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Abstract
We incorporate hydrodynamic interactions in a structure-based model of
ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak
force when stretching the protein at constant speed, especially at larger speeds.
Hydrodynamic interactions are also shown to facilitate unfolding at constant
force and inhibit stretching by fluid flows.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It has been widely recognized that the water environment affects the energy landscape and
functionality of biomolecules in a profound way. There is, however, another solvent-related
effect that is considered less frequently: the hydrodynamic interactions (HI) between individual
segments of a biomolecule that moves. These interactions may affect the dynamics of
conformational changes because any motion of one segment generates a local fluid flow which
influences another segment.

The presence of HI is known to affects dynamic properties of soft matter. For instance, HI
modify the values of diffusion coefficients in colloidal suspensions [1], affect the characteristics
of the coil-stretch transition in polymers [2], change the kinetic pathways of phase separation in
binary mixtures [3], and alter the kinetics of macromolecule adsorption on surfaces [5]. Much
less is known about the role of HI in protein folding and unfolding processes. Dickinson [4]
and Tanaka [6] speculated that HI might affect the kinetics of protein folding, but the actual
numerical assessment of the role of HI has come with the paper by Baumketner and Hiwatari
[7]. They have considered coarse-grained models and found that HI delay folding of a β-hairpin
but do not affect folding of the α-helix.

In this paper, we consider mechanical stretching of proteins and study the relevance of
HI to the process. The stretching can be accomplished in several ways and we discuss three
modes: at constant speed, at constant force, and through fluid flow. We chose ubiquitin as a
model system, since there is a large body of experimental [8–11] and theoretical [12–17] data
on its unfolding. A coarse-grained, Go-type model [18] of a protein is used, constructed based
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on the knowledge of its native state. The Go models have been shown to give surprisingly good
agreement with both the experimental results [14, 19, 20] and all-atom molecular dynamic
simulations [17] when it comes to stretching.

We outline the model in section 2, then introduce two different ways of tracking the
evolution of the system: through Langevin dynamics and Brownian dynamics in sections 3
and 4 respectively. In the following sections we discuss results pertaining to the three modes
of stretching and demonstrate that HI can take many roles: they inhibit unfolding by fluid flow,
but make the constant-force stretching faster. At constant speed, they reduce the peak force
if the speed is sufficiently high. This HI-related reduction in force may be downplayed in the
all-atom simulations of titin by Lu and Schulten [21] which would provide a part explanation
for the excessively large forces obtained in these studies.

2. The coarse-grained protein model

In our simulations, we use the coarse-grained, Go-type model of a protein. In the model,
each residue is represented by a single bead centred on the position of the Cα atom. The
successive beads along the backbone are tethered by harmonic potentials with a minimum
at 3.8 Å. The other interactions between the residues are split into two classes: native and
non-native. This determination is made by checking for native overlaps of all atoms in amino-
acids when represented by enlarged van der Waals spheres as proposed in [22]. The amino-
acids, i and j , that do overlap in this sense are endowed with the effective Lennard-Jones
potential Vi j = 4ε[( σi j

ri j
)12 − (

σi j

ri j
)6]. The length parameters σi j are chosen so that the potential

minima correspond, pair by pair, to the experimentally established native distances between
the respective amino-acids. In order to prevent emergence of entanglements, the non-native
contacts are endowed with a hard-core repulsion described by the r−12

i j part of the Lennard-
Jones potential combined with a constant shift term that makes the potential vanish smoothly
at 4 Å. The specificity of a protein is contained in the length parameters σi j . The energy
parameter, ε, is taken to be uniform. We take ε/kB = 900 K, which correlates well with the
data on titin and ubiquitin unfolding [14, 23]. Thus the reduced temperature, T̃ = kBT/ε, of
0.3 should be close to room temperature. All of the simulations reported here were performed at
this temperature. Various simulation methods to study the dynamics of the system are outlined
in the following sections.

3. Langevin dynamics (LD)

In this case, the dynamics of a protein is assumed to be governed by the Langevin equation

mr̈i = −γ (ṙi − u(ri )) + Fi + Γi . (1)

Here, ri is the position of the i th amino-acid, Fi is the net force on it due to intermolecular
potentials, γ is the friction coefficient, and u(ri ) denotes the solvent flow field. Finally, Γ is a
white noise term with the dispersion obeying

〈Γi (t)Γ j (t
′)〉 = 2kBT γ δ(t − t ′)Iδi j

where I is the identity matrix. The white noise term mimics the effect of the random collisions
of the amino-acids with the surrounding solvent, at the same time serving as a thermostat of the
system. However, this scheme completely neglects the effects of HI which may exist in a real
system, when the motion of one particle induces the flow influencing the dynamics of all the
other particles.
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In the simulations, the friction coefficient γ is taken to be equal to 2m/τ where τ =√
mσ 2/ε ≈ 3 ps is the characteristic timescale of oscillations in the Lennard-Jones well. The

parameter σ = 5 Å used in the above definition is a characteristic value of σi j in the system.
The selected value of γ corresponds to a situation in which the inertial effects are small [24, 25]
but the damping action is not yet as strong as in water. The equations of motion are solved by
a fifth-order predictor–corrector scheme.

Let us note, however, that although Langevin dynamics is commonly used in simulations
of biological systems the validity of this approach is not always well established. Namely,
as already noted by Lorentz [26], the Langevin equation in the above form may only be
used if there is a separation of timescales between the relaxation time of the particle (i.e. the
bead) velocity τv = m

γ
= 2a2ρ

9η
and the viscous relaxation time of the solvent, τη = a2 ρs

η
,

where ρ is the density of the particle, a its radius, and ρs the density of the solvent (see
also the thorough discussion in the book by Mazo [27]). The ratio of these two timescales
is equal to 2ρ/9ρs. Since the densities of proteins are only about 50% higher than those of the
surrounding liquid [22], there is no strong separation of timescales between the relaxation of
fluid variables and those of the bead and, strictly speaking, instead of equation (1) one should
use the generalized Langevin equation involving a memory kernel

mr̈i (t) = −
∫ t

0
dt ′ ξ(t − t ′)(ṙi (t

′) − u(ri , t ′)) + Fi (t) + Γi (t) (2)

where the noise is again Gaussian and related to the dissipative term through the generalized
fluctuation–dissipation relation

〈Γi (t)Γ j (t
′)〉 = kBT ξ(t − t ′)Iδi j .

Such an approach is naturally much harder to implement (see, however, [28]) and thus the
ordinary Langevin description as in equation (1) is usually resorted to. In this paper, we
show that in protein unfolding simulations the results of a simple Langevin dynamics (1) are
consistent with those of Brownian dynamics (see section 4). The latter is not affected by the
solvent and particle inertia effects, hence the agreement between the two methods seems to
imply that non-instantaneous response of the solvent to the change of particle velocity does not
play any important role in the protein unfolding processes.

4. Brownian dynamics (BD)

If the momentum relaxation timescale (τv) is small in comparison to the timescales
characterizing the conformational evolution of the system (τc), it is appropriate to describe
the dynamics in terms of equilibration of the particle configurations only. The exact definition
of τc is problem dependent: if the protein is stretched by the flow U then τc = a

U , if a force
F acts on the molecule then τc = aγ

F , and if the Brownian diffusion plays the central role in
particle evolution then τc = a2/D (where D is the diffusion constant and a the radius of the
bead). The algorithm for simulations of the evolution of particle positions in this time regime
has been devised by Ermak and McCammon [29]. The displacement of particle i in time step
�t (in the absence of the flow) obeys

ri − r0
i =

∑

j

(∇ j · D0
i j

)
�t + 1

kBT

∑

j

D0
i j · F0

j�t + Bi , (3)

where the index 0 denotes the values of respective quantities at the beginning of the time step,
D is the diffusion tensor and B a random displacement given by a Gaussian distribution with
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an average value of zero and covariance obeying

〈Bi B j〉 = 2D0
i j�t . (4)

It is nontrivial to generalize the above expression to incorporate the effects of a general
external flow field [30]. However, in the present case, we will be interested only in the uniform
flow, in which case one gets simply

ri − r0
i = U�t +

∑

j

(∇ j · D0
i j

)
�t + 1

kBT

∑

j

D0
i j · F0

j�t + Bi , (5)

where U is the flow velocity. If the diffusion tensor is nondiagonal, there exists a coupling
between the force acting on the particle j and the displacement of particle i (cf equation (3)).
This coupling, mediated by the solvent, is commonly referred to as the ‘hydrodynamic
interactions’.

Note that without the HI the diffusion tensor is simply

Di j = kBT

γ
Iδi j (6)

and we recover the overdamped limit of equation (1). The diffusion tensor D depends in a
complicated nonlinear way on the instantaneous positions of all particles in the system. For
a system of spheres, exact explicit expressions for the diffusion tensor Di j exist in the form
of the power series in interparticle distances, which may be incorporated into the simulation
scheme [31–37]. Here we adopt a pairwise, far-field approximation of D proposed by Rotne,
Prager [38] and Yamakawa [39],

Dii = kBT

γ
I (7)

and

Di j = kBT

γ

3a

4ri j

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[(

1 + 2a2

3r 2
i j

)

I +
(

1 − 2a2

r 2
i j

)

r̂i j r̂i j

]

, ri j � 2a

ri j

2a

[(
8

3
− 3ri j

4a

)
I + ri j

4a
r̂i j r̂i j

]
, ri j < 2a

(8)

where ri j = r j − ri and a represents the hydrodynamic radius of a bead. Since the above
expression is exact only in the large-ri j limit, the radius a should be taken to be significantly
smaller than 1.9 Å, which is half of the distance between the successive beads. On the other
hand, a cannot be too small, since the space along the chain is densely filled with amino-acids.
We take a = 1.5 Å in our simulations, which seems to be a reasonable starting point for
a qualitative assessment of HI impact on protein unfolding. However, further studies on the
impact of a on the system dynamics are needed; in particular, the hydrodynamic radius might
need to vary along the chain, reflecting the different sizes of residues.

In the approximation (8), the divergence of the diffusion matrix vanishes (∇ j · Di j ≡ 0),
which further simplifies the numerical scheme. However, if the full hydrodynamic interactions
are included, the divergence term should be taken into account [40].

The simulation using equation (3) together with (7) and (8) will be referred to as Brownian
dynamics with hydrodynamic interactions (BDHI), in contrast to a simple BD with the diagonal
diffusion tensor (6).

Note that the BD describes configurational evolution of the beads on timescales in which
the inertia effects of the beads and solvent molecules are negligible [41] and, therefore,
timescale separation issues discussed in section 3 are not pertinent here. This feature favours
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Figure 1. Force–extension curves for the ubiquitin unfolding at a constant speed obtained using
Langevin dynamics (dotted line) and Brownian dynamics with (thick solid line) and without (thin
solid line) hydrodynamic interactions. The successive panels correspond to the pulling speeds of
vp = 0.5, 0.05 and 0.005 Å/τ from bottom to top respectively.

BD as a method of choice when simulating stochastically driven motion of proteins at a coarse-
grained level [4].

In our previous studies on ubiquitin unfolding [16, 42], we have used LD. Here, on the
other hand, we incorporate HI within the BD approach. This calls for a comparison of the three
schemes (LD, BD, and BDHI) to distinguish the effects resulting from HI and those from the
usage of distinct integration schemes.

5. Constant-velocity stretching

Figure 1 presents the force–extension curves for the constant-velocity unfolding at different
unfolding speeds. In the simulations, both termini of a protein are attached to harmonic springs
with the elastic constant k = 0.06ε Å

−2
. The other end of the N-terminus spring is fixed
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Figure 2. The end-to-end distance of the model ubiquitin as a function of time during unfolding at
a constant force. The thick solid, thin solid, and dotted lines correspond to the BDHI, BD and LD

simulations respectively. The upper panel corresponds to the force F = 2.4ε Å
−1

, and the lower

one to F = 4ε Å
−1
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Figure 3. The dragging effect: the moving particle creates a flow pattern which affects other
particles by pulling them in the direction of its motion.

whereas the C-terminus spring moves at a speed vp. We consider three values of vp: 0.5, 0.05
and vp = 0.005 Å/τ .

In the low-speed limit, all the three data sets obtained using the LD, BD and BDHI are
seen to converge to a single curve. In contrast, at large unfolding speeds, the differences
between the LD and BD are pronounced. However, strictly speaking, in this time regime BD
has a limited validity, because of the lack of separation between the momentum relaxation time
(tv = m

γ
= 0.5τ ) and the characteristic time of the amino-acid movement due to the stretching

tpull = a
vp

= 3τ (for the highest speed quoted above). In the experiments, the separation of

timescales is huge. In water γ ≈ 6πηa ≈ 3 × 10−9 g s−1, which leads to τv = m
γ

≈ 0.06 ps

(for the typical amino-acid mass of m ≈ 2×10−22 g). On the other hand, the pulling speeds are
of the order of 500 nm s−1, which gives τp ≈ 0.3 ms, thus there is a five-order-of-magnitude
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Figure 4. Unfolding scenarios of ubiquitin at constant force of F = 2.4ε Å
−1

simulated with
LD (the upper panel), BD (the centre panel), and BDHI (the lower panel). Open circles, triangles,
squares, pentagons and solid triangles and squares correspond to contacts (38–50)–(65–72), (12–
17)–(23–34), [(1–7), (12–17)]–(65, 72), (41–49)–(41–49), (17–27)–(51–59), and (1–7)–(12–17)
respectively. The crosses denote all other contacts. The segment (23–34) corresponds to a helix.
The two β-strands (1–7) and (12–17) form a hairpin. The remaining β-strands are (17–27), (41–49),
and (51–59).

separation in timescales. For such a case, LD and BD simulations would give exactly the same
result.

The fact that the differences between the BD and BDHI trajectories disappear in the limit of
small vp is due to the lack of impact of HI at small velocities. To conclude, in the experimentally
relevant small-speed limit, the effects of HI are expected to be negligible.

An inspection of figure 1 indicates that in the case of high stretching speeds neglecting
HI results in larger peak forces. In the high-speed all-atom simulations of titin in water [21]
the forces of stretching are found to be excessively large. Such all-atom molecular dynamics
programs are not geared towards hydrodynamic phenomena and may incorporate HI poorly. It
is possible to consider that the excessive force could be partially due to the missing HI.
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Figure 5. The same as in figure 3 but for F = 4ε Å
−1

.

6. Force-clamp unfolding

In the force-clamp AFM unfolding [10, 11] one applies the stretching force to the protein
terminus and monitors the end-to-end distance, L. The experimental data and the numerical
simulations [16, 17] show that proteins unfold in a stepwise manner at a constant force. This
means that a rapid unfolding transition takes place after a certain waiting time. The smaller the
force, the longer the waiting time.

In our simulations, we apply the force to the C terminus of the protein, whereas the N-
terminus is attached to a harmonic spring of elastic constant k = 0.06ε Å

−2
. The unfolding

trajectories of ubiquitin are presented in figure 2 for two values of the force, F = 2.4ε Å
−1

and F = 4ε Å
−1

. The LD and BD methods essentially coincide for these relatively large
forces (small differences between the trajectories are merely stochastic in nature). However,
the inclusion of HI changes the physics considerably—the waiting times become much smaller
and the duration of the unfolding transition itself decreases from ≈250τ to about 50τ at both
values of the force.
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Figure 6. The end-to-end distance of the model ubiquitin as a function of time during unfolding
by a uniform fluid flow as illustrated by several trajectories. The lower panel corresponds to the
description with the hydrodynamic interactions and the upper without. The successive curves in the
upper panel correspond to the flows of 0.25, 0.3, 0.4 and 0.5 Å/τ from bottom to top respectively. In
the lower panel the flow speeds are 2.5, 3.5, 5.0, and 10.0 Å/τ In all the simulations, the N-terminus
of the protein is fixed.

The fact that the HI facilitate protein unfolding may be understood qualitatively when one
realizes that an amino-acid moving away from the bulk of a protein creates a flow which drags
other residues with it (see figure 3).

The differences between unfolding with and without HI are further highlighted by analysis
of the so-called unfolding scenarios [25], in which one plots an average time when a given
contact is broken against the contact order, i.e. against the sequential distance, | j − i |, between
the amino-acids that form a native contact. Figures 4 and 5 compare the unfolding scenarios
for LD, BD, and BDHI at F = 2.4ε Å

−1
and F = 4ε Å

−1
respectively. Remarkably, although

the differences in timescales between the unfolding with and without HI are considerable, the
unfolding scenarios for the smaller force are similar (figure 4), which shows that the unfolding
pathway of a protein is not affected by the hydrodynamic effects. However, as the force is
increased, both LD and BD scenarios change (figure 5): the β-hairpin structure now unfolds at
the end instead of at the beginning of the unfolding process. In contrast, in the case of BDHI,
such a switch is not observed: the scenarios for larger and smaller forces look qualitatively
similar.

7. Unfolding in a uniform flow

Finally, we study the influence of HI on the characteristics of the protein unfolding in a uniform
flow with a speed of U . Although the process has not yet been realized experimentally,
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Figure 7. The shielding effect: the particles inside a cluster experience a smaller drag force than
those on the surface.
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i j
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t u
,ij
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LD
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i j

BDHI

Figure 8. The left and right panels show unfolding scenarios without the hydrodynamic interactions
(U = 0.55 Å/τ ) and with the hydrodynamic interactions (U = 3.5 Å/τ ) respectively.

the simulations [42–44] seem to suggest that uniform flow unfolding leads to a richer set of
metastable conformations than the constant force pulling. For example, when the N terminus is
anchored, ubiquitin stretches in a flow through two distinct intermediate states corresponding
to a partial unzipping.

A detailed analysis of the uniform flow unfolding of ubiquitin in the absence of HI, together
with the snapshots of intermediate conformations for different anchorings, can be found in [42].
In that reference, we have mistakenly reported values of the forces in wrong units. Instead of
the correct unit of ε/Å we used ε/σ , where σ was equal to 5 Å.

Figure 6 shows examples of unfolding trajectories of ubiquitin in a uniform flow for four
different flow velocities, both with and without HI. We observe that unfolding of the system
with HI requires a much larger flow speed than without. This can be understood qualitatively
in terms of the so-called no-draining effect [45]: the residues hidden inside the protein are
shielded from the flow and thus only a small fraction of the residues experience the full drag
force of F = −γ U (see figure 7). In contrast, when no HI are present, this drag force is applied
to all residues [42].

Notably, although the timescales and velocities involved in the protein unfolding with and
without HI are completely different, the metastable states are nearly identical (see figure 6).
This feature is related to the dynamic character of HI—they do not change the potential energy
of the system and, therefore, do not affect its stationary properties. In principle, however, one
could imagine a situation in which, due to the differences in dynamics imposed by HI, a system
chooses alternative pathways when unfolding. This is clearly not the case here, which may be
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related to the directed character of the disturbance (flow in this case or the force in a force-
clamp experiment), which imposes a preferred direction of unfolding, thus greatly reducing the
set of available unfolding pathways.

The similarities in unfolding pathways of ubiquitin are further confirmed by the
comparison of unfolding scenarios. As an example, figure 8 shows the unfolding scenario
for the flow U = 3.5 Å/τ with HI compared to U = 0.55 Å/τ without HI (the mean
unfolding times are comparable in both cases). The scenarios are very close to each other,
the main difference being that the HI enhance cooperativity by breaking the contacts in a more
simultaneous fashion.

8. Summary

In summary, hydrodynamic interactions seem to affect the timescales of unfolding by a constant
force and by a fluid flow in opposite ways but keep the set of the possible metastable states. The
HI may also reduce peak forces in stretching at a constant speed, although this effect weakens
with the diminishing stretching speed.
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[42] Szymczak P and Cieplak M 2006 J. Chem. Phys. 125 164903
[43] Lemak A, Lepock J R and Chen J Z Y 2003 Proteins: Struct. Funct. Genet. 51 224
[44] Lemak A, Lepock J R and Chen J Z Y 2003 Phys. Rev. E 67 031910
[45] Rzehak R, Kromen W, Kawakatsu T and Zimmermann W 2000 Eur. Phys. J. E 2 3

12

http://dx.doi.org/10.1103/PhysRevLett.94.198302
http://dx.doi.org/10.1063/1.436761
http://dx.doi.org/10.1039/f29858101269
http://dx.doi.org/10.1016/0378-4371(82)90127-3
http://dx.doi.org/10.1017/S002211208700171X
http://dx.doi.org/10.1016/0378-4371(88)90036-2
http://dx.doi.org/10.1063/1.454658
http://dx.doi.org/10.1063/1.466366
http://dx.doi.org/10.1017/S0022112096002170
http://dx.doi.org/10.1063/1.1670977
http://dx.doi.org/10.1063/1.1673799
http://dx.doi.org/10.1016/j.physa.2003.12.012
http://dx.doi.org/10.1063/1.2358346
http://dx.doi.org/10.1002/prot.10273
http://dx.doi.org/10.1103/PhysRevE.67.031910
http://dx.doi.org/10.1007/s101890050036

	1. Introduction
	2. The coarse-grained protein model
	3. Langevin dynamics \(LD\)
	4. Brownian dynamics \(BD\)
	5. Constant-velocity stretching
	6. Force-clamp unfolding
	7. Unfolding in a uniform flow
	8. Summary
	Acknowledgment
	References

