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Force field parameters

The total bond energy is the sum of four contributions:

Ubond = Ul + Uφ + Uθ + Uλ ,

with:

Ul =
kl

2
(l − l0)

2

Uφ =
kφ

2
(φ −φ0)

2

Uθ = 1+ a2θ 2+θ 4+ a6θ 6

Uλ =
kλ
2
(|λ |−λ0)

2

where l and φ denote bond length and bond angle, respec-

tively. Dihedral angles (see Fig. 1a in the main text) are de-

noted byλ andθ . The parameters of the force field parameters

are given in Table 1. The values ofa2 anda6 were computed

for eachθ0 to get the potential with minima at±θ0 and a bar-

rier height of∆E = 5/2.

term beads affected parameters
UlBS B− S kl = 50, l0 = 2
UlBS B−B kl = 100,l0 = 1

UφSBB S−B−B kφ = 200,φ0 = 90◦

UφBBB B−B−B kφ = 50,φ0 = 180◦

Uλ S−BiBi+2− S kλ = 10
Uθ S1−BiBi+1− S2 a2 anda6 - see the text
LJ B ε = 1, σB = 4
LJ S1,S2 ε = 1, σS = 1

Table 1 Force field parameters

Simulations

Simulations were run with the LAMMPS package in three

stages:

1. Short equilibration of side strands with backbone

beads’ location restrained: timestep=0.5× 10−3tD, total

time=40tD

2. Short molecular dynamics NVT run atT ∗ = 1.5 in or-

der to relax the initial configuration run to change the

initial configuration of the fibrils: timestep=10−2tD, total

time=800tD

3. Langevin dynamics: timestep=10−2tD, total time=106tD

Helix angle

As illustrated in Fig. 1, the helix angle,α0 is the angle between

the helical curve and the vertical axis. The arca is spanned by

horizontal vectorsρ1 andρ2 with λ0 being the angle between

them. Next,b is the axial distance between the two consec-

utive side strand beads. The length of arca is thereforeρλ0,

whereρ = |ρ1| = |ρ2| is the radius of the cylinder containing

the helix. The linesa (dashed),b (dotted), ands (segment of a

helix) form a right triangle, hence tan(α0) =
ρλ0

b . In our case

ρ corresponds tolBS = 2, whereasb is b = 2lBB = 2. Hence,

tan(α0) = λ0 andα0 = arctan(λ0).

Fig. 1 Schematic illustrating the relation between the anglesα0 and
λ0.

Relation of the chirality, χ , to the torsion of the chain

Below we show that in the limit of a continuous curve Eq.

(2) gives the local torsion of the chain. Consider a curve
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parametrized by its arc length,s. and three consecutive tan-

gent vectorst− = t(−ε), t = t(0) andt+ = t(ε), separated by

a distanceε along the arc length. The tangent vectors, together

with the corresponding normal and binormal vectors consti-

tute a local orthogonal trihedron fulfilling the Frenet-Serret

relations

t′ = κn

n′ =−κ t + τb

b′ =−κ t

whereκ is the curvature andτ is the torsion of the curve. The

prime denotes differentiation with respect to the arc length.

For smallε
t± = t ± t′ε +

1
2

ε2t′′+ . . .

Using Frenet-Serret formulas

t± = t ±κnε +
1
2

ε2(κ ′n−κ2t +κτb)+O(ε3)

which leads to

t−× t = κεb+
1
2

ε2(κτn−κ ′b)

and

t × t+ = κεb−
1
2

ε2(κτn−κ ′b)

Finally

(t−× t) · (t × t+) = κ2ε2+ . . .

and

(t−× t) · t+ = κ2τε3+ . . .

The argument of the arc tangent function in Eq. (2) is the ratio

of these two terms. Thus, in the limit of smallε the expression

arctan2

(

|vi|vi−1 · (vi × vi+1), (vi−1 × vi) · (vi × vi+1)

)

is

proportional to the local (signed) torsion of the chain.
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