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Abstract

The Drude–Lorentz model of a nonpolar dielectric with the simple cubic, face-centered and
body-centered crystal lattice structures is considered. The electrostatic spectral density of the
renormalized polarizability is found. The problem is equivalent to the calculation of the elec-
tronic density of states in the model. The obtained spectra are analyzed and the critical points
are identi�ed. The results are compared with the computer simulation data for a hard-sphere

uid. In the latter, the structure analogous to the transverse and longitudinal polarization modes
characteristic for a solid dielectric is shown to exist. c© 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The classical Drude–Lorentz model [1] is a system of harmonic oscillators coupled
via electrostatic dipole–dipole interactions. The model captures the key features of
the dielectric response of nonpolar 
uids and, therefore, was and still is a subject of
extensive theoretical studies.
There are two basic problems posed for nonpolar systems. The �rst one is to deter-

mine the complex dielectric constant; its imaginary part gives the absorption spectrum.
The second problem is to �nd the so-called renormalized (or e�ective) polarizabil-
ity which characterizes the Onsager’s [2,3] reaction �eld. This �eld is due to the
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polarization of the medium induced by a selected frozen dipole. The dependence of
the renormalized polarizability on the bare polarizability of atoms leads to a spectral
representation with the spectral density which is closely related to the density of states
in the Drude–Lorentz model [3–5]. This is also relevant for the van der Waals binding
energy of the 
uid [6].
The absorption spectrum and the density of states have been determined by computer

simulations for a 
uid with hard sphere statistics [3,7], as well as for Lennard–Jones

uids [8]. There exists also a theoretical explanation of the simulation results in the
case of very low-density systems. It has been shown, for example, that the spectra
have nontrivial universal shapes in the dilute gas limit [8–11], universal in the sense
that details of the geometrical microstructure are irrelevant. However, for higher den-
sities, even in the semi-diluted regime, theoretical approximation schemes are not fully
satisfactory. The main discrepancy is that the renormalized polarizability spectrum de-
termined by simulations consists of two very broad peaks, while present theoretical
calculations lead to one broad peak structure.
In this paper we will show that these two broad peaks correspond to contributions

from the longitudinal and transverse polarizability modes characteristic for crystals. To
do that we calculate the renormalized polarizability spectrum for the primitive cubic
lattices and determine the separate contributions from di�erent polarization modes. In
this case one can use the solid state physics methods and get very accurate results. It
is worth mentioning that for the lattices the e�ective dielectric constant satis�es the
Clausius–Mossotti formula exactly.
Having very accurate results for the cubic lattices, we will also check the quality

of the continued fraction method used by Cichocki and Felderhof [3,7] to determine
the spectra in disordered systems. In this method it is only necessary to calculate a
few �rst moments of the spectral density. The rest follows from the powerful theory
of Stieltjes integrals [12,13].

2. Drude–Lorentz model of a nonpolar dielectric

We consider the Drude–Lorentz model of a nonpolar dielectric. In this model each
molecule is represented as a �xed nucleus accompanied by an elastically bounded
“dispersion electron” with the eigenfrequency !0. The interaction potential between any
two molecules is limited to dipole–dipole terms. The Hamiltonian for such a system
reads

H =
∑
i

p2i
2m

+
∑
i

1
2
m!20u

2
i −

1
2
e2
∑
i; j

ui · T̂ij · uj ; (1)

where ui is the deviation of the ith electron from its equilibrium position, pi its mo-
mentum and T̂ij is the dipole–dipole interaction tensor

T̂ij = T̂ (ri − rj);
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Table 1
The characteristics of the primitive cubic lattices considered in the
paper

Lattice Basis Elementary Nearest Reciprocal
vectors cell neighbour lattice

volumne (v) distance basis

sc (1,0,0) 2�(1; 0; 0)
(0,1,0) 1 1 2�(0; 1; 0)
(0,0,1) 2�(0; 0; 1)

fcc (0,1,1) �(−1; 1; 1)
(1,0,1) 2

√
2
2

�(1;−1; 1)
(1,1,0) �(1; 1; 1)

bcc (−1; 1; 1) �(0; 1; 1)

(1;−1; 1) 4

√
3
2

�(1; 0; 1)

(1; 1;−1) �(1; 1; 0)

where

T̂ (r)=
−Î + 3r̂r̂
r3

: (2)

Suppose that the dielectric has a crystal structure with the unit cell speci�ed by the
basic vectors a1; a2; a3. The lattice vector is

rn= n1a1 + n2a2 + n3a3 ; (3)

where n denotes the set of integers (n1; n2; n3). Here we will consider the three primitive
cubic lattices only: fcc, bcc and sc. Nevertheless, our calculations are automatically
applicable to any other lattice structure. The parameters of the lattices considered in
the paper are given in Table 1 (note that all the distances are scaled here by the lattice
constant).
Let us now rewrite the Hamiltonian (1) in the reciprocal space variables

u(k)=
√

�
(2�)3

∑
n

une−ik·rn ; (4)

and

p(k)=
√

�
(2�)3

∑
n

pneik·rn ; (5)
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where the summation is over the lattice points and � is the elementary cell volume.
In terms of these variables the Hamiltonian reads

H =
∫
BZ

p?(k) · p(k)
2m

dk +
∫
BZ

1
2
m!20u

?(k) · u(k)dk

−1
2
e2
∫
BZ

u?(k) · T̂ (k) · u(k)dk ; (6)

where the integrals are performed over the Brillouin zone, and T̂ (k) is the Fourier
transform of the dipole–dipole interaction tensor

T̂ (k)=
∑
n

′
T̂ (rn)eik·rn : (7)

Prime means that n=0 is excluded from the summation.
Since the above Hamiltonian is quadratic in u(k), we are able to express any solution

of the equation of motion in terms of the normal modes (polarization waves) [14] of
the form

un=A(k)ei[k·rn−!(k)t] ; (8)

with three mutually orthogonal polarizations for each k. The frequencies !i(k) of the
modes are given by

!i(k)=

√
!20 −

e2

m
�i(k)=!0

√
1− �0�i(k); i=1; 2; 3 (9)

where �0 = e2=m!20 is a static polarizability in the Drude–Lorentz model and �i(k) are
eigenvalues of the operator T̂ (k).
We see that these eigenvalues are connected with the frequencies of collective os-

cillations of Drude–Lorentz oscillators. The eigenvectors give directions of vibrations.
In particular, one can show that in the long-wave limit (k→ 0) the three polarization
waves described above reduce to one longitudinal and two degenerate transverse waves
with the frequencies

!L=!0

√
1 +

8��0
3�

; !T =!0

√
1− 4��0

3�
: (10)

One can now de�ne the density of states �D(!) in the Drude–Lorentz model [3–
5]; �D(!)d! is a number of the polarization waves with frequencies between ! and
!+ d!.
The density of states �D(!) is closely connected with the so-called electrostatic

spectrum density. To de�ne this quantity, let us consider a crystal lattice of polarizable
point dipoles with polarizability �. Next, apply a uniform electric �eld E0 locally on
one of the lattice sites. The electric dipole moment induced in this site will in turn
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induce dipole moments in other sites and so on. As a result of these interactions dipoles
are induced in each lattice point. They are determined by the system of equations

�j = �


E0�j1 +∑

k 6=j
T̂jk · �k


 ; j=1; 2; : : : : (11)

Here we use an index “1” for the selected site where E0 is applied.
The renormalized polarizability �′ is de�ned by the relation

�1 = �
′ ·E0 : (12)

Due to the lattice symmetry �′ is a scalar. The product of the number density n
(for crystals n=1=�) and the renormalized polarizability �′ de�nes the so-called self-
susceptibility. The coe�cient �′ is a very important characteristic of a nonpolar dielec-
tric and is related to Onsager’s [2,3] reaction �eld R by

R=
(
�′

�
− 1
)
E0 : (13)

To �nd a microscopic expression for �′, let us introduce in�nite-dimensional vectors
�=(�1; �2; : : :) and E=(E0; 0; 0; 0 : : :) and the in�nite matrix

T=



0 T̂12 T̂13 : : :
T̂21 0 T̂23 : : :
T̂31 T̂32 0 : : :
...

...
...

...


 :

We can now rewrite Eq. (11) in the following form:

�= �(E+T · �) : (14)

Therefore,

�=
1

z −T
E ; (15)

where z=1=�. Thus, we get the following expression for the renormalized polarizabil-
ity:

�′=
1
3

∑
�

〈
e1�

∣∣∣∣ 1
z −T

∣∣∣∣ e1�
〉
; (16)

where e1�=(e�; 0; 0; 0 : : :) and e� is a Cartesian unit vector for the direction �= x; y; z.
Next, let us consider the eigenproblem for the matrix T

T |�
〉 = � |�
〉 ; (17)

where |�
〉 is the eigenvector corresponding to the eigenvalue � (
 accounts for the pos-
sible degeneracy). The eigenvalues � are real since the matrix T is real and symmetric.
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With the completeness relation

∑



∞∫
−∞

|�
〉 〈�
| d�= Î ; (18)

one has

1
z −T

=
∑



∞∫
−∞

|�
〉 〈�
|
z − � d� : (19)

This allows to write the renormalized polarizability in the following way:

�′=
1
3

∑
�

∑



∞∫
−∞

| 〈e1�|�
〉 |2
z − � d� ; (20)

Let us de�ne now the positive real function

�(�)≡ 1
3

∑
�

∑



| 〈e1�|�
〉 |2 ; (21)

which due to the relation (18) is normalized to unity
∞∫
−∞

�(�)d�=1 : (22)

One can rewrite Eq. (20) in the form

�′(z)=

∞∫
−∞

�(�)
z − � d� : (23)

The above relation is called the spectral representation of the renormalized polariz-
ability. The spectral density �(�) is sometimes called “electrostatic spectrum” of �′.
By the arguments analogous to those presented in [3,7], one can show that the spectral
density �(�) is nonzero only in the �nite interval of real axis. The relation

lim
�→0

1
z − �− �i =P

(
1

z − �
)
+ i��(z − �) ; (24)

also leads to

�(�)= lim
�→0

1
�
Im �′(�− i�) : (25)

It has been shown in Ref. [10] (see also the next section) that the spectral
density � is related to the density of states �D in the Drude–Lorentz model in the
following way:

�D(!)=
2m!
e2
�
(
�=

m
e2
(!20 − !2)

)
: (26)
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Thus to �nd the e�ect of broadening due to the dipole interactions on the density
of states it is enough to analyze the simple electrostatic system described above.

3. Reciprocal space formulation of the problem

Our aim is to calculate the spectral density � for the cubic lattices. To proceed
we will derive an expression for the renormalized polarizability in terms of reciprocal
space integrals. First, we expand this polarizability in the inverse powers of z. Eq. (16)
leads to

�′(z) =
1
3

∑
�

〈
e1�|z−1 +Tz−2 +T2z−3 + · · · |e1�

〉

=
1
3
Tr

(
z−1

[
1 + z−2

∑
l

T̂1lT̂l1 + z−3
∑
lm

T̂1lT̂lmT̂m1 + · · ·
])

; (27)

where Tr stands for the trace over Cartesian indices – (x; y; z) and we have used the
fact that the operator T̂ is traceless. The relation∫

BZ

eik·r dk=
8�3

�

∑
n

�r; rn ; (28)

allows us to express the successive terms in Eq. (27) as

∑
a1 ; a2 ; :::; aj

T̂1a1 T̂a1a2 : : : T̂aj1 =
�
8�3

∫
BZ

T̂
j+1
(k)dk : (29)

Taking into account that

Tr(T̂
j
(k))=

3∑
i=1

�ji (k) ;

with �i(k) being eigenvalues of T̂ (k), one can write

�′(z)=
�

24�3

3∑
i=1

∞∑
j=0

∫
BZ

�ji (k)z
−j−1 dk : (30)

Finally, performing the sum over j, one gets

�′(z)=
�

24�3

3∑
i=1

∫
BZ

dk
z − �i(k) ; (31)

and the spectral density becomes

�(�)= lim
�→0

�
24�4

Im


 3∑
i=1

∫
BZ

1
�− �i(k)− i� dk


 : (32)
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Therefore, we have reduced a problem of �nding the spectral density to performing
the Fourier transform of the dipole–dipole interaction tensor T̂ (k), solving its eigen-
problem and carrying out the integral (32) over the Brillouin zone.
From Eq. (32) we see that �(�)d� can be interpreted as a number of eigenvalues

of a tensor T̂ (k) belonging to the interval (�; � + d�). This remark, together with the
formula (9), leads immediately to the relation (26) between the electrostatic spectrum
and the Drude–Lorentz density of states.
The sum (7) can be calculated using the method described by Nijboer and de Wette

[16] based on the Ewald summation procedure. After simple modi�cations of their
results we get

T̂ (k) =
4
3
√
�

∑
n

′
�
(
5
2
; ��r2n

) −Î + 3r̂nr̂n
r3n

eik · rn−4�
3�

∑
n

e−
�q2n
� (−Î + 3q̂nq̂n) :

(33)

where qn= k−hn with hn being the reciprocal lattice vectors and � – the so-called Ewald
parameter that should be chosen appropriately to obtain equally rapid convergence in
the direct and reciprocal sums. Formula (33) is fast convergent. In practice, to calculate
T̂ (k) with the accuracy of the order of 10−7 it is enough to sum over 43 lattice points.
It is not necessary to evaluate T̂ (k) for all k∈BZ since the following relations hold:

T̂ (kx; ky; kz)= T̂ (�(kx; ky; kz)) ; (34)

where kx; ky; kz are the Cartesian components of k and �(kx; ky; kz) denotes any permu-
tation of (kx; ky; kz). Moreover,

T̂ (�1kx; �2ky; �3kz)=



�1
�2
�3


 T̂ (kx; ky; kz)



�1
�2
�3


 ; (35)

where �i=±1. Thus we need to evaluate T̂ (k) only for k obeying

06kz6ky6kx : (36)

Together with the observation that k should remain in the �rst Brillouin zone of the
reciprocal lattice, the above �nally imposes the following conditions on k:
• for sc

06kz6ky6kx6� ; (37)

• for fcc
06kz6ky6kx6�

kx + ky + kz6 3
2� ;

(38)
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• for bcc

06kz6ky6kx6�

kx + ky6� :
(39)

The relations (37)–(39) describe the so-called Irreducible Brillouin Zones (IBZ) for
the respective lattices.

4. Calculation of the spectral density

There exist numerous methods of computing the integrals of the form Eq. (32)
– they often arise in frequency distribution function calculations. Di�erent methods
of dealing with such integrals are described at length in the review article by Gilat
[17]. Here we use two of the standard methods described in [17]. The �rst is the RS
(“root sampling”) method in which one solves the T̂ (k) eigenproblem for k vectors
forming a �ne uniform mesh in the irreducible section of the �rst Brillouin zone. Then
the obtained eigenvalues are sorted out into a number of channels thereby forming a
histogram which approximates the spectrum.
The second method is the LA (“linear analytic”) method in which one computes

the eigenvalues �i(k), as well as their gradients ∇�i(k), at evenly spaced points in
reciprocal space and then �nds � in between by means of a linear extrapolation.
In addition, we use the continued fraction (CF) method. We proceed in the analogous

way to that described in Refs. [7,3] where the CF method was applied to calculate the
electrostatic spectrum for the dielectric constant and the renormalized polarizability in

uids. In such systems, because of the lack of periodicity, one cannot apply standard
solid-state methods using the reciprocal-space formulation. The idea of the CF method
is to represent �′(z) by a continued fraction of the form

�′(z)=
a0

z + b1 − a1

z+b2−
a2

z+b3−:::

; (40)

where ai and bi are real and ai¿0 (the so-called real J -fraction [12]).
The possibility of �nding continued fraction representation for �′(z) is ensured by

the theorem due to Marko� [13]. It states that every function of the form (23), with
the normalized positive spectral density �, can be represented as a real J -fraction.
Moreover, if we know the coe�cients cn in the asymptotic series

�′(z)=
∞∑
n=0

cn
zn+1

; (41)

then we can calculate ai and bi by means of a simple and fast algorithm described
in Ref. [12]. The coe�cients cn are the moments of the spectral density and can be
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Table 2
List of the �rst ten moments cn de�ned by Eq. (42)
for the three primitive cubic lattices

n sc fcc bcc

0 1 1 1
1 0 0 0
2 16.803 3.6138 0.9076
3 39.705 5.0854 0.6324
4 606.42 26.031 1.6487
5 3135.6 69.551 2.1595
6 31088 266.98 4.1688
7 2:1819× 105 879.58 6.7646
8 1:9229× 106 3219.6 12.357
9 1:5256× 107 11430 21.732
10 1:3123× 108 42006 39.786

expressed in our case as

cn=

∞∫
−∞

�(�)�n d�=
�

24�3

3∑
i=1

∫
BZ

�ni (k)dk : (42)

Due to the normalization condition (22) c0 = 1 and since the operator T̂ (k) is traceless,
c1 = 0.
The integrals in formula (42) are much easier to carry out than the integral (32)

and can be performed with high accuracy. In Table 2 we list the values of the �rst ten
moments cn. From that we have found the coe�cients ai and bi of the representation
(40). Their values are given in the Table 3.
The results suggest that ai and bi quite quickly tend to the limiting values a∞

and b∞. If we replace the coe�cients ai and bi from a certain level onward by
a∞ and b∞, respectively, then we obtain

�′(z)=
a1

z + b1 − a2

z+b2+···− an−1

z+bn−1−P

; (43)

with P obeying

P=
a∞

b∞ + z − P : (44)

So that

P= 1
2(z + b∞) +

1
2

√
(z + b∞)2 − 4a∞ ; (45)

where one must take the branch of the square root with a cut between z1 = 2
√
a∞−b∞

and z2 =−2√a∞ − b∞. In this way, we get an analytical (although approximate) ex-
pression for �′(z) and consequently, by use of Eq. (25), for �(�). It is worth mentioning
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Table 3
Coe�cients an i bn in the continued fraction representation (40) of the renormalized
polarizability for the three primitive cubic lattices. Due to the normalization a0 is equal
to unity

sc fcc bcc

n an bn an bn an bn

1 16.803 0 3.6138 0 0.9076 0
2 13.703 2.3628 1.6111 1.4076 0.4234 0.6968
3 12.894 2.1344 2.9642 1.0900 0.7225 0.4396
4 13.880 2.3341 2.1037 0.9018 0.5378 0.5643
5 14.399 2.1104 2.7708 1.1675 0.6806 0.5663
6 14.086 2.2535 2.2738 0.9683 0.5748 0.4842
7 14.435 2.1365 2.6191 1.1541 0.6404 0.5551
8 13.907 2.1308 2.4347 0.8822 0.6214 0.4738
9 14.193 2.1781 2.3821 1.1799 0.6078 0.5643
10 14.194 2.1242 2.5606 0.9538 0.6212 0.5107
11 14.137 2.2028 2.3770 1.1336 0.6034 0.5328
12 14.238 2.1595 2.4696 1.0355 0.6358 0.5195

that the �nal result is not very sensitive to small changes of the values a∞ and b∞.
Oscillations of an and bn around the limiting values (see Table 3) are responsible for
the subtleties of the spectrum. The more levels of the continued fraction is taken into
consideration, the more details of the spectrum one is able to get.
We have applied the above methods to calculate the spectral density � for three

primitive cubic lattices. The results are discussed in the next section.

5. Results

The spectra obtained by the use of the RS, LA and CF methods are given in
Figs. 1–3. First, we compare e�ciencies and accuracies of the methods.
In the case of RS and LA techniques, a good estimate of the accuracy is the so-called

computational resolution (see [17,18]) de�ned as

N�=
�max − �min

��
; (46)

where �max − �min is the range of � values and �� is the resolution.
It can be shown [18] that the relative error of the amplitude of the spectrum ��=�

is closely related to N�. In fact, for values of � that are not too close to critical points
of the spectra (see next section), ��=� is proportional to N−1

� . In the vicinity of highly
peaked critical points the error becomes somewhat larger.
In the RS method we found the eigenvalues of T̂ (k) for about 12 000 points in IBZ.

N� was equal to 300 and ��=�≈ 1%.
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Fig. 1. The spectral density �(�) for the sc lattice. The solid curve denotes the spectrum obtained by the
use of the LA method and the dotted one was calculated by the CF method. The results of the RS method
are indistinguishable from those of the LA on the scale of the �gure.

Fig. 2. Same as in Fig.1 for the fcc lattice.

In the LA method calculations we found �i(k) and ∇�i(k) for about 3000 points in
IBZ, obtaining N�=2800 and the accuracy ��=�≈ 0:2%. The ratio of computing times
for both the methods is TRS=TLA≈ 1:8.
The above values are a direct evidence that the LA method is more e�ective and,

at the same time, less time consuming from the two.
Let us now consider the CF method. To compute the integrals (42) we used 12 000

values of k. The total computing time TCF=TRS ≈ 1:1 and the accuracy was equal to
��=�≈ 1:5% (again the above holds for the points not too close to the singularities of
the spectrum – in the vicinity of which the error ��=� may even come up to 4%). The
CF method gives us quickly quite a good approximation of a spectrum – to obtain the
above-described results we took only 7 levels of the continued fraction (43). However,
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Fig. 3. Same as in Fig.1 for the bcc lattice.

Fig. 4. Contributions to the spectrum coming from di�erent eigenvalues �i for the sc lattice. The eigenvalues
�1 and �2 correspond to the transversal polarization modes whereas �3 to the longitudinal one. The letters
denote the critical points as described in Table 4.

as the crystal spectrum is not analytical, to render all the subtle details of it one would
have to take a very large number of the continued fraction levels. It is worth mentioning
that the CF method is well-suited to deal with the 
uid spectra which are much more
smoother than the solid one and contains no critical points.
Figs. 4–6 present the contributions to the spectrum �(�) coming from the di�erent

eigenvalues �i(k). Here also we mark the van Hove singularities of the spectra, i.e.
points of discontinuity of the �rst derivative of �(�). There are several kinds of singu-
larities appearing in these spectra: analytical critical points (coming from those points
in k space where ∇�i(k)= 0), singular critical points (corresponding to the discon-
tinuities in ∇�i(k)), 
uted critical points (caused by the degeneracies of eigenvalues
�i(k) in the high-symmetry points of the Brillouin zone) [15,19,20]. Moreover, there
are also some non-analytical critical points due to the long-range interactions in the
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Fig. 5. Same as in Fig. 4 for fcc lattice. The letters denote the critical points as described in Table 5.

Fig. 6. Same as in Fig. 4 for bcc lattice. The letters denote the critical points as described in Table 6.

system [20–22]. We have identi�ed all the critical points in the spectra, found the k
values to which they correspond and checked the Morse relations [19,20] for them.
The results of this analysis are given in Tables 4–6, where we list the critical points,
their position in the k space and their topological indexes (we apply here a standard
notation [15] with index 0 designating minimum, 3-maximum, whereas 1 and 2 stand
for two kinds of saddle points).
It is worth paying attention to the overall structure of the spectrum. We see that the

contributions coming from the longitudinal (corresponding to the eigenvalue �3) and
transverse (corresponding to �1 and �2) modes are rather separated (especially in case
of fcc and bcc crystals) so that the spectrum has a characteristic two-peaked structure.
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Table 4
The critical points for the contributions to the spectral density from
the eigenvalues �i; i=1; 2; 3 for the sc lattice

Eigenvalue Label Coordinates Topological
(1=2�)(kx; ky; kz) index

�1 � (0; 0; 0) 1
X ( 12 ; 0; 0) 2

M ( 12 ;
1
2 ; 0) 3

R ( 12 ;
1
2 ;
1
2 ) 0

�2 � (0; 0; 0) 2
X ( 12 ; 0; 0) 3

M ( 12 ;
1
2 ; 0) 0

R ( 12 ;
1
2 ;
1
2 ) 1

�3 � (0; 0; 0) 2

X ( 12 ; 0; 0) 0

M ( 12 ;
1
2 ; 0) 1

R ( 12 ;
1
2 ;
1
2 ) 3

Table 5
Same as in Table 4 but for the fcc lattice; (s) – stands for the
singular critical point and (∗) denotes a singular point producing the
discontinuities only in the higher derivatives of �(�) (imperceptible
in the �(�) spectrum)

Eigenvalue Label Coordinates Topological
(1=2�)(kx; ky; kz) index

�1 � (0; 0; 0) 3
X ( 12 ; 0; 0) 1

W ( 12 ;
1
4 ; 0) 0

L ( 14 ;
1
4 ;
1
4 ) 2

�2 � (0; 0; 0) 3
X ( 12 ; 0; 0) 2

W∗ ( 12 ;
1
4 ; 0) 1(s)

L ( 14 ;
1
4 ;
1
4 ) 2

Q ≈(0:34; 0:34; 0) 0(s)

�3 � (0; 0; 0) 0

X ( 12 ; 0; 0) 1

W ( 12 ;
1
4 ; 0) 3(s)

L ( 14 ;
1
4 ;
1
4 ) 1

Q∗ ≈(0:34; 0:34; 0) 2(s)
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Table 6
Same as in Table 5 but for the bcc lattice; (∗∗) denotes a singular
point giving rise to the discontinuities only in the second derivative
of �(�)

Eigenvalue Label Coordinates Topological
(1=2�)(kx; ky; kz) index

�1 � (0; 0; 0) 3
N ( 14 ;

1
4 ; 0) 2

H ( 12 ; 0; 0) 0

P ( 14 ;
1
4 ;
1
4 ) 0(s)

G ≈(0:34; 0:16; 0:16) 1
�2 � (0; 0; 0) 3

N ( 14 ;
1
4 ; 0) 2

H ( 12 ; 0; 0) 1

P∗ ( 14 ;
1
4 ;
1
4 ) 1(s)

G∗∗ ≈(0:34; 0:16; 0:16) 0(s)

�3 � (0; 0; 0) 0
N ( 14 ;

1
4 ; 0) 1

H ( 12 ; 0; 0) 3

P ( 14 ;
1
4 ;
1
4 ) 3(s)

G∗ ≈(0:34; 0:16; 0:16) 2(s)

6. Comparison with computer simulation data for 
uids

In this section we compare the calculated �(�) spectra for the cubic lattice with
the analogous spectra for the hard-sphere 
uid. Computer simulations for such a 
uid
were performed by Cichocki and Felderhof [3]. They considered the system of spheres
distributed according to the equilibrium statistics. Each sphere had in its center a po-
larizable dipole with polarizability �. They calculated the successive moments of the
spectra for a given con�guration of particles and then averaged over a large number
of con�gurations. In this way, they got the coe�cients cn in the power series (41)
and, �nally, used the CF method to obtain the spectral density (in the case of a 
uid,
the reciprocal space techniques cannot be applied because of the lack of periodicity).
The simulations have been run at six di�erent values of the volume fraction � be-
tween �=0:1 (semi-diluted 
uid) and �=0:5 (very dense 
uid); � is the ratio of the
volume occupied by spheres to the total volume. Fig. 7 shows the results for spectral
density �′= �n as a function of �′= �=n, where n is the number density. Note that after
such a rescaling, the 
uid spectrum tends to the universal lineshape in the low-density
limit [10].
In Fig. 8 we present the comparison of the spectrum for a very dense 
uid (�=0:5)

with the rescaled spectrum of the bcc crystal. We see that the �′(�′) spectrum for the
crystal lattice is modeling the behavior of �′ for the dense 
uid in quite a good way.
An analogous plot for fcc lattice is qualitatively similar. Of course, in the 
uid spectrum
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Fig. 7. The rescaled spectral density �′(�′) for the hard sphere 
uid for the volume fractions
�=0:1; 0:2; 0:3; 0:4; 0:46; 0:5.

Fig. 8. The rescaled spectral density �′(�′) for the dense hard sphere 
uid (�=0:5) and for the bcc lattice.

we will not �nd van Hove’s singularities (again because of the lack of periodicity).
That is why there are no sharp peaks in the 
uid spectrum and, on the whole, it
is much more smooth than the solid one. The structure, however, remains the same.
In particular, one can �nd the characteristic two broad peaks in the 
uid spectrum the
counterparts of which for the solid are connected with the longitudinal and transverse
polarizability modes.
What is even more interesting is that this two-peaked structure survives also in the

diluted 
uid – the traces of it can be seen in Fig. 7 even for the �=0:1! We observe
here that, although the spectrum broadens and smoothes down as the density of 
uid
decreases, the overall structure remains the same. Therefore, it seems that even for the
low densities the 
uid “feels” in a way the transverse and longitudinal polarization
modes.
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It is worth pointing out that this structure was so far not described analytically.
The approximate analytical expression for �(�) derived by Cichocki and Felderhof
[10] in the low-density limit does not show the above-mentioned two-peak structure.
The problem seems to be that in the 
uid one cannot decompose �(�) into the con-
tributions coming from the respective eigenvalues of T̂ (k). Instead one performs an
average over con�gurations which does not favor any direction in space. Hence simple
approximations lead in a “natural way” to one-peak structure.

7. Conclusions

We have found the electrostatic spectra of renormalized polarizability for the non-
polar dielectric with cubic crystal structure. Three methods (RS, LA and CF) have
been applied to compute the spectrum. It has been found that a very simple continued
fraction method gives very good results. We have analyzed the obtained spectra and
identi�ed their critical points. Next, we have shown that the structure of the spectra for
a 
uid corresponds in a wide range of density to the solid spectra with the transverse
and longitudinal modes. This fact must be taken into account if one wants to describe
Drude–Lorentz 
uid spectra in a proper way.
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