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Abstract
Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed.
Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated
hydrodynamic interactions in the conformational transitions in proteins.
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1. Introduction

Water constitutes a natural environment for protein molecules:
it stabilizes their native structures, influences their enzymatic
activity and is critical in phenomena such as molecular
recognition and protein–protein interactions [1, 2]. However,

the impact of larger-scale, hydrodynamic processes on protein
dynamics is considered less frequently, even though strong
fluid flows may unfold the protein molecule as effectively
as the mechanical force in atomic force microscopy (AFM)
experiments. In fact, as we elucidate below, hydrodynamic
forces provide a more versatile tool for probing protein
structure, since they induce highly non-uniform tension along
the protein, probing different bond groups with different
intensities. As is to be expected, Nature has found a way to
exploit the sensitivity of proteins to hydrodynamic forces in
a variety of regulatory processes, the best known of which is
hemostasis, where hydrodynamic shear was found to activate
binding of the plasma protein von Willebrand factor (vWf)
to the platelet receptor glycoprotein Ib (GpIb). Below, we
briefly review the most important experimental and theoretical
investigations of flow-related effects in proteins. The review
is supplemented with a short description of relevant numerical
techniques. We outline the latest numerical results on flow-
induced conformational changes in proteins and on the role
of hydrodynamic interactions (HI) in such changes. We also
discuss the influence of HI on protein folding and on the
distribution of tension along a string of beads submitted to a
flow.

2. Proteins in the flow: experimental results

Almost all of the reported experiments on flow effects on
protein structures have been performed using shear flow.
There are two reasons why experiments with shear flow are
particularly attractive. The first is the ease with which this
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type of flow can be generated. In fact a nonzero shear
component appears whenever a fluid flows along a surface,
including different kinds of capillary flows. The second reason
is that shear flow has a significant effect on the dynamics of
suspended biopolymers even in the absence of any tethering.

As noted by several authors [3, 4], the experimental
results on shear flow unfolding are rather ambiguous: while
some studies claim that changes in the protein structure take
place at shear rates as low as γ̇ = 10 s−1 [5, 6, 4] other
researchers found no indication of shear mediated unfolding
even at γ̇ = 105 s−1 [7–10, 3, 11]. Apparently, the situation
here is rather complex, with factors like the presence of liquid–
air interface or interaction with a solid surface playing an
important role [10]. Also, some effects of the shear are
apparently of a cumulative nature and should be described in
terms of the strain history γ = τsγ̇ (where τs is the total
time during which the sample was exposed to the shear).
Jaspe and Hagen [3] gave a simple theoretical estimate of
the threshold shear rate capable of unfolding a typical protein
molecule (which is reproduced in the appendix). In terms of the
dimensionless Weissenberg number, Wi = γ̇ τr, this threshold
corresponds to Wi ∼ 103. Here τr is the longest relaxation
time of an unperturbed molecule.

The longer the molecule and the more extended its
conformation, the larger effect shear forces have on its stability.
This is the reason why it is, in general, much easier to
use hydrodynamic shear to induce conformational changes
in long (μm scale) DNA chains than in much shorter (nm
scale) protein molecules. However, long, multi-unit proteins
are more susceptible to shear. A well-studied example
is von Willebrand factor (vWf), a huge multi-unit protein
found in blood plasma which can reach extensions of up to
100 μm [12]. Von Willebrand factor plays a central role in a
process of platelet adhesion to the sites of vascular injury and is
thus a key component for maintenance of normal hemostasis.

The existence of shear-induced conformational transitions
in this system is well documented experimentally. In fact, shear
field impacts upon vWf structure at a variety of levels. First of
all, shear flow induces a change in the quaternary structure of
the whole multi-unit chain, from a compact globular state to
the elongated fiber-like conformation [13–16]. This structural
transition takes place at γ̇ = 5 × 103 s−1, which is more than
two orders of magnitude higher than the values reported for
DNA of the same length. This is probably due to the significant
role of attractive forces of hydrophobic origin between the vWf
units. Importantly, the structural transition of vWf multimers
into elongated fibers dramatically increases its adhesion rate
to the fibrillar collagen of the vessel walls [15]. High shear
conditions were also reported to trigger novel disulfide bond
formation in the protein [17], promoting self-assembly of vWf
into a network of fibers.

Additionally, the shear flow activates the binding of
platelets to vWf by inducing a structural transition in the A1
domain of the vWf multimer to an intermediate conformation
that can bind the platelet receptor GpIbα [18–20]. Interest-
ingly, GpIbα itself has also been shown to undergo flow-
induced conformational changes [21, 22].

The fact that hydrodynamic forces induce conformational
transitions in vWf may provide a basis for a self-regulatory

repair mechanism of blood vessel walls: in the case of damage,
the shear stresses increase, which induces transitions of the
vWf structure that seem to be necessary for the initiation of
platelet adhesion [23, 24].

There is yet another shear-induced mechanism in
hemostasis that has attracted considerable interest [25–27]:
the cleavage of ultra-large vWf into smaller multimers. The
single-molecule laser-tweezer experiments by Zhang et al [27]
have shown that mechanical forces in the range experienced
by vWf due to flow in the vasculature can unfold the A2
domain of vWf which subsequently enables cleavage by the
metalloprotease ADAMTS13. Thus the A2 domain plays the
role of a shear bolt for the vWf structure [27]. In engineering,
a shear bolt is designed to break above a certain threshold
force to protect other parts of a machine from accidental
damage, and here unfolding of the A2 domain takes place
to allow for ADAMTS13 cleavage, which results in down-
regulation of hemostatic activity. Interestingly, Zhang et al
[27] suggest that typical shear forces in the vasculature might
not be sufficiently high to effectively unfold A2 and that the
unfolding might take place due to the purely elongational flow.
Elongation may be induced by the process of vasoconstriction
that causes the vessel to constrict to a smaller radius during
an injury. Elongational flow in the vasculature can induce
unfolding forces in vWf which are larger by one to two orders
of magnitude from those experienced in a pure shear flow [28]
(see also the discussion of elongational flow in sections 4
and 5).

Other, relatively large, μm-scale protein structures that are
affected by hydrodynamic shear are amyloid fibrils. Studies
on β-lactoglobulin fibrils [29, 30] show that shear affects
both the formation of the fibril structures and their breakup.
In particular, it has been hypothesized that the shear flow
degradation of lactoglobulin fibers in the blood stream might
provide a mechanism for amyloid disease propagation. In
similar studies, Bhak et al [31] and Dunstan et al [32] have
shown that shear forces dramatically increase the rate of fibril
formation. Loksztejn and Dzwolak in [33] studied insulin
fibrillation and hypothesized that hydrodynamic forces play
a key role in that process, promoting insulin aggregation
and subsequent formation of chiral amyloid superstructures.
Finally, Lee et al [34] studied amyloid formation in a
microfluidic device, analyzing the influence of the flow rate
on the kinetics of the process.

Another possible way to increase the shear-induced forces
is to use a solvent with a larger viscosity than water, as is the
case in the study by van der Veen et al [35] on α-amylase
deactivation in concentrated starch solution. Due to the very
high viscosity of the medium, relatively large shear stresses of
about 3×104 Pa were reached, which have partially deactivated
the enzyme by deforming its tertiary structure. These results
are consistent with the study of Ashton et al [4] who have
reported that the shear-induced conformational changes in
lysosomes are significantly larger with a glycerol as a solvent
than water.

In the context of regulatory mechanisms in which
hydrodynamic shear forces seem to be involved one needs
to mention also the activation of ion channels in both
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endothelial [36] and epithelial [37–40] cells. In particular,
the physiological relevance of shear stress as an adequate
stimulus for ENaC (epithelial Na+ channel) activation has
been demonstrated experimentally by exposing the ion channel
expressing membranes to a flow of different magnitude
while simultaneously monitoring the Na+ absorption [37, 39].
Furthermore, it has been observed that if ENaCs are first
chemically activated and subsequently exposed to shear forces,
then the effect of shear is much weaker. This indicates that
hydrodynamic shear may activate ENaCs by altering gating
properties and thus increasing the open probability of the
channels. The sensitivity of epithelial ion channels to the shear
force has a physiological basis, since these channels usually
function in Na+ adsorbing epithelia, such as kidney or lung,
where there is a fluid flow present—urinary fluid in the kidney
tubules and airflow in lungs.

In summary, most of the flow denaturation experiments
of proteins have been carried out on a bulk collection of
molecules, usually subject to shearing forces. Single-molecule
studies are still scarce and limited mostly to large micrometer-
size structures, like ultralong multi-unit vWf molecules or
amyloid fibrils, where mostly quaternary structural changes
are induced by the presence of the flow. It is expected
that the development of new experimental techniques will
greatly increase the possibilities to study these systems, and
provide direct evidence for flow-induced changes to the tertiary
structure of single protein molecules.

3. Computational techniques

Before proceeding with the discussion of the numerical results
on the flow-induced effects in proteins, we briefly review the
computational methods used in these studies.

3.1. All-atom protein simulations with an explicit solvent

A most detailed description of the protein in a hydrodynamic
flow is obtained by modeling the system at atomic resolution.
A number of such studies have been reported recently: Wang
et al [41] analyzed unfolding of tethered ubiquitin in a
uniform flow whereas Lou et al [21] and Chen et al [22]
analyzed the influence of the flow on conformational changes
in glycoprotein lb. In the former study, the flow in the system
was induced by translating two frozen water surfaces in the
given direction, and letting their atoms interact with the rest
of the system. In the latter case, the flow was induced by
the application of a constant force to all the water molecules,
while simultaneously coupling them to a Langevin thermostat
to prevent overheating.

The main deficiency of the all-atom approaches is their
high computational cost which prevents them from being used
to compute ensemble properties requiring the analysis of many
pathways and necessitates the use of extremely fast flows,
which allow observation of the conformational changes over
the short time scales accessible in such simulations.

For example, in [21, 22] flow velocities of 50 m s−1 were
used, which is about two orders of magnitude faster than
blood flow velocities in large arteries and even as much as

eight orders of magnitude faster than velocities in small blood
vessels and near vessel walls. The total simulation time for
each trajectory was 20 ns. In [41] the flow velocities were
even higher (180 m s−1) and the total simulation times shorter
(hundreds of ps to ns). This is particularly relevant, since at
short time scales and high flow rates the fluid inertia effects
become important (see the discussion in section 3.3). This
may lead to a qualitatively different physical phenomenon from
those at lower flow rates and it is not clear whether the obtained
results indeed correspond to the flow effects in a real system. In
fact, Wang et al [41] have indeed observed strong flow inertia-
related effects in their studies.

3.2. Coarse-grained protein models with an implicit solvent

Because of the high computational cost of atomistic
simulations and their inability to consider time scales relevant
to many flow-induced conformational changes, a large number
of simulation studies resort to coarse-grained protein models.
In these models, each residue is represented as a number
of beads that interact via effective force-fields [42–45]. In
the simplest version, there is just a single bead per residue
(usually centered on the position of the Cα atom), whereas
more complex models involve additional beads representing
side groups of the amino acids.

Despite their simplicity, coarse-grained models capture
many features of folding and unfolding of proteins observed
experimentally. In particular, a detailed comparison between
the experimental data on the mechanical resistance of proteins
and the prediction of coarse-grained models [46, 47] shows a
very good correlation between the two.

A particularly widely used class of coarse-grained models
is the group of structure-based, Go-type models, in which
an effective potential of interaction between amino acids is
constructed in such a way as to guarantee that the known
native structure of the protein corresponds to the global energy
minimum. Hydrodynamic effects in proteins have been studied
using different versions of these models, e.g. in [48–54].

On the other hand, Lemak et al [55, 56] have studied flow
effects in a minimal model of an α-helix bundle and β-barrel
originally introduced by Honeycutt and Thirumalai [57]. The
key components of the potential energy in these models include
the bond angle potential, a heterogeneous long-range Lennard-
Jones potential reflecting the three different types of residues,
hydrophobic, hydrophilic, and neutral, and a torsional-angle
potential that effectively prefers a local α-helix or β-sheet
conformation. An analogous model was used by Baumketner
and Hiwatari [58] in their studies of hydrodynamic interaction
effects in protein folding.

In the coarse-grained models, the solvent is typically taken
into account either implicitly (using Langevin or Brownian
dynamics) or on the mesoscopic level. These approaches are
discussed next.

3.3. Langevin dynamics

If a spherical particle of mass m and radius a moves with
velocity V in a quiescent fluid of viscosity η, the collisions
with the fluid give rise to two types of forces: a frictional
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force −ζV, where ζ = 6πηa is the friction coefficient, and
a fluctuating stochastic force Fs(t) the magnitude of which is
linked with ζ by a fluctuation–dissipation theorem

〈Fs(t)Fs(t
′)〉 = 2kBT ζ δ(t − t ′)I

where I is the identity matrix and the term δ(t − t ′) reflects
the fact that the random forces are uncorrelated on the scale of
particle motion (however, see below). The dynamics of such
a particle can then be described by the following Langevin
equation:

mR̈ = −ζ Ṙ + Fe + Fs (1)

where R is the position of the particle and Fe is the net external
force acting on it.

There is an important reservation, however. As already
noted by Lorentz [59–61], the Langevin equation in the above
form may only be used if there is a separation of time scales
between the relaxation time of the particle (i.e. the bead)
velocity τv = m

ζ
= 2a2ρ

9η
and the viscous relaxation time of the

solvent, τη = a2 ρs

η
, where ρ is the density of the particle, and

ρs the density of the solvent (see also the thorough discussion
in the book by Mazo [60]). The ratio of these two time
scales is proportional to ρ/ρs. Since the densities of proteins
are only about 50% higher than those of the surrounding
liquid [62], there is no clear separation of time scales between
the relaxation of fluid variables and those of the bead, and on
time scales t ∼ τv ≈ τη instead of equation (1) one should use
the generalized Langevin equation involving a memory kernel
ξ(t):

mR̈(t) = −
∫ t

0
dt ′ξ(t − t ′)ṙ(t ′) + Fe(t) + Fs(t). (2)

Here the noise is again Gaussian and related to the dissipative
term through the generalized fluctuation–dissipation relation

〈Fs(t)Fs(t
′)〉 = kBT ξ(t − t ′)I.

Importantly, even though the results of the instantaneous
Langevin equation (1) are not physical at time scales t ∼ τη, it
may still be used to describe processes on time scales t � τη.
As shown in [51], on these time scales the Langevin approach
(in the overdamped limit) gives results consistent with those
of Brownian dynamics, which itself is not affected by solvent
inertia effects [61].

3.4. Overdamped limit and Brownian dynamics

The magnitude of the inertial term in the Langevin equation (1)
is given by mV/τ , where V is a characteristic velocity and τ

a characteristic time scale of the dynamics. On the other hand,
the magnitude of the friction term is given by ζ V . The ratio of
these two terms is simply τv/τ ; thus on the time scales τ � τv

the inertial term in (1) can be neglected.
The next observation is that in most of the soft matter

systems the configurational evolution takes place on the time
scales τ much longer than τv, hence the inertial effects are not
important there and it is appropriate to describe the dynamics
in terms of equilibration of the particle configurations only.

The exact definition of τ is problem-dependent: on the single-
monomer level it is the time needed by a monomer to diffuse
over its own size, τ0 = a2/D (where D is the diffusion
constant and a the monomer radius). At the level of the
chain as a whole, the respective time scales are even longer,
with the Rouse relaxation time τR ∼ τ0 N2 or the Zimm time
τZ ∼ τ0 N3/2 [63]. The configurational evolution of particles
observed with a time resolution τ � τv is usually referred
to as Brownian dynamics and is described by the overdamped
version of (1)

Ṙ = 1

ζ
(Fe + Fs) = 1

ζ
Fe + B (3)

where the stochastic velocity component, B, is a Gaussian
random variable with zero mean and the covariance

〈B(t)B(t ′)〉 = 2kBT

ζ
δ(t − t ′)I. (4)

As mentioned above, the Brownian dynamics describes
configurational evolution of the beads on time scales in which
the inertial effects of the beads and solvent molecules are
negligible [61], and therefore time scale separation issues
discussed in the previous section are not pertinent here.

3.5. Inclusion of flow and hydrodynamic interactions

It is relatively straightforward to generalize (3) to the case
when the particle is immersed in a linear flow field

u(r) = u0 + K · r. (5)

where K is the velocity gradient matrix [64].
Namely, one uses Faxen’s theorem [64, 65] for a spherical

particle

V = 1

ζ
F + u(R) + 1

6
a2∇2

Ru(R), (6)

where V is the velocity of the particle, F is a net force acting on
it, R is the position of its center and ∇2

R is a Laplace operator
with respect to R. For a linear field (5) the above leads to a
simple conclusion that

V = u(R) + 1

ζ
F (7)

and the (single-particle) Brownian dynamics equation (3) is
then generalized to the form

Ṙ = u(R) + 1

ζ
(Fe + Fs) = u(R) + 1

ζ
Fe + B. (8)

If there are many particles in the system, the situation
gets considerably more complicated, since the motion of
one particle induces a flow which acts on all the other
particles. The hydrodynamic interactions are truly complex:
they are long ranged, nonlinear in nature, and cannot be
expressed as a sum of two-body terms. With the inclusion
of hydrodynamic interactions, the Brownian dynamics scheme
takes the following form [66–69, 64]

Ri(t + �t) = Ri(t) + u0�t + K · Ri (t)�t

+
∑

j

(∇ j · Di j)�t + 1

kBT

∑
j

Di j · Fe
j�t

+ Ci : K�t + Γi . (9)
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Here Ri is the position of the i th particle, Fe
i is the total external

force acting on it and D is the diffusion tensor. Both F and D
are configuration-dependent and are evaluated at the beginning
of the timestep. Next, Γ is a random displacement given
by a Gaussian distribution with an average value of zero and
covariance obeying

〈ΓiΓ j 〉 = 2Di j�t . (10)

Finally, C is the third rank shear disturbance tensor [64]
representing the effect of interparticle hydrodynamic forces on
the shear-induced particle motion [67, 69], also evaluated at the
beginning of the timestep.

In general, the diffusion tensor D depends in a complicated
nonlinear way on the instantaneous positions of all particles in
the system. For a system of spheres, exact explicit expressions
for the diffusion tensor Di j exist in the form of the power
series in interparticle distances, which may be incorporated
into the simulation scheme [65, 67, 70–74]. In polymer
modeling, for numerical tractability, the diffusion matrix is
often approximated by its far-field asymptotes. The lowest
order of approximation (first order in a/Ri j) corresponds to
the Oseen tensor

1

kBT
Di j = 1

ζ

(
Iδi j + 3

4

a

Ri j
(I + R̂i j R̂i j )(1 − δi j)

)
(11)

and is equivalent to treating the particles as point forces
(Stokeslets) in the viscous fluid. The off-diagonal components
of this tensor, Di j with i 	= j , describe the contribution of the
force acting on particle j to the velocity of particle i .

The next level of approximation (retaining the terms up
to (a/Ri j)

3) corresponds to the Rotne–Prager tensor [75]. It
is usually supplemented with a regularization for Ri j < 2a
proposed by Yamakawa [75, 76]. Together, this constitutes
the so-called Rotne–Prager–Yamakawa tensor with the off-
diagonal elements of Di j given by

1

kBT
Di j = 1

8πηRi j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
1 + 2a2

3R2
i j

)
I +

(
1 − 2a2

R2
i j

)

× R̂i j R̂i j

]
, Ri j � 2a

Ri j

2a

[(
8

3
− 3Ri j

4a

)
I

+ Ri j

4a
R̂i j R̂i j

]
, Ri j < 2a.

(12)

In both the Oseen and Rotne–Prager–Yamakawa approx-
imations, the divergence of the diffusion matrix vanishes
(
∑

j ∇ j · Di j ≡ 0), which further simplifies the numerical
scheme. However, if the full hydrodynamic interactions
are included, the divergence term should be taken into
account [77].

Finally, at this level of approximation (up to (a/Ri j)
3), the

shear disturbance tensor is given by [64]

C = − 5
2

∑
j 	=i

(a/Ri j)
3R̂i j R̂i j Ri j . (13)

Note that at the level of Oseen hydrodynamics, the shear
disturbance tensor is zero and the only effect of the shear field
on the system is through the velocity field u(r) itself.

Finally, the above considerations are based on the
assumption that the fluid is of an infinite extent. When
studying fluids in confined spaces, or in the presence of
surfaces, the diffusion tensor has to account for the stick
boundary conditions at the walls, which makes the derivation
considerably harder [78]. Some of the geometries are well
studied, with the expressions for the full diffusion tensor
derived. The examples include soft matter systems near a
single wall [79] and between two walls [80]. This formalism
can then be applied to study problems like binding of blood-
borne cells to the vessel walls [81], interaction of cytochrome
c molecules with a negatively charged lipid bilayer [82] or
cargo-transport of kinesin-like processive motors [83]. In other
geometries only the lowest order, Stokeslet solution are known,
e.g. in cylindrical [84] or spherical [85] geometry. The latter
was used to analyze effects of hydrodynamic interactions on
protein folding in confined and crowded spaces [86].

When taking the hydrodynamic interactions into account,
the choice of a hydrodynamic radius, a, is a crucial element
in the model. One of the ways of tuning this parameter
is to compare the translational diffusion coefficient, D, of
a protein in a numerical model to the one measured in
experiments. In [52] we have compared the experimental
data on the diffusion coefficient of ubiquitin [87] with the
numerically obtained D for various hydrodynamic radii and
found agreement for a ≈ 4.1 Å. This value agrees with earlier
estimates by de la Torre and Antosiewicz [88–92]. On the other
hand Frembgen-Kesner and Elcock use a = 5.3 Å in their
studies of protein folding with a Go-type model without side
groups (and a = 3.5 Å for the model with side groups).

However, since the distance between the successive Cα

atoms along the protein backbone is 3.8 Å, some of the
beads representing amino acids overlap. This reflects the
fact that: (1) the interior of the protein is densely packed,
(2) the side chains of amino acids are usually longer than
3.8 Å, and (3) the protein is covered by a hydration layer of
tightly bound water molecules. Although the Rotne–Prager–
Yamakawa tensor is also positively defined for overlapping
beads, its physical meaning for such configurations is
problematic [91]. The overlapping bead models are successful
in predicting the diffusion coefficients of the proteins [88, 89];
however, the question of whether they correctly reproduce the
dynamic effects of hydrodynamic interactions during large-
scale conformational motions in macromolecules is still open.
Interestingly, in a different, non-hydrodynamic, context the
overlapping bead models were shown to introduce an inherent
tube-like anisotropy which is responsible for protein-like
behavior in the chains of beads [93].

Finally, it is worth mentioning that implicit solvent,
Brownian dynamics models give the unique opportunity to
separate HI-associated effects in the dynamics from those
of other factors. To this end, one performs the simulations
twice—with and without HI included. In the second case, one
uses simply a diagonal diffusion matrix

1

kBT
Di j = 1

ζ
Iδi j . (14)
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The differences between the two runs, if any, can then
be unambiguously attributed to the effect of hydrodynamic
interactions.

3.6. Mesoscopic solvent models

Another approach to modeling hydrodynamic effects in
biopolymers is to use mesoscopic models for the solvent
dynamics. The basic idea here is to track the solvent degrees
of freedom through a simplified mesoscopic representation,
with the local dynamics that satisfies the mass, momentum
and energy conservation laws and recovers the solution of
hydrodynamic equations in the large-scale limit. Several
algorithms of that kind have been developed over the last 20
years, and the most widely used nowadays are:

(i) The lattice-Boltzmann method, in which populations
of particle densities move synchronously, according to
discrete time steps, along the links of a regular lattice.
When bouncing into each other, these densities are
redistributed among the lattice directions in such a way
that mass and momentum are conserved.

(ii) Multi-particle collision dynamics (also called stochastic
rotation dynamics), in which the fluid is modeled as
a collection of particles whose positions and velocities
are continuous variables. The system is coarse-grained
into cells and the dynamics consists of two steps: free
streaming, when the particles move ballistically and do
not interact, and collisions which are modeled by a
simultaneous stochastic rotation of the relative velocities
of every particle in a each cell.

In order to simulate a soft matter system, the solvent
model must then be coupled with the respective algorithms
that models the dynamics of solute particles. A detailed
discussion of these approaches is beyond the scope of this
review, and the reader is referred to other articles, e.g. the
recent reviews [94–96].

The main advantage of mesoscale methods is their spatial
locality, which results in a O(N) scaling of computational
complexity with a number of particles, and the main
disadvantage is an introduction of additional degrees of
freedom and short time scales that need to be resolved [96].
Importantly, in these models hydrodynamic interactions
between the particles arise intrinsically, due to the explicit
coupling between the moving particle surfaces and the solvent.
This, together with simplicity of implementation of complex
boundary conditions, constitutes the reason why mesoscopic
solvent algorithms are often used to analyze the hydrodynamic
effects in complex confining geometries.

Mesoscopic methods have been successfully applied to
biopolymer dynamics problems (see e.g. [97–99]). In the
context of protein dynamics, Kikuchi et al [48] and Ryder [49]
have used stochastic rotation dynamics to analyze the influence
of HI on protein folding.

3.7. Other computational approaches

Lemak et al in their studies of protein unfolding in uniform and
elongational flows [55, 56] have used a ‘collision molecular-
dynamics’ method [100], in which each amino acid collides
with virtual solvent particles. Post-collision velocities are
calculated by solving the collision problem, in which the
velocity of a virtual solvent particle is drawn randomly from
the Maxwellian distribution centered around the hydrodynamic
velocity of a solvent at a given point. A main deficiency of
that method is that ignores the correlations between solute–
solvent collisions at different spatial points, thus hydrodynamic
interaction effects are not taken into account here.

4. Numerical studies of flow-induced conformational
changes in proteins

Despite a growing number of experimental investigations,
computational studies on proteins in hydrodynamic flows are
still rather scarce. The first two papers on the subject, by
Lemak et al appeared in 2003 [55, 56] and were devoted to
the analysis of forced unfolding of α-helix bundles and β-sheet
barrels in uniform and elongational flows. The 3D elongational
flow considered there is the flow pattern corresponding to a
strong stretching in the one spatial direction and contraction in
the remaining two:

ux = γ̇ (x − x0), uy = − 1
2 γ̇ (y − y0),

uz = − 1
2 γ̇ (z − z0),

(15)

where (x0, y0, z0) corresponds to a location of the stagnation
point for the flow. In [55, 56] the authors observed a
number of metastable, intermediate structures in uniform flow
unfolding but no intermediates in the case of elongational flow.
Subsequent studies by the authors of the present survey [50]
have confirmed these findings. They have also provided a
detailed comparison between unfolding by the flow and that
by a mechanical force. It turns out that unfolding in a flow
shows a larger number of intermediates than AFM force-clamp
unfolding. If the flow rate is sufficiently low, the protein
may remain trapped in one of these states for the duration of
the simulation. Additionally, one observes different unfolding
pathways and different sets of intermediate states depending
on which terminus in the protein is tethered. Also, the flow
magnitude needed for the full unwinding of a protein chain
is attachment-dependent. This observation can be explained
by noting that the tension along the tethered protein chain
in the flow is highly non-uniform: it increases starting from
the free end towards the tethered end (cf section 5). Thus,
in flow-induced unfolding, the bonds in the vicinity of the
tethered terminus are broken first, which is in contrast to AFM-
mediated unfolding when it is the weakest link which will snap
first. Hence, by changing the attachment points of the protein
in the flow one can probe different patches of its energetic
landscape. These features offer potentially wider diagnostic
tools to investigate structure of proteins than experiments based
on AFM.

In the case of homopolymers, the interplay of an
increasing tension along the tethered chain in the flow
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Figure 1. Example conformation of a tethered ubiquitin in a uniform
flow.

and thermal fluctuations leads to a characteristic ‘trumpet-
like’ shape of a polymer in the flow [101, 102]. Closer
analysis [103] leads to the conclusion that there are in fact
several conformational regimes, depending on the magnitude
of the flow field. At low flows, the chain can be modeled as
a weakly distorted coil while at higher velocities a trumpet-
like shape is attained, with the chain becoming more unwound
towards the tethered end. With a further increase in the flow the
fraction of the polymer near a fixed end becomes completely
stretched and forms a ‘stem’, ending in a fluctuating coil, the
‘flower’. In the case of protein in the flow, this simple picture is
complicated by the presence of cross-linking contacts between
amino acids. In that case, instead of a smooth, trumpet-like
profile of the coiled part, the part of protein near the free
terminus attains a specific, energetically favorable, metastable
conformation, as illustrated in figure 1.

Szymczak and Cieplak [52] have also analyzed the process
of protein unfolding by shear flow. As already mentioned,
shear flow is particularly attractive for experimentalists, and
indeed most experiments on flow-induced effects on proteins
were carried out with that type of a flow. As already noted
by Lumley [104] and de Gennes [105], a notable feature of
shear flow is that it is a combination of elongational and
rotational components of equal magnitude. In such a marginal
case the polymer chain does not attain a stable stretched
configuration. Instead, it undergoes a tumbling motion, a
series of subsequent stretching and coiling events with frequent

changes in the orientation of the chain with respect to the
shear axis [106–109]. While the elongational component of
the flow is stretching the molecule, its rotational component
aligns it along the shear axis, leading to the collapse of the
chain due to the decreased hydrodynamic drag. An important
role in this dynamics is played by Brownian fluctuations,
which cause the chain segments to cross the streamlines into
the regions of higher or lower flow which results in further
stretching or collapse of the chain, respectively. In particular,
the fluctuations may tip the polymer in such a way that its two
ends lie in the regions of opposite flow direction, which results
in a tumbling event, in which one polymer end moves over the
other.

A similar tumbling dynamics of protein molecules was
observed in the simulations reported in [52] (cf figure 2).
However, the presence of a complex network of bonds between
amino acids in a protein results in a number of important
differences between the homopolymer and protein unfolding in
hydrodynamic flows. In particular, the extension of the protein
in a uniform flow is not a continuous function of the flow rate.
Instead, as the flow velocity is increased, the protein undergoes
a number of rapid transitions to successive, metastable states,
an example of which is shown in figure 1. Each of these
transitions is accompanied by the breaking of a particular
group of bonds and unzipping of subsequent structures from
the bulk of the protein. In contrast to uniform flow, in a shear
flow these states are never long-lived, even a small thermal
fluctuation may move the protein to a region of lower flow and
the chain collapses.

Another interesting feature of a protein’s dynamics in a
shear flow is its relatively complex spectrum of an orientation
angle (defined as an angle between the end-to-end direction
of the protein and the direction of the flow). Namely, two
peaks can be identified in the spectrum, corresponding to two
characteristic tumbling frequencies [52]. The higher frequency
is the one associated with the rotational component of the shear

Figure 2. Example of a tumbling cycle of a protein in a shear flow: integrin at Wi = 3200. For tracing purposes, the two halves of the chain
are marked in different colors/shades of grey.
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flow, f1 = γ̇

4π
(a sphere immersed in the shear field rotates

with the frequency f1 [64]). On the other hand, the lower
frequency, f2, corresponds to the stretching–collapse cycle and
scales sublinearly ( f2 ∼ γ̇ 2/3) with the shear rate, similar to
what was reported in DNA experiments [109]. As noted by
Kobayashi and Yamamoto [110], the coexistence of these two
frequencies is a unique property of proteins due to the presence
of cross-linking contacts between the amino acids, which gives
the protein the ability to fold into a compact shape. For a
homopolymer chain in a steady shear flow both frequencies are
also observed, but in different shear regimes, and they never
coexist [110].

Finally, we come back to the problem of ambiguous
experimental results on the shear flow unfolding of proteins.
The Brownian dynamics results reported in [52] show that the
minimal shear rate needed to initiate the stretching–collapse
cycle corresponds to the Weissenberg number of about 5 ×
102–2 × 103, which agrees with the theoretical estimate of
Jaspe and Hagen [3]. However, even at larger shear rates,
the protein never unfolds completely, but rather constantly
undergoes collapse–stretch cycles, which may partially explain
seemingly contradictory experimental data on shear-induced
unfolding.

Other important theoretical studies on shear-induced
conformational changes in proteins are those of Schneider
et al [15] and Alexander-Katz et al [14, 111], which
accompanied their experimental work on the unfolding of vWf
globules [15]. As already mentioned, the main interest here
was the quaternary structural changes. In fact, in the numerical
model adopted in [15, 111] successive vWf protein domains
in the multi-unit chain were approximated by single beads,
so that the tertiary structure was not resolved. Nevertheless,
a number of important insights into the physics of shear-
induced unfolding were provided by the analysis. Most
importantly, they identified a new mechanism for the shear-
induced instability of collapsed globules in the shear flow
associated with the presence of thermally excited polymeric
protrusions on the interface between a collapsed polymer phase
and a viscous solvent. This has allowed them to estimate
the critical shear rate needed for the initiation of coil–stretch
cycles. An analogous approach was then applied to the case of
elongational flow [112] and the corresponding threshold fold
rate needed to stretch the molecule was estimated. Although
these results are not directly applicable to the case of unfolding
of single protein tertiary structure, due to the presence of a
highly ordered network of cross-linked bonds in the latter, one
can expect that the protrusion-associated instability may also
play an important role here (cf the discussion in the appendix).

Finally, let us briefly discuss two pioneering studies
of protein unfolding in uniform flow performed at atomic
resolution, already mentioned in section 3.1. First, Chen et al
[21, 22] have revealed that flow induces a transition from an
unstructured loop to a β-hairpin in the 16-residue β-switch
region of platelet glycoprotein lb. It is an important result,
since this region is involved in contact between glycoprotein
lb and vWf. Hence the reported flow-induced conformational
changes might provide a regulatory mechanism for platelet
adhesion to vWf.

Figure 3. The distribution of tension along the chain in a uniform
flow with (solid) and without (dashed) hydrodynamic interactions.
The first bead (marked in gray) is tethered. The total number of
beads in the chain is N = 500 and l/a = 2.

Next, Wang and Sandberg [41] have analyzed ubiquitin
unfolding in a uniform flow and compared the results to those
of coarse-grained models with an implicit solvent [50]. Due
to the atomistic resolution, they were able to resolve very
short time scales in protein dynamics, on which the effects of
both protein and solvent inertia become important. However,
due to very high flow rates used in that study to unfold
the protein (180 m s−1), it is not entirely obvious whether
these effects can indeed be observed in a real experimental
situation. On the other hand, for the smaller speeds simulated
in [41] (0.18 m s−1) the authors found no unfolding, which is
was presumably due to too short a timespan covered by the
simulation (∼1 ns).

5. Flow-induced tension along the chain

As mentioned above, the main difference between protein
unfolding by a mechanical force and that induced by flow is
the fact that a flow generates a non-uniform tension along the
molecule. Let us elucidate this point with a simple example.
Specifically, we consider an extended chain comprising equally
spaced beads connected with springs, aligned parallel to the
flow direction (ex ) as illustrated in figure 3. The first bead is
tethered and the molecule as a whole does not move, i.e. Ṙi =
0, for i = 1, . . . , N . Moreover, since the successive beads are
aligned along X we get R̂i j R̂i j = ex ex and Fi = Fi ex . The
Oseen contribution to the particle velocity takes then the form

(
1

kBT
Di j F j

)
x

= 1

ζ

(
δi j + 3

2

a

l|i − j |(1 − δi j)

)
Fj (16)

where l is the distance between the successive beads. On
using (9), the condition of vanishing velocity can then be
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written as the following matrix equation:

ÂF = −ζU0 (17)

where F = (F1, . . . , FN ), U = (U0, . . . , U0) and

Âi j = δi j + 3

2

a

l|i − j |(1 − δi j), (18)

where we neglected the divergence of the diffusion matrix,
since the hydrodynamics is taken into account here at the
Oseen level. However, the forces on the particles can be
expressed in terms of the tensions of successive springs: F1 =
T1; F2 = T2 − T1, . . . , FN = −TN−1, or, in the matrix form

F = B̂T , (19)

where T = (T1, . . . , TN−1) and

B̂ =
⎡
⎢⎣

1
−1 1

. . .

−1

⎤
⎥⎦ . (20)

Finally,
Â B̂T = −ζU0 (21)

which can then be solved to yield the tensions, Ti , in successive
springs. Figure 3 presents the tension profiles for a N = 500-
bead chain both with and without hydrodynamic interactions.
In the latter case, equation (21) can be solved analytically to
yield a linear profile

Ti = (N − i)ζU0, i = 1, . . . , N − 1. (22)

With HI included, the tension is much weaker, but the profile
remains nearly linear. For long chains, the tension in the first
spring is well approximated by ζrU0, where ζr = 2πl(N −
1)η/ ln[l(N − 1)/2a] is the friction coefficient of a rod of
length l(N − 1) and width 2a [113], thus in this case

Ti = (N − i)2πlηU0/ ln[l(N − 1)/2a], i = 1, . . . , N − 1.

(23)
The same reasoning can be repeated for the case of
elongational flow, ux = γ̇ x , with the only difference being
that the velocity vector U is now given by

Ui = γ̇ l(i − (N + 1)/2). (24)

The respective tension profiles are shown in figure 4. Without
HI, we get a parabolic profile of the form

Ti = 1
2 i(N − i)ζ γ̇ l, i = 1, . . . , N − 1. (25)

Again, with HI included, the tension is much weaker, but the
profile remains parabolic. Similar to the case of a uniform flow,
for long chains the HI results can be approximated [114, 27] by
the slender rod theory

Ti = πηl2γ̇ i(N−i)/ ln[l(N−1)/4a], i = 1, . . . , N−1.

(26)

Figure 4. The distribution of tension along the chain in an
elongational flow with (solid) and without (dashed) hydrodynamic
interactions. The total number of beads in the chain is N = 500 and
l/a = 2.

There are several points to be noted in this context:

(i) Hydrodynamic interactions decrease the flow-induced
tension along the chain considerably. However, as noted
by de Gennes [115], in an elongated molecule, HI change
only the absolute value of the tension not the form of the
profile itself.

(ii) The effect of elongational flow on long molecules is much
stronger than that of uniform flow. In the former case, the
highest tension scales as N2 with the number of beads and
in the latter as N .

(iii) The estimates of the tension given above are obtained for
the elongated, linear molecules. In the case of tightly
packed, spherical shapes, the tension in the bonds between
the beads becomes much weaker, since the drag is limited
to the beads remaining on the surface; those inside the
globule are almost entirely screened from the flow if HI
are included in the description of the system (see also the
discussion in section 6 and figure 6).

(iv) Even though the shear flow has an elongational
component, its impact on the molecules is usually
much weaker than that of the pure elongational flow
of equation (15); this is because of the presence of a
rotational component in the shear flow. Rotation leads the
molecule out of the region of the strongest elongation, and
it contracts again. Thus the molecule is exposed to peak
elongation intermittently during each tumbling cycle. On
the other hand, stretching by a pure elongational flow (15)
is usually a transient phenomenon: typically, the molecule
is exposed to it as it passes constrictions in capillaries.

6. Effects of hydrodynamic interactions on protein
unfolding

Hydrodynamic effects in protein dynamics are not necessarily
due to any external flows acting on a biomolecule. Even in
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the absence of external flow, different segments of a protein
excite long-ranged flows as they move, which then influence
all other segments. By generating the flow and reacting to it,
the segments experience hydrodynamic interactions with each
other and with the walls of the container. The presence of
HI is known to affect the dynamic properties of soft matter.
For instance, HI modify the values of diffusion coefficients
in colloidal suspensions [64], affect the characteristics of
the coil–stretch transition in polymers [116], play a key
role in collective swimming at low Reynolds numbers [117],
and control a concerted motion of microorganisms near the
surface [118] or intricate periodic trajectories of sedimenting
particles [119].

Much less is known about the role of HI in protein folding
and unfolding processes. Dickinson [120] and Tanaka [121]
speculated that HI might affect the kinetics of protein folding,
but an actual numerical assessment of the role of HI has come
with the paper by Baumketner and Hiwatari [58]. They have
considered coarse-grained models and found that HI delay
folding of a β-hairpin but do not affect folding of the α-helix.
Kikuchi et al [48] has found that HI have a negligible effect
on protein folding, whereas Ryder [49] reported a small, of the
order of 10%, reduction in the folding time in simple models
of several proteins, such as 2ci2. A stronger effect of HI on
folding was observed by Cieplak and Niewieczerzal [54], who
reported speed-up by about a factor of 1.3–2.3, depending on
the particular protein. Similar speed-up has been reported by
Frembgen-Kesner and Elcock [53], who analyzed the folding
dynamics of 11 proteins and found that—depending on the
protein model adopted—HI increase the folding rate by the
average factor of 1.7 for the Go-type model without side groups
and 3.07 for the model with side groups. Interestingly, they
also reported an HI-associated decrease in folding rates of
the individual secondary structures (α-helices and β-hairpins).
They hypothesized that HI accelerate the formation of non-
local interactions while at the same time decelerating the
formation of local interactions.

The differences in results between the authors on HI
effects in protein folding might be partially connected
to the nature of the starting conformations (statistically
independent swollen chain configurations were used as
initial conformations in [48, 49], whereas extended, linear
configurations were used in [54]), different folding criteria
and differences in the coarse-grained protein model used. A
significant role played by the ensemble of initial configurations
was further confirmed in [86], where it was shown that the
more tightly packed the set of initial protein conformations
is, the smaller the differences between folding times with
and without HI. This can be rationalized by noting that
HI significantly speed up the initial, collapse phase of the
folding process [54, 53], analogous to a similar phenomenon
in homopolymers [48, 122, 123]. However, the subsequent
establishment of contacts involves a stochastic search in the
conformational space and is not affected by any hydrodynamic
effects. For extended initial conformations, the collapse phase
is longer and more pronounced than in the case of tighter
conformations, hence the stronger effect of HI. Interestingly,
the folding pathways do not seem to be affected by the

Figure 5. The dragging effect: the moving particle creates a flow
pattern which affects other particles by pulling them in the direction
of its motion (reprinted with permission from [51]. Copyright 2007
IOP Publishing.).

presence of hydrodynamic interactions [54], which also agrees
with a similar observation for homopolymer collapse [123],
where the collapse pathways from a good solvent state
to a poor solvent state were found to be independent of
hydrodynamic interactions, even though the collapse rates
itself are significantly higher for the systems with HI.

In the case of mechanically induced unfolding, the impact
of HI has been shown to depend on the way the protein is
stretched. In a standard constant-velocity unfolding, usually
carried out with use of an AFM, hydrodynamic effects were
shown to play a minor role if the unfolding speeds are low
enough [51]. However, for larger speeds (starting from about
0.5 Å ns−1) HI were shown to reduce the peak forces during
stretching. Such speeds, although not relevant experimentally,
are often used in numerical simulations, particularly in all-
atom models.

For stretching at a constant force, the inclusion of
HI changes the dynamics considerably [51]. The average
unfolding times in the model with HI are much shorter than the
results for the model without HI. Additionally, the unfolding
pathways are different between the two models, particularly at
higher forces. The fact that the HI facilitate protein unfolding
was attributed to the so-called dragging effect: an amino acid
pulled away from the bulk of a protein creates a flow which
drags other residues with it (cf figure 5).

Finally, in flow-induced unfolding, either in a uniform [51]
or in a shear flow [52], HI were shown to play a hindering role:
unfolding of the system with HI requires a much larger flow
speed than without. This can be understood qualitatively in
terms of the so-called no-draining effect [124, 50]: the residues
hidden inside the protein are shielded from the flow and thus
only a small fraction of the residues experience the full drag
force (see figure 6). In contrast, when no HI are present, this
drag force is applied to all residues. In fact, an analogous
shielding effect is the reason why values of the tension in the
chains considered in figures 3 and 4 are much lower for the
model with HI included than without.

7. Summary

In summary, we have briefly reviewed recent experimental
and numerical studies on flow-induced effects in protein
dynamics. Understanding the behavior of proteins in flows
is crucial, not only for the development of new tools for
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Figure 6. The shielding effect: the particles inside a cluster
experience a smaller drag force than those on the surface (reprinted
with permission from [51]. Copyright 2007 IOP Publishing.).

probing the conformational landscape of proteins, but also for
understanding of many in vivo processes, such as hemostasis
or ion channel activation. The presence of the solvent must
also be taken into account to predict the time scales of
conformational changes of protein structure correctly—in the
case of both folding and unfolding of proteins.
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Appendix. Estimate of the critical strain rate

Here we quote the estimate of the critical shear rate needed to
denature a protein, as elaborated in [3]. In this approach, the
unfolding protein in the elongational flow vx = γ̇ x is modeled
by two roughly equal-sized coils of radius a separated by a
straight linker of n amino acids oriented parallel to the x-axis,
as illustrated in figure A.1. The tension along the chain due to
the drag force experienced by each coil is then

T (n) = 3πηand γ̇ (A.1)

where d = 3.8 Å is the distance between consecutive
amino acids along the chain. Since the proteins are tightly
packed [125] the radius of each coil (a) is linked with the
number of amino acids it comprises (m) by the relation a3 =
mb3, where b is the average radius of an amino acid. The
net work done by the fluid in completely separating the two
clusters is then

W = 3πηd2γ̇ b
∫ N

0
n

(
N − n

2

)1/3

dn

= 27
28 2−1/3πηd2γ̇ bN7/3 (A.2)

where N is the total number of amino acids in the protein.
Comparing W with the free energy of unfolding (�G ∼

Figure A.1. A simple model of protein unfolding in elongational
flow considered in [3].

40 kJ mol−1 for cytochrome c) one gets a shear rate of γ̇ =
107 s−1 as the threshold needed for protein denaturation by
the flow. Next, the authors of [3] estimate the corresponding
Weissenberg number by multiplying the above estimate of γ̇ by
the collapse time of the unfolded cytochrome c to the compact,
molten globule state τr ∼ 50 μs. This gives Wi ∼ 103 as the
threshold Weissenberg number.

There are several simplifying assumptions in the above
calculation, most important of which is the neglect of the
rotational component of the shear flow, which rotates the
elongated chain towards the direction of zero stretch rate
thereby dramatically reducing the denaturing force of the flow.
The above estimate (as remarked by the authors themselves) is
thus more appropriate for a purely elongational flow, whereas
the shear flow can unfold the protein only transiently, inducing
stretching–collapse cycle as discussed in section 4.

Another issue concerns the initiation of the unfolding
process in the above model. Namely, since the inside of the
protein globule is shielded from the flow, it seems unlikely
that the stretching will begin by breaking a group of bonds
deep inside the protein structure which would then lead to the
formation of two clusters as depicted in figure A.1. Rather, it
is expected that the denaturation will be initiated at the protein
surface, by a mechanism similar to that described by Katz et al
[14] (cf section 4)—when a protrusion appears on the interface
between a protein globule and a viscous solvent, the shear force
may pull it further away from the surface and initiate protein
unfolding. The results of simulations of the proteins in the
shear flow reported in [52] further confirm this scenario. A
small loop of the protein chain is usually pulled up first, most
often involving the amino acids close to one of the termini.
In many instances such a protrusion is quickly pulled back
into the globule, but from time to time the whole loop with a
terminus is pulled out (cf panel 2 in figure 2). Only then, after
the rotation of the chain, might the terminal part be folded back
which leads to a characteristic two-cluster shape, as seen in the
third panel of figure 2.
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[61] Nägele G 2006 Brownian dynamics simulations
Computational Condensed Matter Physics, vol B4:1, ed
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