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Abstract Mass spring models (MSMs) are a popular
choice for representation of soft bodies in computer graph-
ics and virtual reality applications. In this paper, we investi-
gate physical properties of the simplest MSMs composed of
mass points and linear springs. The nodes are either placed
on a cubic lattice or positioned randomly within the system.
We calculate the elastic moduli for such models and relate
the results to other studies. We show that there is a well-
defined relationship between the geometric characteristics
of the MSM systems and physical properties of the modeled
materials. It is also demonstrated that these models exhibit a
proper convergence to a unique solution upon mesh refine-
ment and thus can represent elastic materials with a high
precision.

Keywords Mass spring model · Soft body deformation ·
Physically based modeling

1 Introduction

Mass springmodels (MSMs, or lattice springmodels, LSMs)
provide a simple and easy to implement method for the sim-
ulation of the behavior of deformable objects. Using MSM
is a popular approach for modeling soft bodies in virtual
reality (VR) applications as well as computer graphics (CG)
[13,14]. In particular, MSMs may be useful for simulating
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fracture and crack propagation [9]. MSMs are believed to
be fast, but not as accurate as the alternatives such as FEM
(finite element method). Physical correctness greatly helps to
improve plausibility of any CG application, and for some of
them is absolutely essential (i.e., VR environment involving
both interaction and feedback). For the MSM to be physi-
cally correct, a relationship needs to be established between
spring constants and the real physical properties of modeled
materials.

AlthoughMSMshavebeen carefully investigatedbymany
CG researchers, some of the results and ideas from the clas-
sical theory of elasticity did not seem to percolate into CG
community. A good example is provided by the problem of
calculating the Poisson’s ratio of the mass spring model. A
well-established result of the continuum mechanics is that
the Poisson’s ratio of a homogeneous and isotropic material
is identically 1/4 (or 1/3 for a 2D system), if the constituents
of this material interact with the central forces dependent
upon distance alone [7,12]. Unfortunately, many of the stud-
ies of mass spring models do not seem to recognize this fact:
either trying to estimate the Poisson’s ratio of their models
(and finding invariably that it is close to 1/4 or 1/3) [1,3,11]
or even trying to impose a different value of the Poisson’s
ratio, a task doomed to failure [17,19]. This has lead to the
conviction in CG community that MSMs cannot represent
elastic materials accurately and that they do not converge to
the exact solution of elasticity equations when their resolu-
tion is increased [14].

The purpose of this work is to clarify what can and what
cannot be achieved with simple mass spring models, when
trying to represent a homogeneous isotropic elastic mater-
ial characterized by specific elastic moduli using models of
arbitrary resolutions. We present both theoretical predictions
of elastic parameters as well as their verifications in several
test cases. First we discuss lattice-based MSMs, the charac-
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teristics of which have been extensively studied in physics
and mechanical engineering communities. Next we focus on
a more general case and study the properties of disordered
MSMs, where the nodes are generated probabilistically. We
illustrate our approach with an example of random MSM
with particularly simple node placement rules; however, our
theoretical results are very general and can be used to assess
the elastic properties of any MSM.

It needs to be stressed that this work investigates only
the static properties of MSMs. We do not address here the
question of how these systems evolve over time or what are
the most efficient numerical schemes to track their dynam-
ics; neither we consider the damping characteristics of the
springs. Hence, we do not present animations and do not
evaluate the efficiency of MSMs in the context of creating
an animation (although it is expected to be good [10]). We
would like to emphasize that a correct mapping of elastic
properties between a physical object and a model is a prereq-
uisite for any physically correct simulation, be it quasi-static
or dynamic, and the establishment of this base is the main
goal of this work. Efficient ways of simulating dynamics of
these systems can be found, e.g., in [10,16].

As in every expanding field, the literature on the topic
covers by now a large number of publications. It would be
impossible to list all the relevant articles, we therefore direct
the reader to the review article by Ostoja-Starzewski [15],
which presents physically oriented approach to the differ-
ent types of MSMs as well as approaches of estimating their
physical properties. Another publication discussing MSM
approaches, particularly in the context of CG, is the paper by
San-Vicente et al. [17]. An extensive survey of deformable
modeling in computer graphics can be found, e.g., in Nealen
and Müller et al. [14], whereas Meier et al. [13] summa-
rize approaches focused on surgery simulation applications,
which offer a more detailed analysis of MSMs.

2 Linear elasticity

In this section, we introduce some basic linear elasticity
results that can be found, e.g., in [12] and [8].

A basic assumption of linear elasticity theory is that stress
in an elastic body is a linear function of the strain:

σi j = Ci jklεkl , (1)

where σ̂ denotes stress tensor, ε̂ - deformation (strain) tensor
and Ĉ the elasticmoduli tensor. Both σ̂ and ε̂ are symmetrical
from which it follows that in three dimensions Ĉ has 21
independent coefficients. This number is reduced to 2 if we
assume that the material is isotropic. In such case, Ĉ can be
expressed as

Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk) (2)

where δi j is the Kronecker delta. The relation (1) now
becomes

σi j = λδi jδklεkl + 2μεi j , (3)

or equivalently:

σi j = K δi jεkk + 2μ(εi j − Tr(I )−1δi jεkk), (4)

where λ and μ are Lamé parameters, I is an identity matrix
and K is a bulk modulus obeying K = λ + 2

3μ in 3D or
K2D = λ + μ in 2D. Einstein summation notation is used
here (i.e., the appearance of a repeated index in a term implies
summation over it, e.g., εkk = ∑d

k=1 εkk , where d is dimen-
sionality of the space).

Elastic energy F of a deformed body is given by

F = 1

2
σi jεi j = 1

2
λ(εi i )

2 + με2jk, (5)

whereas the equation of motion reads

ρ
∂2ū

∂t2
= λ∇(∇ · ū) + μ(∇2ū + ∇(∇ · ū)), (6)

where ū is a displacement and ρ mass density.
The relative change of the volume of a body can be

expressed by strain as:

V + �V

V
= (1+ε11)(1+ε22)(1+ε33) ≈ 1+ε11+ε22+ε33,

(7)

therefore in accordance with Eq. (4), K gives the resistance
to compression. It can also be defined as:

K = −V
dp

dV
, (8)

where V is the volume of a solid body, and p pressure acting
on its surface.

Beside λ, μ and K , two other elastic parameters are often
defined—the Young’s modulus E and the Poisson’s ratio ν.
The Young’s modulus is the ratio of stress to strain mea-
sured along the same axis under an uniaxial stress condition,
whereas the Poisson’s ratio is the ratio of transverse to axial
strain, i.e., E = σxx/εxx and ν = −εyy/εxx , in an exper-
iment where all components of the stress tensor are zero
except σxx . The above parameters can be expressed in terms
of λ and μ:

E = μ(3λ + 2μ)

λ + μ
ν = λ

2(λ + μ)
, (9)
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or

E2D = 4μ(λ + μ)

λ + 2μ
ν2D = λ

λ + 2μ
. (10)

Any two of the above-discussed parameters are sufficient
to describe elastic properties of an isotropic material, thus
given any two, any other of the elastic moduli can be calcu-
lated.

The assumption that all the internal forces in the material
are the central forces [i.e., that they can be represented by the
potential V (r), with r—the distance between the particles]
leads to 6 additional relations between the components of
Ci jkl (note B in [12]). Thus in a non-isotropic case Ĉ will
have 15 independent coefficients instead of 21, and for an
isotropic material 1 instead of 2. In the latter case λ = μ,
from which it follows that

ν = 1/4 ν2D = 1/3. (11)

3 Mass spring models

Mass spring models represent an elastic material by means
of discretization. It is important to note that in such represen-
tations there are two things that are discretized. The first is
a mass distribution which in real materials is usually treated
as continuous, the second, represented by springs, charac-
terizes the interactions between the material points and thus
defines elastic properties of a physical body. Both of these
aspects are important and will affect the realistic appearance
of simulated objects. Ifwe increase the number ofmass points
representing an object, the resolution of the model becomes
higher resulting in amore faithful representation of the defor-
mations. On the other hand, increasing the number of springs
attached to each mass point allows one to represent the local
elastic properties of the material in a more accurate way.

We emphasize the distinction between these two aspects
because in most popular variants of the mass spring models,
the springs connect the neighboring nodes only. In principle,
however, one can introduce also the connections between
the further nodes. This means that such networks cannot be
decomposed into a sum of non-overlapping volumetric prim-
itives, as it is the case in other discretization approaches (e.g.,
FEM). Some of the systems analyzed in the present study are
of this kind.

As already mentioned, independently of the discretization
technique, if only radial springs are used, then, in accordance
with (11), any isotropic homogeneous structure will have a
fixed value of Poisson’s ratio. Other values of the Poisson’s
ratio can be obtained by incorporating non-central forces
into the model, e.g., the angular terms, or forces that do not
depend on distance alone or by introducing anisotropy [7].

Such extensions are often present in more advanced models
[1,11].

3.1 Triangular lattice MSMs (2D)

While this work is focused on volumetric objects and their
MSM representations, for completeness we include a brief
discussion of the two-dimensional networks. Much atten-
tion in computer graphics has been given to two-dimensional
MSMs (mostly for the purpose of the cloth representation)
and many advanced models have been created. The body of
work on the subject is quite extensive, and it is not our inten-
tion to review this area. Instead, we focus on the simplest
triangular meshes capable of representing isotropic materi-
als.

In one of the pioneeringCGworks on this topicVanGelder
[19] analyzes 2D spring meshes and tries to find the spring
stiffness coefficients that would allow mass spring model to
behave like a reference FEM model.

The results seem to be discouraging, with the author stat-
ing that “assigning the same stiffness to all springs badly fails
to simulate a uniform elastic membrane”. It seems, however,
that part of the problem here is the attempt to represent mate-
rials with arbitrary values of ν, whereas as it was already
noted only ν = 1/3 materials can be modeled with radial 2D
spring networks. For such materials, the 2D MSM models
based on hexagonal lattice and uniform stiffness coefficients
were shown to perform reliably [6,11,15]. The use of hexag-
onal lattice (composed of equilateral triangles) is necessary
to retain the isotropy of the system [15]. Another potential
problem in [19] is that the calculation of elastic properties
is performed for a single triangular element of the network,
whereas the elastic response of the system will also depend
on the relative placement of such triangles in the periodic
cell.

The relation between the spring coefficient k and the Lamé
constants for a hexagonal network is given by

λ = μ = 3

4
√
3
k, (12)

from which all the other elastic moduli can be derived (note
that there is a typo in this particular expression in [15]).

This model can be easily extended to achieve other values
of ν by incorporating angular springs between triangle edges
which is known as aKirkwoodmodel of an isotropicmaterial
[15]. Elastic moduli are then given by

K2D = 3

2
√
3
k ν2D =

(
1 − 3β

2ka2

)/(
3 + 3β

2ka2

)
, (13)

where a is a length of an edge of a triangle, k is a spring
stiffness coefficient of regular springs and β of angular ones.
As observed, ν2D → 1/3 when β → 0.
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As mentioned above, the fact that ν2D = 1/3, is a gen-
eral property of central force models and it usually resur-
faces in one form or another in any work that investigates
such models, even if its analytical justification is unknown
to the authors. For example Delingette [3], while analyzing
similar triangular meshes notices that “without the addition
of angular springs, MSMs with the right stiffness parame-
ters can at best approximate the behavior of a membrane
with ν2D = 1/3.”. Lloyd et al. [11] arrive at Eq. (12) and
also notice that membranes can be better approximated when
ν = 1/3, than for other values of ν, not recognizing, how-
ever, that it is not an approximation but an exact result for
the model chosen.

3.2 Cubic lattice MSMs

Just as hexagonal lattice MSM in two dimensions, a cubic
latticeMSM can be used to represent homogeneous isotropic
materials in 3D, if the connections between the nodes and
their stiffnesses are chosen in an appropriate way [6].

Unfortunately, there is no work in CG that satisfactory
explores the properties of such networks. The most recent
publication on this topic is by San Vicente et al. [17]. It runs,
however, into similar problems to van Gelder’s work dis-
cussed above—the authors attempt to impose the values of
the Poisson’s ratio different from1/4 (which is an exact result
for any 3D radial spring network) and match the behavior of
FEM models with MSM. The performance of their model
is rather questionable, as even in the test of simple bending,
the deformation (and thus also the elastic moduli) seems to
depend strongly on the resolution of the MSM, in contrast
to the results shown in the present work (cf. Sec. 5.3). Com-
parison of Fig 10. in [17] with Fig. 14 of the present article
shows that the cubic MSMs considered here show almost no
dependence on the resolution and are thus better suited for
the practical applications.

Contrary to what is suggested in [17] an isotropic system
can be reliably modeled with 3D cubic lattices, provided the
connectives and spring stiffnesses are chosen in an appropri-
ate way. Themodels of that kind were constructed in [6]. The
two simplest variants have 18 and 14 connections per node,
respectively. The first model allows nearest-neighbor and
next-nearest-neighbor connections (groupA and B in Fig. 1),
all with the same spring coefficient k. The secondmodel uses
A-springs with k = κ , and C-springs with k = 3

8κ , however
it is reported to be less stable.

In both cases, the macroscopic displacement field of the
spring network is shown to obey

ρ∂2t ū = k

a
[2∇∇ · ū + ∇2ū] + O(∇4u), (14)

where a is the length of an edge of an elemental cube, and ū
the displacement vector.

A

CB

Fig. 1 Elementary cell of a cubic lattice; three types of spring con-
nections. a Springs between nearest neighbors, b springs along face
diagonals and c along cube diagonals

From Eq. (6), we can see that both Lamé constants have
the same value, equal to k/a. Using Eq. (9) we can write E
and v as a function of k and a:

E = μ(3λ + 2μ)

λ + μ
= 2.5

k

a
ν = λ

2(λ + μ)
= 1/4. (15)

Note that this MSM is constructed as a superposition
of cubical elements. For each “element”, the corresponding
mass is distributed equally into its corners. When two ele-
ments are placed beside each other, their corners (masses)
coincide, and the effective mass at these points increases.
Analogously spring coefficients increase as well. Therefore,
to get a correct representation of boundaries, masses placed
on a border of an object have to be smaller and springsweaker
with comparison to those inside the object. A single cubical
element with mass m has 1

8m at each corner, its A-springs
have k = 0.25 κ and B-springs k = 0.5 κ . Such construction
allows to represent boundaries in a convenient way, how-
ever, it has some drawbacks, which we will discuss in detail
in Sect. 5.3.

Another work that tackled the problem of cubicMSMs for
CGapplications is Baudet et al. [1]. They present an extended
MSM capable of representing materials with ν other than
1/4. However, in their numerical analysis they treat Young’s
modulus, Poisson’s ratio, shear modulus and bulk modulus
as four independent quantities, not recognizing that only two
of them are independent, and in case of radial springs—only
one. Hence, by imposing four arbitrary values for these quan-
tities, they run into a risk of constructing a self-contradictory
problem, which cannot be resolved, no matter what values
of spring coefficients are used. Despite that, they arrive at
ν = 1/4 solution, but discard it as not versatile and unsatisfy-
ing. Instead they introduce additional “orthogonal correction
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force” to themodel, which effectively allows to achieve other
values of ν. Such extended MSM performs entirely satisfac-
tory in compression and shearing tests for 0.1 < ν < 0.5,
with errors being minimal for ν = 0.25, however the results
of the bending test are again strongly dependent on the res-
olution, similarly as in [17].

3.3 Disordered MSMs

CubicMSMs are simple and their properties are well defined
as elucidated in the previous section, however in some situ-
ations it is beneficial to relax the constraint of regular place-
ment of mass points and consider disordered placement of
the nodes.

Suchmodels have been analyzed by Lloyd et al. [11]. who
obtain an approximate solution for the values of spring para-
meters by a minimization procedure which tries to match the
behavior of FEM elements with tetrahedral MSM elements.
The core of the discretization procedure used by these authors
is to decompose the object into a set of primitives (tetrahedra)
which do not overlap except along the faces. Such FEM-like
representations prove to be convenient, because the total elas-
tic response of the system can be expressed as the sum over
primitives, the properties of which can be calculated in a rel-
atively simple manner (cubic lattice MSMs belong to this
group as well). However, the issue with tetrahedral meshes
is that 3D space cannot be filled with regular tetrahedra. A
single tetrahedron is also not an isotropic structure, therefore,
it is problematic to define elastic moduli for a tetrahedron.
Quantities such as energydensity required for a uniformcom-
pressionmay still be estimated (fromwhich the bulkmodulus
can be derived), because they do not depend on the isotropy
of the system. Many CG works succeed in doing that (e.g.,
[1,11,17]). The complete behavior of an MSM cannot, how-
ever, be derived from the behavior of a single tetrahedron
without considering the relative placement and properties of
other tetrahedra in the network (and these properties will
vary, because not all the tetrahedra can be regular).

In contrast, in this work we abandon the FEM-like
approach of constructing objects out of volumetric primi-
tives. Instead, we propose a node-centered approach inwhich
the mass points are the basic building blocks, to which any
number of springs can be attached representing the channels
along which the momentum is transported throughout the
system. In this way, we gain the flexibility of adjusting the
network connectivity, which is a powerful tool for improving
local behavior of the network.

To stay as general as possible, we will perform numerical
experiments on MSMs constructed with a very few assump-
tions about the node placement as well as simple connection
rules. First, we generate the positions of the nodes using
random sequential addition algorithm [18], which simply
means that we iteratively pick random positions within the

Fig. 2 Randompoint distribution. Example of spring connections for a
chosen node (in 2D for better readability; real models are three dimen-
sional). Minimal allowed distance between two points equals minL.
Maximal range of spring connection—maxL

sample and check whether a newly created point is suffi-
ciently separated from the neighboring nodes. If not, the point
is discarded and a new position is sampled. The minimal
allowed distance between the nodes is given by minL para-
meter (Fig. 2). The procedure runs until it fills the volume
with a desired number N of mass points (which may not be
possible, if N is too large for a given volume). Next, all nodes
which are less than maxL apart get connected by springs.

In practice it is more efficient to generate the random
nodes in several stages, in smaller parts of the system. In
this work, we have used a spherical ‘sampling window’ with
radius Rs = 3minL , which advanced through the volume
with

√
2Rs steps. A sphere was chosen to ensure that the

shape of boundaries of the system would not influence the
isotropy of the node distribution. The initial sampling volume
was slightly larger than the size of the system and the nodes
positioned outside of the modeled block were discarded in
the final step of the MSM generation process.

Random MSMs tested in this work differ by minL, maxL
and the total number of nodes, N (which sets the resolu-
tion for a given volume). However it will prove more conve-
nient to express our results in terms of another set of para-
meters: mean spring length 〈L〉, standard deviation of the
spring lengths dL and average number of springs attached
to a node 〈S〉 = 2Stot/N , where Stot is the total number of
springs in the system. We have analyzed models with 〈L〉
varying from 0.97 to 1.52 l, 〈S〉 from 8.2 to 29 and standard
deviation between 0.1 and 0.33 l, where l is a characteristic
distance between the mass points, l = (V/N )1/3. These val-
ues correspond to distributions generated withminL between
0.81 and 0.94 l and maxL between 1.17 and 1.99 l.

Treating cubic lattice model as a “random” model with
l = a (where a is a lattice constant), minL = a and
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maxL in the range between
√
2a and

√
3a we can intro-

duce a loose correspondence between cubic latticeMSM and
random MSM; as it turns out a similar performance can be
achieved with roughly the same number of nodes and springs
for both models, especially if we consider large scale defor-
mations.

4 Elastic constants of mass spring models

Homogeneous and isotropicmedium can be characterized by
two independent elastic constants. We have already estab-
lished that the Poisson’s ratio of all the models based on
central forces is equal to 1/4, which applies to disordered
networks as well. Thus, we need one more elastic parameter
to complete the description.

The simplest quantity to calculate is the bulk modulus K
[see Eq. (4) and (8)]. To estimate it, let us imagine uniform
compression of our system as a result of which all the lengths
of the springs are compressed by the same degree

L ′
i = Li (1 + ε), (16)

where L ′
i is the new, compressed length of the i-th spring

and ε < 0 in case of compression. The change in the energy
density associated with this deformation is then

�e =
∑

i
1
2kiε

2L2
i

V
, (17)

where V denotes the volume of the object. However, from
the basic elasticity theory [8]�e in the uniform compression
is given by

�e = 9

2
K ε2. (18)

Thus

K = 1

9V

∑

i

ki L
2
i = 1

9

n〈S〉
2

〈kL2〉, (19)

where ki and Li denote spring coefficient and natural length
of i-th spring, n = N/V is the concentration of the nodes,
the average 〈kL2〉 is taken over all the springs in the system
and 〈S〉 over all the nodes and denotes the average number
of springs connected to a node (one spring connects two
nodes, hence the division by two). Once the bulk modulus
(and Poisson’s ratio) is known, all the other elastic constants
can be estimated, e.g., Young’s modulus E :

E = 3K (1 − 2ν) = 1

6V

∑

i

ki L
2
i , (20)

where ν = 1/4 was assumed in the last equality.

As an example, let us calculate the Young’s modulus of
the first of the two cubic MSMs discussed in Sect. 3.2. The
spring constant is then uniform and the mean square length
of the spring reads

〈L2〉 = 6 · 1 + 12 · 2
18

a2 = 5

3
a2 (21)

whereas 〈S〉 = 18. This leads to the bulk modulus:

K = 5

3

k

a
, (22)

which yields E = 2.5 k
a if we take ν = 0.25, giving the same

result as the one obtained previously. It is easy to show that
the same value is obtained in the case of the second model
of Sect. 3.2 as well.

The Eqs. (19) and (20) allow one to calculate the elastic
constants of a material modeled with any MSM, not limited
to a particular node distribution or spring connection rules.
However, the more homogeneous and isotropic the model
is, the more faithfully it can be described by the two elastic
moduli K (or E) and ν. As we recall, such a two-parameter
description is possible for isotropic solids only. Moreover,
MSMs are based on linear elasticity theory, and are expected
to give a plausible elastic response only within its limits, that
is for small relative displacements.

5 Tests

In this section, we will compare the theoretical predictions of
Eqs. (19) and (20) with the corresponding values measured
as a result of a numerical experiment (which we will refer
to as measurements). The numerical experiments mimic the
real experimental setup used to obtain a given elastic modu-
lus, e.g., to obtain the Young’s modulus and Poisson’s ratio
we measure the deformation of the material during uniaxial
compression, as reported in detail below.

5.1 Uniaxial compression

To estimate numerically the values of E and ν the following
numerical experiment has been performed: a block cutout of
an elastic material was compressed by applying static dis-
placement to its opposite ends along x direction, and the
resulting deformation was measured both for random and
cubic MSMs. The Young’s modulus and Poisson’s ratio are
related to the elastic response of such a system by

E = F/A

�x/Lx
, ν = �y

�x
,
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estimate for n=1.29 set
measurement for n=1.29 set

estimate for n=0.85 set
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cubic MSM

Fig. 3 Young’s Modulus for random MSMs with two different minL
parameters (varying maxL). Set A (open squares) with minL = 0.8a0
and n = 1.29 nodes per unit volume; set B (circles): minL = 0.9a0,
n = 0.85. The estimates based on Eq. (20) as well as the values mea-
sured in the compression test are plotted as a function of the average
number of springs per node 〈S〉. Measurement uncertainty 4%

where F is the reaction force, A the cross-sectional area of
the block (in Y Z plane), and�x and�y are the deformations
of the block along x and y directions, respectively. The initial
block dimensions were 70a0 × 15a0 × 15a0 (where a0 is an
arbitrary unit of length) and the base spring constant has been
set to k0. The static displacement in x direction was imposed
on all the nodes within 1.5maxL from the boundary of the
block.

The value of �y could be measured directly by compar-
ing displacements of extreme points; however, we have not
taken any steps to ensure that random MSMs have sufficient
connectivity at the boundaries. It happens occasionally that
a point with low connectivity behaves like a ”floppy tail”
introducing additional uncertainty to such measurements. To
avoid this problem, we have measured an average expansion
�y of a specific region in the center of the block (by compar-
ing positions of points in deformed and undeformed blocks).
The width of this region was set to 80% of the width of the
block. The reaction force was estimated by measuring the
momentum flow through the Y Z plane in the middle of the
system. (By momentum flow across a given plane we under-
stand the sum of the forces in all the springs intersecting the
plane projected on the vector normal to that plane).

For the cubic MSM we find that the theoretical estimates
based on Eq. (15) differ from the measurement values by
no more than 5% (which can be attributed to measurement
errors). Notably, elastic moduli have remained almost con-
stant (within 0.1%) as the resolution was changed from 8
points per unit length to 1 [5].

The results for randomMSM are shown in the Figs. 3 and
4. Two sets of test cases are presented there, with slightly
different resolutions (n = 1.29 and n = 0.85 nodes per
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ν
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Fig. 4 Poisson’s ratio for random MSMs from Fig. 3. Theoretical
value ν = 0.25. Measurement uncertainty 4 %
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(E - E0)/E0

<S>
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Fig. 5 The relative difference between the values of E measured in the
compression test and the estimates based on Eq. (20) for randomMSM

unit volume). The values of E and ν are plotted against the
average number of springs attached to a node, 〈S〉. In most
of the tests, the value of Poisson’s ratio was equal to 1/4
with a good accuracy (within 2%). Only models with very
low 〈S〉 diverged from this value by more than 5%. As we
can see in Figs. 3 and 5, values of E estimated with the use
of Eq. (20) are in a very good agreement with the measured
ones. The relative error is smaller than 5% for almost all the
models with 〈S〉 between 15 and 25. However, for smaller
〈S〉, discretization errors increase significantly. There is thus
a trade-off between the accuracy and computational costs:
larger values of 〈S〉 offer a more accurate representation of
thematerial, which comes, however, at a price of an increased
computation time.

As we can see in the experiments, for low connectivity
networks, increasing 〈S〉 increases the accuracy of the esti-
mate in Eq. 19. However, after 〈S〉 ≈15 is reached, further
increase of the number of springs does not improve accuracy.
This also means, that for a given number of springs S (spring
budget), networks with 〈S〉 =15 will offer the highest reso-
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lution (highest N; most detailed models), while keeping the
accuracy at the highest level (provided that the total num-
ber of nodes N, is sufficient to form a stable network). One
needs to be aware, though, that these estimates are based on
the numerical experiments with the random networks con-
structed according to the procedure presented in Sect. 3.3,
and it is conceivable that another way of constructing MSMs
might lead to a smaller value of optimal 〈S〉.

5.2 Point force in an infinite solid

To further validate the model, we have considered a classical
problem of linear elasticity, in which a point force is applied
to an elastic solid of an infinite extent [2,8]. The strain and
stress tensors are then given by:

εi j = −(1 + ν)

8πE(1 − ν)R2

(3Fkxkxi x j
R3 − Fkxkδi j

R

+ (1 − 2ν)
Fi x j + Fj xi

R

)
, (23)

and

σi j = 1

8π(1 − ν)R2

(3Fkxkxi x j
R3

+ (1 − 2ν)
Fi x j + Fj xi − δi j Fkxk

R

)
, (24)

where R = √
xi xi and F is the force (applied at the origin).

In our tests, the solid characterized by E = 100[ k0a0 ] and
ν = 1/4 has been modeled as a sphere with radius 5a0
represented by a cubic MSM model with a = 0.25a0 and
〈S〉 = 18 as well as three random MSMs with l ≈ 0.25a0
and 〈S〉 = {11, 15, 18}, which we will refer to as S11, S15
and S18 models.

A static force F = 10[k0a0] has been applied along y
direction to the mass point in the center of the sphere. Stress
and strain tensor values were measured at 100 points uni-
formly distributed along the [1, 1, 1] line from the center
of the sphere to its border. Example profiles of strain ε12
and stress σ12 for random MSMs S18 and S11, are shown in
Figs. 6, 7, 8, and 9. Horizontal axes are scaled in such a way
that 0 corresponds to the center of the sphere, and 100—to the
border. Smooth red line represents theoretical values. Stress
measurementswere carried out usingHardy’smethod [4,20].

Figures 10 and11present themeandeviation from theoret-
ical values for the measurements of strain and stress tensors,
respectively. We concentrate on the region in the center of
the sampling line (points 15–80), to minimize the effect of
boundaries as well as the singularity at r = 0.

For S18 model, all the components of strain and stress ten-
sors are in a good agreement with the theoretical predictions.
As could be expected, random MSMs exhibit a somewhat
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Fig. 6 The stress component σ12 for S18 random MSM
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Fig. 7 The stress component σ12 for S11 random MSM
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Fig. 8 The strain component ε12 for S18 random MSM
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Fig. 9 The strain component ε12 for S11 random MSM
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Fig. 10 Mean deviation of the strain components measured in the
MSM models from those calculated based on Eq. (23)
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Fig. 11 Same as in Fig. 10 but for the stress components

more erratic behavior than cubic lattice MSM; oscillations
around theoretical curves are present for all the test cases.
For the strain tensor the errors systematically increase as 〈S〉
is decreased. Stress components, however, do not seem to
be affected by the change of 〈S〉 to the same extend. In the
random networks with low 〈S〉 values, statistical noise plays
a significant role, which results in the locally anisotropic and
inhomogeneous structures, and corresponding inaccuracies
in local node displacements. This, however, does not affect
the momentum flow to the same degree, and the network still
gives a good elastic response.

5.3 Deflection test

To verify how our models behave in a typical situation we
have performed a deflection test, where a bar of elastic mate-
rial with dimensions 4a0 × 1a0 × 1a0 bends upon a constant
force applied perpendicularly to one of its ends. Besides com-
paring the numericallymeasured deflectionwith the theoreti-
cal predictions, one can also directly assess the visual quality
of the model.

A deformation of such beam is given by [8]:

�y = F

E
2x2(3L − x), (25)

where F is the applied force, E Young’s modulus, L length
of the beam and x denotes the distance from the fixed end of

σ σ

Fig. 12 Asegment of a bent beam.Left continuousmodel, right lowest
possible resolution of cubic MSM

the beam. The equation holds for deflections which are small
(the radius of the bend) when compared with the thickness
of the beam.

As we have mentioned in Sect. 3.3, many popular dis-
cretization approaches treat a continuousmodel as composed
of non-overlapping volumetric primitives. This includes
cubic lattice described in Sect. 3.2. This experiment exposes
a weakness of such approaches. To illustrate the problem
let us consider a small segment of a bent beam as shown
in the Fig. 12. The upper half of the material is stretched,
the lower is compressed and in the middle there is a neu-
tral surface, which does not experience any tension. The
total momentum flow through both lower and upper parts
is proportional to the force applied at the far end. In con-
tinuous model the tension increases linearly with the dis-
tance from neutral surface, and the total momentum flow
can be calculated as an integral from zero to σmax present
near the surface (shaded triangle in Fig. 12). On the other
hand, in discretized system,the flow does not change contin-
uously, but is localized on the springs. In case of a beam,
which thickness is represented by a single cubical element,
this means that the whole momentum flow of the upper
and lower parts will be localized on one spring,respectively
(shaded square on the Fig. 12). For these two flows to match
(continuous and discretized), the strain on the spring has to
match the strain in the middle between the neutral surface
and the border of a continuous beam. This means that the
force applied to low resolution cubic MSM has to be two
times larger than corresponding force applied to continuous
model, to achieve the same deflection. If the resolution of
the discretized model is increased, the stress gradient can be
approximated more accurately and the response to a bending
forcewill be closer to the response of continuousmodel, with
the bending force obeying Fa = F/(1 − 0.5a), where a is
the length of elementary cube, the thickness of the beam is
assumed to be 1 and F is the force applied in the continuous
model.

The node-oriented discretization approaches, in which
mass of a region of the material is localized in the center of
this region, and not distributed into its corners, do not suffer
from this artifact. This includes random MSM described in
Sect. 3.3. Cubic lattice MSM from Sect. 3.2 can be adapted
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Fig. 13 Deflection test for four different MSMs. Low resolution cubic
MSM with the edge of an elemental cube a = 0.5 a0, number of mass
points N = 32 and S = 132 springs. High resolution cubic MSM,
a = 0.25 a0, N = 256, S = 1632. Low resolution random MSM, N =
57, S = 258. Medium resolution random MSM, N = 161, S = 934.
Applied force F = 0.1[k0a0], Young’s modulus E = 250 k0/a0. The
origin of the x-axis is placed in the middle of the frozen region

easily as well, by following Eq. 19. The nodes would no
longer be placed on the surface of an object, but in the dis-
tance 0.5a within it (see the leftmost model on the Fig.14).
For the example from Fig. 12 it means that springs will be
already placed in the middle between neutral surface and
the border of the beam and will correctly approximate the
momentum flow present in continuous system.

Numerical experiments confirm that the deformation of
such models depends only weakly on the resolution of the
network. We have tested various resolutions for both cubic
and randomMSMs. Example profiles of small deflections of
four chosen models are presented in Fig. 13, together with
theoretical curve. Small differences between low and high
resolution cubic MSMs are most likely caused by the change
of effective length of the beam caused by discretization (the
force is no longer applied precisely at the end of the beam,

but at the point 0.5a inside of the beam). We set the origin of
x-axis to be in the middle of the frozen region; for random
MSM this region extends to 1.1minD from the end of the
bar, for cubic MSM it is simply the leftmost layer of nodes.
Medium resolution random MSM curve should be treated
as having 5% uncertainty, and low resolution one as having
10–15% (based on the changes observed between different
runs of the test).

Figure 14 shows results for a bigger force with large
deflection. Even though Eq. 25 no longer holds, the defor-
mation of all MSMs remains consistent among different res-
olutions and MSM types. In all the conducted tests, various
resolutions of cubic MSMs behave almost identically. Both
medium and low resolution random MSMs behave surpris-
ingly well, exhibiting relatively small deviations from lattice
models, which shows that even such unsophisticated method
of generatingMSMallows one to obtainmodelswith a decent
quality.

6 Conclusion and final remarks

In this work we have formulated a methodology for con-
structing the mass spring models with well-defined physical
properties for the use in Computer Graphics. In particular, we
emphasized the importance of isotropy of the models and the
limitations it places on the geometry of the network. Next,
we have discussed the classical result of the theory of elas-
ticity that while any value of the Young’s modulus can be
obtained by tuning the spring coefficients in the network, the
value of the Poisson’s ratio is constrained to be 1/4 (in 3D).
Finally, we have derived a simple formula, Eq. (20), linking
the Young’s modulus with the mean value of kL2 throughout
the network, where k and L are the spring stiffness coefficient
and its length, respectively. This is a relatively simple and yet
general formula which can be applied to virtually any MSM
and does not require a complicated analysis of the model.

Fig. 14 Deflection test for four different MSMs. In each panel, a wire
frame of a MSMmodel of an elastic bar of dimensions 4a0 ×1a0 ×1a0
is shown together with visual representation of the bar (a mesh within
which the MSM is embedded). From the left (1) Low resolution cubic

MSM, (2) High resolution cubic MSM, (3) Low resolution random
MSM, (4) Medium resolution random MSM. Numbers of nodes and
springs same as in Fig. 13. Applied force F = 4.1[k0a0], Young’s
modulus E = 250 k0/a0
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Fig. 15 Cracks forming on a
surface of drying material. Top
view of a cylindrical block.
Left cubic lattice MSM,
right random MSM

Next, we have measured the elastic properties of both
cubic and random lattices in a series of simple test simula-
tions and shown that they agree satisfactory with theoretical
predictions and thus are well suited for the modeling of elas-
tic materials. The random MSMs seem to perform almost
as good as the cubic ones when the global deformations of
the system are concerned, but slightly underperform at the
smaller scales (of the order of few internode distances). Even
though the difference is not large, it does show that MSMs,
particularly low resolution ones, require attention duringgen-
eration process to minimize discretization errors. Overall,
however, the performance of randommodels is good enough
for them to be an attractive alternative to the cubic models,
as in many situations a slight decrease of accuracy may be
an affordable price to pay for the flexibility of choosing node
positions. Disordered MSM may be particularly suitable for
simulating fracture or crack propagation. In Fig. 15 we show
an example of such application, where it is clearly visible that
cracks formed on a lattice-based MSM have a tendency of
following specific ”propagation” planes inherently defined
by the lattice geometry and not the properties of the mater-
ial. At the same time, disordered MSMs are not influenced
by this and the crack patterns are much more natural.

It should also be noted in this context that the random
MSMofFig. 2 is just a simple example of this class ofmodels,
given purely for the sake of illustrating the calculation of
elastic properties. If desired, a more sophisticated disordered
MSMs can be constructed, better tuned to a particular system
or purpose in mind; in particular additional attention may
be required to properly generate the surface of an object.
Importantly, the formalismpresented here can also be applied
to these more specific systems.
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