Electronic Supplementary Information (ESI)

Force field parameters

The total bond energy is the sum of four contributions:

$$U_{bond} = U_l + U_{\phi} + U_{\theta} + U_{\lambda}$$

with:

$$U_{l} = \frac{k_{l}}{2}(l-l_{0})^{2}$$

$$U_{\phi} = \frac{k_{\phi}}{2}(\phi-\phi_{0})^{2}$$

$$U_{\theta} = 1+a_{2}\theta^{2}+\theta^{4}+a_{6}\theta^{6}$$

$$U_{\lambda} = \frac{k_{\lambda}}{2}(|\lambda|-\lambda_{0})^{2}$$

where *l* and ϕ denote bond length and bond angle, respectively. Dihedral angles (see Fig. 1a in the main text) are denoted by λ and θ . The parameters of the force field parameters are given in Table 1. The values of a_2 and a_6 were computed for each θ_0 to get the potential with minima at $\pm \theta_0$ and a barrier height of $\Delta E = 5/2$.

term	beads affected	parameters
$U_{l_{BS}}$	B-S	$k_l = 50, l_0 = 2$
$U_{l_{BS}}$	B-B	$k_l = 100, l_0 = 1$
$U_{\phi_{SBB}}$	S-B-B	$k_{\phi} = 200, \phi_0 = 90^{\circ}$
$U_{\phi_{BBB}}$	B-B-B	$k_{\phi} = 50, \phi_0 = 180^{\circ}$
U_λ	$S - B_i B_{i+2} - S$	$k_{\lambda} = 10$
U_{θ}	$S1 - B_i B_{i+1} - S2$	a_2 and a_6 - see the text
LJ	В	$\varepsilon = 1, \sigma_B = 4$
LJ	S1, S2	$\varepsilon = 1, \sigma_S = 1$

 Table 1
 Force field parameters

Simulations

Simulations were run with the LAMMPS package in three stages:

- 1. Short equilibration of side strands with backbone beads' location restrained: timestep= $0.5 \times 10^{-3} t_D$, total time= $40 t_D$
- 2. Short molecular dynamics NVT run at $T^* = 1.5$ in order to relax the initial configuration run to change the

initial configuration of the fibrils: timestep= $10^{-2}t_D$, total time= $800t_D$

3. Langevin dynamics: timestep= $10^{-2}t_D$, total time= $10^{6}t_D$

Helix angle

As illustrated in Fig. 1, the helix angle, α_0 is the angle between the helical curve and the vertical axis. The arc *a* is spanned by horizontal vectors ρ_1 and ρ_2 with λ_0 being the angle between them. Next, *b* is the axial distance between the two consecutive side strand beads. The length of arc *a* is therefore $\rho \lambda_0$, where $\rho = |\rho_1| = |\rho_2|$ is the radius of the cylinder containing the helix. The lines *a* (dashed), *b* (dotted), and *s* (segment of a helix) form a right triangle, hence $\tan(\alpha_0) = \frac{\rho \lambda_0}{b}$. In our case ρ corresponds to $l_{BS} = 2$, whereas *b* is $b = 2l_{BB} = 2$. Hence, $\tan(\alpha_0) = \lambda_0$ and $\alpha_0 = \arctan(\lambda_0)$.

Fig. 1 Schematic illustrating the relation between the angles α_0 and λ_0 .

Relation of the chirality, χ , to the torsion of the chain

Below we show that in the limit of a continuous curve Eq. (2) gives the local torsion of the chain. Consider a curve

parametrized by its arc length, *s*. and three consecutive tangent vectors $\mathbf{t}_{-} = \mathbf{t}(-\varepsilon)$, $\mathbf{t} = \mathbf{t}(0)$ and $\mathbf{t}_{+} = \mathbf{t}(\varepsilon)$, separated by a distance ε along the arc length. The tangent vectors, together with the corresponding normal and binormal vectors constitute a local orthogonal trihedron fulfilling the Frenet-Serret relations

$$\mathbf{t}' = \kappa \mathbf{n}$$
$$\mathbf{n}' = -\kappa \mathbf{t} + \tau \mathbf{b}$$
$$\mathbf{b}' = -\kappa \mathbf{t}$$

where κ is the curvature and τ is the torsion of the curve. The prime denotes differentiation with respect to the arc length. For small ε

$$\mathbf{t}_{\pm} = \mathbf{t} \pm \mathbf{t}' \boldsymbol{\varepsilon} + \frac{1}{2} \boldsymbol{\varepsilon}^2 \mathbf{t}'' + \dots$$

Using Frenet-Serret formulas

$$\mathbf{t}_{\pm} = \mathbf{t} \pm \kappa \mathbf{n} \boldsymbol{\varepsilon} + \frac{1}{2} \boldsymbol{\varepsilon}^2 (\kappa' \mathbf{n} - \kappa^2 \mathbf{t} + \kappa \tau \mathbf{b}) + O(\boldsymbol{\varepsilon}^3)$$

which leads to

$$\mathbf{t}_{-} \times \mathbf{t} = \kappa \varepsilon \mathbf{b} + \frac{1}{2} \varepsilon^{2} (\kappa \tau \mathbf{n} - \kappa' \mathbf{b})$$

and

$$\mathbf{t} \times \mathbf{t}_{+} = \kappa \varepsilon \mathbf{b} - \frac{1}{2} \varepsilon^{2} (\kappa \tau \mathbf{n} - \kappa' \mathbf{b})$$

Finally

$$(\mathbf{t}_{-} \times \mathbf{t}) \cdot (\mathbf{t} \times \mathbf{t}_{+}) = \kappa^2 \varepsilon^2 + .$$

and

$$(\mathbf{t}_{-} \times \mathbf{t}) \cdot \mathbf{t}_{+} = \kappa^{2} \tau \varepsilon^{3} + \dots$$

The argument of the arc tangent function in Eq. (2) is the ratio of these two terms. Thus, in the limit of small ε the expression $\arctan \left(|\mathbf{v}_i| \mathbf{v}_{i-1} \cdot (\mathbf{v}_i \times \mathbf{v}_{i+1}), (\mathbf{v}_{i-1} \times \mathbf{v}_i) \cdot (\mathbf{v}_i \times \mathbf{v}_{i+1}) \right)$ is proportional to the local (signed) torsion of the chain.