increment
In future work we will investigate more complex boundary AW(t) such thatX(t)+AW(t) £V, these include the fol-
conditions describing mass transfer due to chemical reactior]awing_ '
at the interface: (1) Rejection[26,27]. The particle does not change its
position in the given time ste@\W(t)=0.
(2) Multiple rejection[28]. New increments are calculated
til a AW(t) is found such thaX(t) + AW(At) e V.
(3) Interruption[29,30. The particle stops at the wall and
its clock is incremented by} At with N given by

n(r)-Ji(r)=—D;Ve(r)-n(r), reds, (12)

where J; is the flux of species and depends on the local un
concentrations.

A. Reflecting wall

In the absence of flow, the Greens function for a reflecting X(EEAAD =X(H)+AAW(D). (16
wall situated ax=0, G,, can be constructed by taking the
mirror image of the infinite-space propagaf@B,24), Then, an additional step witht’=At(1—\) is performed.
However, all these schemes fail to impose the zero-flux
e~ (x—x")?4DAt boundary condition dc/dx),—o=0 correctly, even in the
G(x,x",At)= ~Jabat (13 |imit of purely diffusive transport. Figure 1 shows that only

the specular-reflection and rejection methods preserve an ini-
tially uniform distribution; both the multiple-rejection and
increment methods distort even the steady-state distribution
G,(x,x", At)=G(x,x",At)+G(x,—x',At). (14  c(x)=1. In the transient case, shown in Fig. 2, only the
specular-reflection methokEqg. (15)] immediately imposes
The mirror symmetry inG, about the planex=0 ensures the zero-flux boundary condition; all the other methods lead
that the zero-flux condition is exactly satisfied. A stochasticto incorrect concentration profiles in the immediate vicinity
implementation of the reflecting boundary condition can beof the interface. Moreover, in higher spatial dimensions, only
realized by a specular reflection of each tracer particle crosspecular reflection preserves gradients parallel to the surface.

In a one-dimensional half space;>0,
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FIG. 2. Comparison of different reflecting boundary algorithms
for the initial profilec(x,0)=x (dotted. The graphs show concen-
tration profilesc(x,1) for the following algorithms: specular reflec-
tion (solid), interruption(dashegl rejection(dot-dashej and mul-
tiple rejection(dot-dot-dot-dashed

FIG. 3. Simulation of a zero-concentration boundary condition:
reflection-conversior(solid) and absorption(dasheyl The graphs
show the concentration profileg¢x,1) after a single time step, be-
ginning with a profilec(x,0)=x. For the reflection-conversion
scheme the concentration profile is stationary, while for the absorp-
tion scheme the zero-concentration boundary condition is not pre-

B. Absorbing wall
served.

An absorbing wall boundary condition

c(r)=0 produces a concentration profile in the syster()

reS a7

can be implemented in a similar way to the reflecting wall by
introducing negative mass particles or holes. The Green
function for a particle diffusing in a half spage-0, with an
absorbing interface at=0, is[23]

c(X,At)=cy| 1—Erf

(20

X
VADAt

after a timeAt. Equation(20) is a solution of the one-
dimensional diffusion equation, with boundary conditions
c(0)=cy and c(x—=)=0. Reflection conversion ensures
that the real distribution>>0) satisfies the one-dimensional
which differs from the reflection propagatdgq. (14)] inthe  diffusion equation, with a boundary conditic0)=0. Thus
sign of the second term. It is simpler to add a distribution ofin combination, the real and virtual particles lead to precisely

holes to account for the negative sign, rather than attempt tthe correct boundary condition, at least in one dimension.
remove a distribution of particles. Thus we implement the

absorbing boundary condition by reflecting particles at the
planex=0 and then converting them into holes. Similarly,
holes that attempt to recross the boundary are reflected and The algorithm described in Sec. Ill B introduced the con-
converted back into particles. cept of holes or particles with negative mass. As far as the
Other methods for simulating a zero-concentration boundhumerical simulation is concerned, a hole behaves just like a
ary condition are found in the literature, typically the “total particle; it moves according to the same propagaEr
absorption” method 6,31,39, where particles are removed specularly reflects off a reflecting wall, and after reflecting
when X(t) +AW(t) lies outside the domai. However, in
this case the plane of zero concentration is shifted outside the

G.(x,x",At)=G(x,x",At) = G(x,—x",At), (18

D. Particle-hole recombination

system by a distance of order of the mean-square displace- 1. e
ment 2D At (see Figs. 3 and)4 On the other hand, the 0.8- /,/'

“reflection-conversion” scheme ensures that the concentra-
tion is exactly zero on the absorbing wall, regardless of the
time stepAt. The total absorption method can be corrected

c

0.6

by removing additional particles near the wdlB], but this 04
is more complicated than reflection conversion. 0.2+
0 T T T T
C. Contact with particle reservoir 1 2 3 4
X

A reservoir boundary condition of constant concentration
c(0)=cqy can be imposed by combining reflection conver-

FIG. 4. Simulation of a zero-concentration boundary condition

sion (Sec. Il B) with a virtual concentration profile behind with an initial profilec(x,0)=1 (dotted. The graphs show the con-
the interface. In the absence of convection it can be shownentration profiles(x,1) after a single time step. Again, only the

that the virtual distribution

reflection-conversion schentsolid) assures that(0,t) =0; the ab-

sorption methoddashed leads to a nonzero concentration at the

c,(x)=2cy, x<0 (19 surface.
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off an absorbing wall becomes a particle again. However, the
introduction of holes has the drawback that the local concen- 0.6
tration can become a small difference between large popula-
tions of particles and holes. Statistical errors in the concen-

tration field can be reduced by canceling equal numbers of 04
particles and holes within the same small volume in the bulk.
It is important to avoid any bias or spatial correlations in this 0.21
process.
Recombination of particles and holes can be implemented 0 : . .

by dividing the domainV into a number of nonoverlapping
cellsC;, typically small cubic volume elements. The number ¥

of particles and holes contained @ is denoted byp; and ~

h;, respectively. Recombination consists of randomly pick- FIG. 5. The conditional probability distributiop(x|x,x’,At)

ing n;=min(p;,hy) particles anch; holes fromC;, and eras- for a trajectory beginning at’=1 and ending ak=2 after unit

ing them. The procedure is repeated in each cell. If the ditime At=1 [Eq. (25)].

mensions of the cells are sufficiently small, much smaller

than any characteristic length scale in the simulatipolud-  ducing an image source on the opposite side of the boundary
ing the root-mean-square displacement of the random)walk[Eq. (14)]. However, in a shear flow the image of the
the effect of recombination on the distributiofr,t) will be  Ornstein-Uhlenbeck process is not a solution of the original
negligible. The recombination is performed eveRytime  convection-diffusion equatiof22), but of that with the sign
steps, wherd should be neither too smallo ensure a rea- of the shear ratey, reversed. Thus we cannot construct the
sonable number of holes before recombinatioor too large  equivalent stochastic process by combining an Ornstein-
so that the statistical errors accumulate. In practice it idJhlenbeck process with its image. Nevertheless, the idea of
straightforward to keep the particle and hole populationreflecting the particle position with respect to the wall can be
steady while not losing significant information about theimplemented within a predictor-corrector scheme to maintain

concentration profile. second-order accuracy, even near the interface. We observe
that the normal X) displacement has no convective compo-
IV. ZERO-FLUX BOUNDARY CONDITION nent and is therefore independent of position in the vicinity

) ) ) o of the interface. Thus a random displacement with reflection
We begin our analysis of the convection-diffusion prob-js gyfficient to give an exact sampling of the normal motion.
lem with a two-dimensional system confined to #1e0 half |, order to determine the convective contribution to the tan-
space by a reflecting wall situated at=0. The no-slip  gential () displacement we must integrate over all possible
boundary condition on the solid surfasgr € 5)=0, allows  {rajectories between the initial and finalpositions. In the
for significant simplification if we restrict the time st&gi so  p|k this gives the linearly averaged velocity used in the
that the fluid velocity field near the wall varies linearly over yeyn methodEq. (6)], but near the interface, the weighting
a typical particle displacement. Assuming the fluid is incom-fynction is different. To obtain the proper weighting function
pressible, then to a first approximation the velocity field isj, this case, we must calculate the mean time the particle
tangential to the surface and linear in the normal distancgpends at a positior during its move fromx’ to x in the

from the surface. With an appropriate choice of a coordinat%me StepAt:
system, the velocity field near the wall can therefore be writ- pat
ten as
At - -
VOGY) =Xyeyt e (21) ~ . G(X,X,At—1)G(x,x’,t)dt
pP(X|X,x",At)At=
Thus the problem is reduced to the solution of a two- G(x,x",At)
dimensional convection-diffusion equation in a linear shear (24
flow
) ) where G(x,x’,t) is the one-dimensional diffusion propaga-
ac(xy) N ac(x,y) b a°c(x,y) N a7c(x,y) tor, EQ.(13). The integral in Eq(24) can be calculated using
ot Ty T PN PN E Laplace transforms:
(22)
with the boundary condition p(X|x, X", At) = 1 Erfc x=X|+ x= x|
ADAtG(x,x',At) VADAt
Jc(X,
( y)) o 23 (25
20 x=0

and this probability distribution is illustrated in Fig. 5. Inter-
In the absence of convection, the reflection Green’s funcestingly it is uniform betweer andx’, with tails accounting
tion is constructed from the infinite-space solution by intro-for the paths that move outside the intervalx’).
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The average convective velocity in the time stepcan 0.15 0.151
be calculated by integrating the flow field at eactwith o1 a 0.14 b
p(x|x,x’,At) as the weight function: c
0.05 0.05 1
v_y=yf_ Xlp(xx.x", Adx=yf(x,x'). (26 A T S S S
X

;I'he paths described bymay extend into the virtual region FIG. 6. Convection diffusion near a planar reflecting boundary
x<0. Physically, the particle is reflected and remains in thgx=0) in the presence of a linear shear flow. A point source is

real (x>0) domain, but it is simpler computationally to al- Placed at (1,0) and the time evolution is simulated using specular

low negative values ok and change the sign of the shear reflection at the solid boundarga) second-order predictor-corrector

rate. In calculating the mean convective velocity we mus method, Eq(27); (b) first-order Euler method with specular reflec-
’ 9 Yy ttion. The concentration profiles at=1, c(x,0,1), obtained with

also dlffere_ntlate between S|tuz_it|(_)ns where the final pouat_ time stepsAt=1 (dot-dashel] At=1/3 (dotted, and At=1/10
reached directly and where it is reached after reflectlon(dashea are compared with the exact soluticsolid).

Sincep is translationally invariant, it is the displacement
—x', along with the time stef\t, that are the controlling
parameters ip. Therefore, the final positiorin Egs.(24)—
(26) must be calculated without reflection, and can be posi
tive or negative. If the particle is far from the wall, the av-
eraged velocity is, by symmetry(x+x’')/2 as used in the
Heun methodEqg. (6)]. However, as the particle comes close
to the wall, the tails in the distribution become more impor-
tant, especially wherjx—x’|<+DAt. For example, ifx
=x'"=0 andDAt=1, the particle attains an average veloc-
ity of about 0.3. . o c(x,y,0) = 8(x—1) 8(y). (29
These ideas can be implemented by modifying the Heun

method[Eq. (6)] whenever there is a significant probability As there is no analytical solution of the problem, results were
that the particle trajectory explores the virtual region behindcompared with a numerical approximation to the exact solu-
the interface. In such cases the convective increment in thgon, obtained by releasing a large numbi10") of tracer
corrector step should be weighted according to®6). The  particles and advecting them with a very small time step
velocity field near the wall can be used to estimate the mageAt=10"°). Figure §a) compares the concentration profile
nitude and direction of the local shear rey_te and the new calculated using our predictor-corrector algorithm, with the

zero-flux boundary condition- Vc=0 is maintained at the
boundary regardless of the time step. This can be checked by
direct differentiation of the Green functid@28) and using the
symmetry relationsf(0x’)=f(0,—x’) and 4,f(0x")=
—d,f(0,—x").

To test the algorithms, we simulated a random walk in a
linear shear floww,=x, near a reflecting wall at=0, start-
ing from an initial 5-function distribution

particle position is then given by “exact” numerical solution. The predictor-corrector algo-
rithm is rapidly convergent, consistent with second-order ac-
X(t+At)=R-[X(t+At)+ yF(XP(t+ At)-n,X(t)- n)At curacy, and results obtained wittt<0.5 are indistinguish-
able from the exact profile on the scale of the figure. By
+\2DAW(1)], (27)  comparison, Fig. @) shows analogous results obtained with

) a first-order Euler algorithm, including specular reflection
wheref(x,x") is calculated from E¢(26). It should be noted  \yhenever the trajectory crosses the interface. It can be seen
thatX® is calculated without the reflection operator and maythat the errors are larger and the convergence is more or less
lie outside the system; this point was discussed in the t€Xnear. Figure 7 shows that the interruption and multiple-
following Eq. (26). rejection methods have larger errors than the Euler method

If the velocity field has the form of a shear flq&q. (21)]  ang that the concentration profile converges to the wrong

everywhere, not only in the vicinity of the wall, then the regyt in the vicinity of the source point. Such algorithms
above algorithm is equivalent to advancing the concentration

profile with the approximate reflection propagator:

G(x,x"y,y',At)
1 (x=x")2+[y—y"+ yf(xx")At]?
~ 4xDAt| TP ADAt -
(X+Xx")2+[y—y’+ yf(x,—x")At]? X
+exp — ADAL .

FIG. 7. Convection diffusion near a planar reflecting boundary
(28 is simulated usindga) interruption andb) multiple-rejection meth-
ods. The concentration profiles &1, c(x,0,1), obtained with
Although it is not an exact solution of the convection- time stepsAt=1 (dot-dasheyj At=1/3 (dotted, and At=1/10
diffusion equation, the proposed algorithm guarantees that @ashey, are compared with the exact soluti¢solid).
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10
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FIG. 8. Differences between the second moment of the concen- X

tration profiles in Figs. 6 and 7 and the second moment of the exact
concentration profileM,. The predictor-corrector algorithitsolid FIG. 9. Convection diffusion near a planar absorbing boundary
circles shows quadratic convergen¢slope 2.2:0.2), while the  (x=0) in the presence of a linear shear flow. A point source is
other methods converge linearly. These methods are Eofen  placed at the pointl,0) and the time evolution is simulated using
circles, interruption (open squargs and multiple rejectioniopen  reflection conversion at the solid boundary with the second-order
triangles. convective correction, Eq27). The concentration profiles(x,0,1)
obtained with time stepAt=1 (dot-dashef] At=1/3 (dotted, and

cannot generate the correct Green function for theAt=1/10(dashedare compared with the exact solutisolid line).
convection-diffusion equation, even with very small time
steps.

Despite the relatively large errors in concentration, th
moments of the distribution calculated by interruption and .

. . . . ; G(x,y,x",y",At)

multiple rejection converge linearly with the time step, as
shown in Fig. 8. The errors in the second moment are com- 1 (x—x’—vSAt)ZJr(y—y’—vSAt)Z
parable to the Euler method, which also converges linearly = 47-rDAtexF{_ DAL ,
with At. The predictor-corrector method has much smaller
errors and converges quadratically wikh. (32

eThe Green function in a constant flow field is simply

and without loss of generality, the boundary surface can be
taken to be the plane=0. As in the case of pure diffusion,

The most important example of Dirichlet boundary con-a Green’s function for an absorbing wall can be constructed
ditions is an absorbing boundary using an image source of negative mass. For a constant flow,
Eq. (18) takes the more general form

V. DIRICHLET BOUNDARY CONDITIONS

c(r,t)=0, res, (30 Ga(x,y,x",y",At)
=G(x,y,x",y" ,At)—a(x")G(x,y,—x",y",At),
where the concentration vanishes. In Sec. Ill B we showed (33)
that the Green function for diffusion near an absorbing wall
could be interpreted using particles of negative ntastes, | here a(x') can be interpreted as the mass of the hole,
which enter the system with trajectories that mirror those of hich is  now variable. The absorption  condition
real particles leaving the system. A zero-concentratam G.(0y,x'",y',At)=0 requires that
sorbing boundary condition can be implemented by modify- &~ "7’
ing the predictor-corrector scheme of Sec. IV so that re- G(Oy.x'.y' At) 00
flected particles are converted into holes, carrying negative ax’')= Y XY =ex;{— x|
mass in the overall concentration balance. This algorithm G(0y,—x"y',At) D
ensures that the concentration on the wall vanishes regardless
of the time step used in a random walkig. 9), and is We note that in order for Eq.33) to obey the convection-
second-order convergent in time. diffusion equationa(x’) must be independent of the time
stepAt, as is the case here.
For the purely diffusive case the Green functjéu. (18)]
was simulated by reflecting particles at the wall and convert-
It iS Often the case that a Zero-concentration Condition |$ng them into holes of equa' mass, but in the presence of a
imposed on some imaginary surface in the fluid, for exampleye|ocity field, reflection conversion will not apply the correct
at an inlet or outlet, rather than on a solid wall. In this casezonvective displacement to the holes. Instead we introduce a
the fluid velocity does not vanish at the boundary, but togjstribution of virtual holes in the regior<<0, outside the
leading order the velocity field can be taken to be constantgystem. We have devised two algorithms; the first illustrates
the basic idea, the second is a much more efficient imple-
VX,y)=v0+ ... . (31)  mentation.

(34)

Outflow boundary condition
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FIG. 11. The positivésolid) and negativédashed components
of the Green function given by Eq33) for vy=(—1,0), At=1,
x'=1, andy’ =y=0. Only a small portion of the negative compo-
nent(shaded regionenters the real space.

FIG. 10. Evolution of an initial concentration profilgx,y,0)
=8(x—1)48(y) in a constant flow field/=(—1,0) with an absorb-
ing wall atx=0. Absorption is simulated by the particle removal
method. The concentration profilegx,0,1), obtained for time

stepsAt=1 (dot-dashey At=1/3 (dotted, andAt=1/10(dasheg Opt—
are shown together with the exact solutitsolid) given by the c(x,At) = @ 1+Erf Ux X
Green function(33). ' 2 JAD At
0 0
i C U X v At+X
Algorithm 1 +?°exr{%) 1_Erf( X—)l, (38)
(1) Make a virtual distributionc* (x<<0) of holes that VADAt

images the positions of real particles in the region-0)  Which is a solution of the convection-diffusion equation with
near the wall: for each particle; we create a holé; in the ~ Poundary conditionc(0)=c,. It is worth noting that in a
position uniform system, for whichc(x) =c, everywhere in thex
>0 half space, the total virtual concentratigparticles
+holeg for x<0 will be also constant and eque. More-

Xp = —Xp (35)  over, in_the absence of flow Eq19) is recovered, with
a(— Xpi) =1.
Although Algorithm | is exact for constant velocity flows,
_ it becomes inefficient for large negative valuesv{ﬁt corre-
yhi_ypi7 (36)

sponding to fast outflow of material from the system. Figure
11 shows the characteristic positive and negative components
) o of the Green functiofEq. (33)] in such cases. It can be seen
behind the wall. The mass of the hole is given by, that the negative component, corresponding to the hole dis-
=a(xpi) and counts— a(xpi) in the overall concentration tribution, can be orders of magnitude larger than the positive
balance. one. At the same time only the very tail of the hole distribu-

(2) Move both virtual holes and real particles according totion enters the<>0 region, so that most of the virtual holes
their infinite-space propagators, keeping only the particle§io not enter the system. But whenever one of the holes does
that remain in the system at the end of the time step. cross thex=0 pIane,Olt brings a substantial negative mass

The algorithm ensures that the concentration is exactljnto the systemé *»*x'®>1), which leads to large statisti-
Zero on the absorbing Wa”, regard|ess Of the t|me QEp cal fluctuations in the Concentl’atior_] f|e|d near the boundary.
which is not true of a rudimentary alternati{®,32], where We therefore propose the following improvement.
particles are removed when their trajectories cross the
boundary of the system. Figure 10 shows that particle re- ) o ) )
moval is inaccurate in the vicinity of the wall, even for rela- (1) Again create holes at, = —Xxp, this time with unit
tively small time steps. massmp, =1.

The outflow condition can also be extended to impose a (2) Calculate the probabilitpy, that the holeh; enters the
reservoir bpunde}ry_ condltlon. An addmonal d|str!but|on of system in the next time stet. This corresponds to the area
virtual particles is inserted in the region<O behind the  t ha shaded region in Fig. 11 and is given by
boundary, with a uniform number density = c,, but with a

Algorithm I

nonuniform masgcf. Eq. (19)], Ph = fedxfw dy a(x,)G(X,y,—Xp,Yp ., Ab)
i 0 o i i i
m,=1+a(—Xy,). (37) 1 Atve—x,
P P —Ze 0P| 1+ Erf| ——— (39
2 VADAL

When this distribution is advected, it leads to a concentratioft may be shown by rearranging the integrand in &§) that
profile in the systenfcf. Eq. (20)], P, is always less than unity.
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(3) With probability Ph,» insert the hole into the system at 0.154

the pointx, sampled from a Gaussian tail distribution that is

limited to the regiorx>0:
¢ 0.17

1
p(x,y)= p—ma(xpi)G(x,y,—xpi,ypi,At)- (40) 0,054

Otherwise discard the hole.

This algorithm gives the same concentration profiles as 4
Algorithm | but is much more efficient. Keeping the mass of X
the hole unitary greatly reduces the statistical fluctuations in
c(x) near the boundary. FIG. 12. Convection diffusion near a planar reflecting boundary

is simulated using finite-range displacements, distributed uniformly

over the area of a circle. The Euler method with specular reflection
VI. FINITE-RANGE PROPAGATORS is used to integrate the stochastic differential equations. The con-
centration profilesc(0,y,1) obtained for time stepat=1 (dot-
dasheg, At=1/3 (dotted, and At=1/10 (dashegl are compared
With the exact solutiorgsolid).

It is not necessary thaW be a Gaussian propagator in
order to obtain weak convergence. For example, any rando
variable(AY) with the correct second moment, i.e.,

tors it may prove advantageous to sample diffusive

(aY)=0, increments from truncated Gaussian distributions,
P(AW, /\/At,x7), instead
2
(AY;AY;AY,)=0, (41) p(x,xp) =& *"[A(Xr) +B(xp)x*+ C(x)x*]. (42

guarantees weak first-order convergence of the approximarhe coefficientsA—C can be constructed to match the ze-
tion schemd21]. Finite-range increments obeying these mo-roth, second, and fourth moments of the Gaussian distribu-
ment conditiongEq. (41)] are frequently useffl,29,30 be-  tion, although for truncation ranges;<3./At it is only
cause these are simpler and faster than Gaussian-sampledctical to match the first two nonzero moments. Although
increments, and do not introduce significant errors in theor sufficiently smallAt such distributions ultimately have
bulk. However, near an interface odd moments of the increthe same convergence properties as any finite-increment dis-
ments are nonzero and space dependent. Reflection propagabution, the errors introduced by ignoring the tails of the
tors constructed from finite-range increments via 84) or ~ Gaussian are negligible for sufficiently large. Figure 13

Eqg. (27) then have a local error in the first moment propor-shows the concentration profile for different truncation dis-
tional to AtY?[19], which suggests that the global erféy.  tances: forxT>3\/A—t, the dynamics of the random walk are
(4)] may not vanish with decreasing time step. Howevernot noticeably affected.

although the short-time evolution may be poorly convergent,

after a sufficiently long time the concentration distribution

can still reach the correct steady-state. For example, in the 0.15-
absence of flow it is straightforward to prove that the station-
ary state of any isotropic propagator is a solution of the
Laplace equation. If this propagator can be supplemented
with an algorithm that imposes the correct boundary condi-
tions then the errors will decrease with time rather than in- 0.05-
crease as might be expected in the worst-case scenario.

Even in convection-diffusion problems, finite-range
propagators can lead to reasonable results after a few time 0
steps. Figure 12 shows results obtained with a displacement
that is sampled uniformly over the surface of a circle, and
can be compared with the result for a Gaussian propagator g 13. Convection diffusion near a planar reflecting boundary
shown in Fig. 6b). For more than two steps, the errors arejs simulated using a Gaussian propagator truncated t2
similar to those obtained with Gaussian displacements.  (dashegiand at 2.5/At (dot-dashel The Heun method with specu-

Although it is possible to construct practical boundary ar reflection is used to integrate the stochastic differential equa-
conditions with finite-range increments, these are neverthaions. The concentration profiles(0,y,1) are compared with the
less less accurate and less flexible than Gaussian incrememégct solution(solid). The results for truncation distances larger
and also more difficult to analyze. To avoid the complica-than 3/At are indistinguishable on the scale of the figure from
tions associated with the infinite range of Gaussian propagahose obtained with a Gaussian distribution.

C 0.1
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VII. CONVECTION DIFFUSION IN A x=0
RECTANGULAR CHANNEL

In this paper we have constructed a set of algorithms that
impose reflection (zero-fluy and absorption (zero-
concentrationboundary conditions at solid interfaces. In ad- =0
dition we have developed reservoir boundary conditions for
the inlets and outlets to the system. Here the algorithms are

tested on two-dimensional convection-diffusion problems %,

whose solution can be found independently. We take a chan_____ ™. " y<0
nel of widthL,=10 and lengthL,=nL,, with a constant- e \\ 1,=0
concentration inlet(0,y,t) =1 and a zero-concentration out- 2 “e

let c(L,,y,t)=0. The solid wall aty=0 is reflecting,
dyc(x,0t)=0, and the wall aty=L, is absorbing,
c(x,Ly,t)=0. This problem geometry allows us to test all of
the types of boundary condition in a single test problem. The
tests were rgn from .the dlf‘fgSlQn-domlnated- “ml.t:P@'l t.o sorbing walls. In the absence of flow, boundary conditions can be
the Convectlon-domln_ated limit PeL000, using Increasing imposed by reflecting the particle at each wall and converting it to
channel lengths at higher Peclet numbers so that the timg e when necessatgolid ling). However, when there is a flow
step can remain constant. The Peclet number W, /D is  across the interface, reflection conversion does not sample the cor-
def'ned |n terms Of the Ve|OCIty at the center Of the Channelrect convective disp|acement_ |nstead1 the |mage h0|e_al’ (y’)
We have assessed the convergence of the concentration flgst be introducetsee Sec. Yand propagatettotted lines. Both
at the absorbing wall based on comparisons with a muIti-gridhe particle and the hole are allowed to cross k€0 plane but
finite-difference code from the NAG librafy83]. We used a after one time step only the particles inside the wedge @y
modest aspect ratio grid, at most 2:1, since noticeable errors0) are retained.
were observed with high aspect ratios 10).

The algorithms of Secs. IV and V can be combined in th

FIG. 14. Diffusion near a corner bounded by reflecting and ab-

chole at (=x',y") to impose a zero-concentration condition at

vicinity of corners where surfaces with two different bound-xzo' .;)I'hde .h°|§ IS r;n/0\|/_|ed accorqtlr?g toﬂAIgt_orltht;n ' C::;’ Il, as

ary conditions meet. In such cases we track the motion of thgescn ed In Sec. V. However, the refiecting boundary can
always be implemented by specular reflection, so that there

particle, applying the appropriate rules at each successive | "4 to introduce a hole atk’,—y') or a particle at

encounter with a bounding surface. To gain more insight intq, — | ;

h.OW and why _this works in practice, consider a purely F“”“‘ 'i'he re.sults in Figs. 15—-17 show that the stochastic simu-
sive process in a wedge>0y=>0, bounded by reflecting |4tions are in essentially exact agreement with the finite-
(y,: 0,) and absorbingx=0) walls. For a point source at jfference results over most of the channel, regardless of the
(x Y ), the reflecting wall adds an image source at,( peclet number. However, there is a singularity in the flux at
—Y'), while the absorbing wall adds a sink atx’,y’) (see  the corner x=0y=0), where the boundary conditiors

Fig. 14. Near the corner, there is an additional sink at=1 (alongx=0) andc=0 (alongy=0) meet. Here the time
(—x’,—y’"), because of the interaction between reflectingstep must be reduced to obtain accurate results, particularly
and absorbing boundaries. Thus the Green function is giveat the highest Peclet numbgfig. 17).

by Sampling errors can be controlled by increasing the den-
sity of particles,N, or by time averaging over an interval
Gox,y, X',y ) =G(xy, X",y )+ G(xy,x',—y") Figure 18 illustrates the behavior of the statistical errors in
_G(vaa_xray’)_G(Xiy!_X,!_y’)' 0.4
(43
. J 0.3
Analogous constructions can be made for other types of cor- y
ners. 0.2
The implementation of Eq(43) may be achieved in a
variety of ways. For example, the image particles and holes 0.1
can be placed in the appropriate locations and propagated for
At, retaining only the particles within the system at the end 0

of the time step. However, it is simpler and more effective to
move the original particle and perform a specular reflection
at the reflecting wall and reflection conversion at the absorb- £, 15, The flux of particles across an absorbing wall at a
ing one(see Fig. 14 Unfortunately, this method only works  peclet number Pe0.1, as a function of the position along the chan-
when there is no flow across the absorbing interface; a flowiel. Random walk simulation@pen circles with a time stepAt
field introduces an asymmetry in the distribution, so that=1 are compared with finite-difference resuttsolid line). The
holes generated by reflection conversion do not have thiset shows results near the inlet position for time stAps-1
right convective displacement. Therefore we use an imaggircles, At=1/3 (squarel andAt=1/10 (triangles.
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FIG. 16. The flux of particles across an absorbing wall at a

Peclet number Pel0, as a function of the position along the chan-
nel. Random-walk simulation®pen circleg with a time stepAt
=1 are compared with finite-difference resultolid line). The
inset shows results near the inlet position for time stAps-1
(circles, At=1/3 (squares andAt=1/10 (triangles.

the particle current at an absorbing interfage=0). The

current measured by the random-walk method at differen

locations,J;, was compared with the corresponding finite-
difference results)’® at 30 locations far from the singular
entry point,L,/4<x;<L,. The root-mean-square deviation

> (3392

_ (44)
> (39?2

was calculated at a Peclet number=P&® with a time step
At=0.1, and decays agNT with a coefficient of order 10.
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FIG. 18. The statistical error of the measured particle current
through absorbing wall as a function of number of time stdps,
over which the measurement is averadeuicles and the number
of particles,N, used to simulate the concentratiogin a unit cell
(squares The reference values afle=21 000 andN=1000. The
slope of the line is- 0.52+ 0.07 indicating square-root convergence
characteristic for stochastic methods.

}jirectly. A better comparison would be to estimate the time
taken to update the concentration profile for a unit time.
From the data shown in Fig. 18 we expect that densities of
the order of 10 particles per unit aregor volume in the
three-dimensional casewill be sufficient to calculate the
flux over a unit surface lengttor area to about 3% preci-
sion in a single configuration. For the &0 simulation this
corresponds to a total of about4L0’ particles and a single
time step would be sufficient to update the system for a unit
time. With our current and by no means optimized code, we
can update about $(articles per second, so a single step
would take of the order of 40 s.

In this work we used long runs to obtain very precise data,

and each channel flow simulation ran ferl h, whereas the

finite-difference code ran for only a few seconds. However,
in more complicated geometries we expect statistical error

of the order of 5% to be adequate, and in this case the co
parison is more favorable. Moreover, the stochastic simul

T
150 200

VIIl. CONCLUSION

In this paper we have developed and tested stochastic al-
orithms to solve the convection-diffusion equation in the
vicinity of reflecting and absorbing boundaries. The key

X A "UlaiHeas were the introduction of particles with negative mass
tions evolved in time to a steady state, whereas the finite

difference code solved the time-independent problen&

(holes to account for deposition fluxes, and methods to in-
orporate convection in the vicinity of an interface. In the
case of a shear flow we have shown how to correctly sample
the distribution of convective velocities to obtain second-
order convergence, and we have shown how to efficiently
implement an absorption conditioc€0) at an outlet. Nu-
merical tests show that these algorithms are much more ac-
curate than thed hoc methods that are typically used for
such problems.

We have tested a multidimensional implementation in a
rectangular domain, for which precise numerical solutions
are available for comparison. The overall agreement with
finite-difference results was excellent, even though the steep
concentration gradients in the vicinity of singular corners

FIG. 17. The flux of particles across an absorbing wall at amade for a stringent test of the algorithm. In general we

Peclet number Pe1000, as a function of the position along the
channel. Random-walk simulatiorispen circle with a time step
At=1 are compared with finite-element resu(solid line). The
inset figure shows results near the inlet position for time steps
=1 (circleg, At=1/10(squares andAt=1/100 (triangles.

found quadratic convergence in the time step almost every-
where in the domain and linear convergence near the singu-
lar points. The stochastic method is not as efficient as finite-
difference methods in simple geometries. However, if

statistical errors of a few percent are acceptable, such meth-
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ods may be viable in irregular geometries. sampled increments; discrete increments have even larger er-
We have examined several different increment distriburors than uniform distributions.

tions for the random walk. For test purposes a Gaussian dis-

tribution is the simplest and the most accurate, but finite-

range increments are desirable in complex geometries and ACKNOWLEDGMENTS
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