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We use an analytic criterion for vanishing of exponential damping of correlations developed pre-
viously [J. Piasecki et al., J. Chem. Phys. 133, 164507 (2010)] to determine the threshold volume
fractions for structural transitions in hard sphere systems in dimensions D = 3, 4, 5, and 6, pro-
ceeding from the Yvon-Born-Green hierarchy and using the Kirkwood superposition approximation.
We conclude that the theory does predict phase transitions in qualitative agreement with numerical
studies. We also derive, within the superposition approximation, the asymptotic form of the analytic
condition for occurrence of a structural transition in the D → ∞ limit. © 2011 American Institute of
Physics. [doi:10.1063/1.3622597]

I. INTRODUCTION

The studies of entropic phase transitions in hard hyper-
sphere systems in dimensions four, five, and higher, are at
present an active field of research. The possibility of precise
quantitative studies appeared owing to the extension of molec-
ular dynamics calculations to systems of hard hyperspheres.1

Further development concerning the problem of freezing has
been reviewed and discussed in Ref. 2 where numerous ref-
erences can be found. The motivation for studying fluids at
D > 3 given in Ref. 2 stresses the fact that the knowledge of
fluid behavior in different dimensions can be effectively used
to construct the corresponding density functional theory. An-
other reason is that in the theory of phase transitions one can
expect important simplifications in dimensions D � 1. In the
case of hyperspheres the solution at D = ∞ could be used to
develop a perturbative approach toward lower dimensions.

The fluid to solid transitions in dimensions four,
five, and six have been recently analyzed by advanced
computations.3–5 In Lue et al.,5 both molecular dynamics and
Monte Carlo simulations have been used to study the onset
of crystallization as reflected in the structure of the radial
distribution function. Of course, the problem of primary im-
portance is then the question of packing of hyperspheres. An
interesting observation of geometrical frustration in four di-
mensions reported in Ref. 4 is here a good illustration. The
extension of numerical analysis of the fluid-solid transition to
even higher dimensions six and seven can be found in Ref. 6.
The analysis of the fluid-crystal interfacial free energy in four,
five, and six dimensions performed in Ref. 7 showed that the
fluid stability increased with growing dimension. This inter-
esting observation permitted to establish a connection with
recent theories of jamming behavior.8, 9

The instability of a hard hypersphere fluid with respect
to a hypercubic crystal was analyzed in Ref. 10. The au-
thors mobilized density functional theory taking advantage
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of the exact relation for dimension D = 1 and for D = ∞
between the singlet density of an inhomogeneous system
and the two-particle direct correlation function and obtained
via an analysis of bifurcations (see Ref. 11) an original es-
timate of the density of the closest packing of hypercubic
lattices.

The question of phase structures appearing in hyper-
sphere systems when the spatial dimension D tends to
infinity is the object of intensive studies. A general discussion
of “magic dimensions” for which special lattice packings
appear can be found in Refs. 12 and 13. However, it is still
by no means clear what kind of correlations persist when
D � 1. The possibility of a simplification at D = ∞ has
been strongly suggested by the study of Mayer series.14 The
publications,3, 15 beyond reporting new results, provide a
thorough description of the present state of the theory in high
dimensions. A most interesting guess from existing results
formulated in Ref. 15 is that in very high dimensions optimal
packings of hard hyperspheres will be disordered, subject
to decorrelation principle. This challenging hypothesis of
the disorder eventually replacing closed packed crystalline
structures became an important and fascinating theoretical
question (see, e.g., chapter 15.4 in Ref. 12).

Interpretation of growing wealth of precise numerical
data requires a theory. Various theoretical approaches used for
hyperspheres have been reviewed in Ref. 2 where the density
functional theory, virial expansions, scaled-particle theory,
free-volume theory, Percus-Yevick, and hypernetted chain in-
tegral equations are discussed. However, to our knowledge the
superposition approximation, well known in the theory of liq-
uids (for a critical review see Ref. 17) has not been system-
atically analyzed up to now in dimensions higher than three.
The discussion of the content of this theory for D > 3 is our
contribution to the current theoretical studies of hard hyper-
spheres.

Our main object in the present paper is to investigate pre-
dictions of Kirkwood’s superposition approximation concern-
ing the existence of phase transitions in hypersphere systems.
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The analytic and numerical results for D = 2 and D = 3,
have been described in our previous work,18 showing good
agreement with numerical studies. It turns out that we can ap-
ply the methods developed in Ref. 18 to investigate higher
dimensions as well. In fact, we have at our disposal an an-
alytic criterion for structural changes in arbitrary D. Com-
parison with existing numerical data confirms the correctness
of predictions as far as the existence of structural transitions
is concerned. So, although it is not known to what extent
Kirkwood’s approximation is valid for D � 1, the qualita-
tive predictions in arbitrarily high dimensions are certainly
worth examining. Owing to our method, we are also able to
derive quantitative results and compare them with the numer-
ical data.

Our starting point is the equilibrium Yvon-Born-Green
(YBG) hierarchy under Kirkwood’s closure. In Sec. II, the in-
tegral equation for the radial distribution function is derived.
In Sec. III, we solve the equation by iterations which permits
one to determine the values of packing fractions correspond-
ing to phase transitions in dimensions four, five, and six and
compare them with known numerical results. Section III is
devoted to the discussion of D → ∞ asymptotics. The paper
ends with concluding comments.

II. SUPERPOSITION APPROXIMATION
IN D DIMENSIONS

The number density ns of s-particle configurations in
which hard spheres of diameter σ occupy space points
(r1, r2, ..., rs) can be conveniently written in terms of dimen-
sionless positions xj = rj /σ as

ns(x1, x2, ..., xs) = ns
∏
a<b

θ (|xa − xb| − 1)ys(x1, x2, ..., xs),

(1)

where n is the number density of a uniform equilibrium state.
The product of unit step functions θ (|xa − xb| − 1) repre-
sents the excluded volume factor, and ys is the s-particle
distribution, depending on dimensionless distances xab = |xa

− xb|, 1 ≤ a < b ≤ s.
The second equilibrium Yvon-Born-Green hierarchy

equation for hard spheres in D ≥ 2 dimensions has the form
(see the derivation for D = 2 in Ref. 18)

d

dx
y2(x) = nσD

∫
dσ̂ (x̂ · σ̂ )θ (|x − σ̂ | − 1)y3(x, 1, |x − σ̂ |).

(2)

Here, x = |x|x̂ = xx̂ denotes the dimensionless relative posi-
tion of a pair of hard spheres. Distances are measured in the
sphere diameter σ , so x = 1 describes a contact configura-
tion. σ̂ and x̂ are unit vectors. The integration spreads over
the solid angle with

dσ̂ = sinD−2(φ1) sinD−3(φ2)... sin(φD−2)dφ1dφ2...dφD−1.

(3)

We choose the coordinate system such that

x̂ · σ̂ = cos φ1.

Under the Kirkwood superposition approximation the di-
mensionless three-particle density y3(x, 1, |x − σ̂ |) factorizes
into the product of two-particle distributions, and we get from
Eq. (2) a closed nonlinear equation

d

dx
y2(x)

= nσD

∫
dσ̂ (x̂ · σ̂ )θ (|x − σ̂ | − 1)y2(x)y2(1)y2(|x − σ̂ |).

(4)

Introducing a simplified notation Y (x) ≡ y2(x) we find that
the correlation function H (x) = Y (x) − 1 satisfies the equa-
tion

d

dx
ln[H (x) + 1]

= nσDY (1)
∫

dσ̂ (x̂ · σ̂ )θ (|x − σ̂ | − 1)[1 + H (|x − σ̂ |)].

(5)

We denote by v(1,D) the volume of a unit sphere in D di-
mensions

v(1,D) = πD/2

�(1 + D/2)
. (6)

Using the formula
∫ π

0
dφ2

∫ π

0
dφ3...

∫ π

0
dφD−2

∫ 2π

0
dφD−1 sinD−3(φ2)... sin(φD−2)

= (D − 1)v(1,D − 1), (7)

we rewrite Eq. (5) in the form

d

dx
ln[H (x) + 1] = λ(D)

∫ π

0
dφ cos φ sinD−2(φ) θ [x−2 cos φ]

×[1 + H (
√

x2 − 2x cos φ + 1)], (8)

with

λ(D) = nσDY (1)(D − 1)v(1,D − 1). (9)

The right-hand side of Eq. (8) can be further simplified. It
contains the integral

∫ π

0
dφ cos φ sinD−2(φ)θ (x − 2 cos φ)

= −θ (2 − x)

D − 1

[
1 − x2

4

](D−1)/2

, (10)

and the integral involving the correlation function∫ π

0
dφ cos φ sinD−2(φ)θ (x−2 cos φ)H

(√
x2− 2x cos φ+1

)

=
∫ π/2

0
dφ cos φ sinD−2(φ)

[
θ (x−2 cos φ)

×H
(√

x2−2x cos φ+1
)
−H

(√
x2 + 2x cos φ + 1

) ]
.

(11)
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Upon integrating both sides of Eq. (5) over the interval
(x,∞) we get

ln[H (x) + 1] = λ(D) {R1(x) + R2(x)} , (12)

where

R1(x) = 1

D − 1

∫ ∞

x

dzθ(2 − z)

[
1 − z2

4

](D−1)/2

= θ (2 − x)

D − 1

∫ 2

x

dz

[
1 − z2

4

](D−1)/2

, (13)

and

R2(x) =
∫ ∞

x

dz

∫ π/2

0
dφ cos φ sinD−2(φ)

× [H (
√

z2 + 2z cos φ + 1 )

− θ (z − 2 cos φ) H (
√

z2 − 2z cos φ + 1 )].

The term R2 can be transformed in the following way:

R2(x) =
∫ ∞

x

dz

∫ π/2

0
dφ cos φ sinD−2(φ)

[
H

(√
(z + cos φ)2 + sin2 φ

)
− θ (z − 2 cos φ) H

(√
(z − cos φ)2 + sin2 φ

)]

=
∫ π/2

0
dφ cos φ sinD−2(φ)

{∫ ∞

x+cos φ

dz −
∫ ∞

x−cos φ

dz θ(z − cos φ)

}
H

(√
z2 + sin2(φ)

)

= −
∫ π/2

0
dφ cos φ sinD−2(φ)

∫ x+cos φ

x−cos φ

dz θ(z − cos φ) H

(√
z2 + sin2(φ)

)
. (14)

Introducing the integration variable μ = sin φ, we get

R2(x) = −
∫ 1

0
dμμD−2

∫ +∞

−∞
dz θ(z2 + μ2 − 1) θ

(√
1 − μ2 − |z − x|

)
H

(√
z2 + μ2

)
. (15)

Putting now s =
√

z2 + μ2 leads to the equality

R2(x) = −
∫

ds sH (s)θ (s − 1)
∫ 1

0
dμ

μD−2√
s2 − μ2

θ

(√
s2 − μ2 − x2 + s2 − 1

2x

)

= −
∫

ds sD−1H (s)θ (s − 1)
∫ 1/s

0
dν

νD−2

√
1 − ν2

θ

(√
1 − ν2 − x2 + s2 − 1

2sx

)
. (16)

One can further simplify this expression by using the integration variable w = √
1 − ν2. Indeed, we have∫ 1/s

0
dν

νD−2

√
1 − ν2

θ

(√
1 − ν2 − x2 + s2 − 1

2sx

)
=

∫ 1

√
s2−1/s

dw (1 + w2)(D−3)/2θ

(
w − x2 + s2 − 1

2xs

)

=
∫ 1

(x2+s2−1)/2xs

dw θ(1 − |x − s|)(1 − w2)(D−3)/2. (17)

The last equality follows from the fact that

(x2 + s2 − 1)

2xs
>

√
s2 − 1

s
.

Using this result we eventually find

R2(x) = −
∫ x+1

x−1
ds sD−1H (s)θ (s − 1)

∫ 1

(x2+s2−1)/2xs

dw (1 − w2)(D−3)/2. (18)

We can thus write the integral equation (12) for the two-particle correlation function H (x) of D−dimensional hypersheres in
the form

H (x) = LH (x) = −1 + exp{λ(D)[R1(x) + R2(x)]}, (19)

where

R1(x) + R2(x) =
{

2θ (2 − x)

D − 1

∫ 1

x/2
dw (1 − w2)(D−1)/2

−
∫ x+1

x−1
ds sD−1H (s)θ (s − 1)

∫ 1

(x2+s2−1)/2xs

dw (1 − w2)(D−3)/2

}
.
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FIG. 1. Pair correlation function, H (x), for the hard-sphere gas (D = 3) at
the volume fraction φ = 0.40 (dashed line) and φ = 0.51 (solid line).

III. ITERATIVE SOLUTION OF THE INTEGRAL
EQUATION

The integral equation (19) is solved by a standard Neu-
mann method with successive over-relaxation. The iterative
solutions are then given by

Hn = (1 − α)Hn−1 + αL(Hn−1), (20)

where L has been defined in Eq. (19). The relaxation pa-
rameter α was taken to be 0.1 (for D = 3, 4) and 0.05 (for
D = 5 and 6). Iterations were continued until successive val-
ues of H (x = 0) differed by less than ε = 10−5, except in
the vicinity of the threshold volume fraction φ∗ (see below),
where the convergence was slow and the iterations were dis-
continued at ε = 10−2.

Examples of correlation functions obtained in this way
are presented in Figs. 1 and 2. Clearly, with increasing volume
fraction the decay of H (x) becomes slower, and a pronounced
peak structure appears.

The comparison of our results with the molecular dy-
namics simulation data of Estrada and Robles6 presented
in Fig. 3 shows that the correlation function obtained from
the integral equation (19) has a lower contact value, H (1),
and shifted maxima with respect to the molecular dynamics
curves. Analogous quantitative differences between the pre-
dictions of Kirkwood’s approximation and the molecular dy-
namics data are also observed at higher dimensions and other
volume fractions.

In order to investigate the possibility of a structural
change we proceed as in Ref. 18 by considering the form

2 3 4
x1

2

H

FIG. 2. Pair correlation function, H (x), for the hard-hypersphere gas
(D = 5) for the volume fraction φ = 0.10 (dashed line) and φ = 0.27 (solid
line).

2 3
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3

H

FIG. 3. Pair correlation function, H (x), for the hard-sphere gas (D = 3) at
the volume fraction φ = 0.40 obtained from the solution of the integral equa-
tion (12) (solid line) compared with the molecular dynamics simulations of
Estrada and Robles [see Ref. 6 (dashed line)].

of Eq. (8) for large distances x. Using the asymptotic for-
mulae ln[H (x) + 1] ∼= H (x) and

√
x2 − 2x cos(ψ) + 1 ∼= x

− cos(ψ), we get an integral equation

d

dx
H (x) = λ(D)

∫ π

0
dψ cos ψ sinD−2(ψ)H (x − cos ψ).

(21)

We then consider the solution H (x) as a linear combination
of exponential modes

Hκ (x) = exp(κx),

where κ is a complex number satisfying the equation

κ = λ(D)
∫ π

0
dψ cos ψ sinD−2(ψ) exp[−κ cos ψ]. (22)

We look for the mode with the slowest decay. The disap-
pearance of exponential damping in this mode announces the
change in the nature of correlations and thus implies a struc-
tural change. Such a possibility is equivalent to the appear-
ance of a purely imaginary solution κ = ib of Eq. (22), with
b obeying

1 +
√

π

2
λ(D)�

(
D − 1

2

) (
2

b

)D/2

JD/2(b) = 0. (23)

In deriving Eq. (23) from Eq. (22), we used the relation

√
π

(
2

z

)ν

�(ν + 1/2)Jν(z) =
∫ π

0
dψ sin2ν(ψ) cos(z cos ψ),

(24)

together with

d

dz

Jν(z)

zν
= −Jν+1

zν
. (25)

Equation (23) has a solution if and only if λ(D) ≥ λ∗(D)
where

λ∗(D) = −
{√

π

2
�

(
D − 1

2

)
2D/2Min

[
JD/2(b)

bD/2

]}−1

.

(26)

In order to evaluate the absolute minimum in Eq. (26),
we note that according to relation (25) all extrema of function
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FIG. 4. Critical value λ∗ as function of D.

Jν(b)/bν for b �= 0 are attained at points which are zeros of
function Jν+1(b). One finds

Min

[
JD/2(b)

bD/2

]
= JD/2[j (1 + D/2, 1)]

[j (1 + D/2, 1)]D/2
, (27)

where j (1 + D/2, 1) is the first positive zero of function
J1+D/2. Inserting Eq. (27) into Eq. (26), we find the following
values of λ∗(D) :

λ∗(3) = 17.407,
λ∗(4) = 43.44,
λ∗(5) = 91.23,

λ∗(6) = 172.76.

We note here a rapid increase of the critical value λ∗(D) with
dimension. Indeed, the formula (26) implies a rapid growth
(faster than (e/2)D/2) illustrated in Fig. 4. (In our paper,18

we found at D = 3 the threshold value 34.81 for the param-
eter considered by Kirkwood et al.,20 and equal to 2λ of the
present paper.)

The function λ(D) defined in Eq. (9) is related to the vol-
ume fraction φ(D) occupied by the spheres

φ(D) = n
(σ

2

)D

v(1,D), (28)

by the equation

λ(D) = 2DY (1)(D − 1)
v(1,D − 1)

v(1,D)
φ(D), (29)

where
v(1,D − 1)

v(1,D)
= �(1 + D/2)√

π�[ (1 + D)/2 ]
. (30)

Of course, the contact value of the radial distribution also de-
pends on the volume fraction which we will highlight in what
follows by the notation Y (1, φ). Example of the resulting λ(φ)
dependence (for D = 4) is given in Fig. 5.

Taking Y (1, φ) from the iteration procedure, we can esti-
mate the hyper-volume fractions φ∗(D) corresponding to the
above-derived critical λ∗(D). In this way, we get

φ∗(3) = 0.52,

φ∗(4) = 0.40,

φ∗(5) = 0.28,

φ∗(6) = 0.21.

The contact values Y (1, φ(D)) evaluated at φ∗(D) show
with increasing D a decreasing behavior

0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

λ

FIG. 5. The dependence λ(φ) for D = 4. The dashed line indicates the
threshold value, λ∗ = 43.44.

Y (1, φ∗(3)) = 2.79,

Y (1, φ∗(4)) = 2.67,

Y (1, φ∗(5)) = 2.61,
Y (1, φ∗(6)) = 2.51.

The Kirkwood approximation does predict phase tran-
sitions in dimensions 3, 4, 5, and 6 because the threshold
values of the volume fractions given above are lower than
the optimal volume fractions φmax(D). Indeed, in three
dimensions we know the exact result φmax(3) = π/3

√
2

= 0.7404, whereas in dimensions 4, 5, and 6 the largely
accepted conjectures for the densest lattice packings3, 13

yield φmax(4) = π2/16 = 0.6168, φmax(5) = 2π2/30
√

2
= 0.4652, and φmax(6) = π3/48

√
3 = 0.372.

The numerical results reported in Ref. 7 show that
the phase coexistence region for D = 3 is in the density
range 0.494 < φ < 0.54, whereas for D = 4 and D = 5
the corresponding ranges are given by 0.288 < φ < 0.337
and 0.174 < φ < 0.206, respectively. Finally, for D = 6
the estimated coexistence range corresponds to 0.105 < φ

< 0.138. Thus, the Kirkwood approximation overestimates
the transition point, situating it for D = 4, 5, and 6 beyond
the coexistence region. The discrepancy between our re-
sults and the numerical ones measured by the ratio |φ∗(D)
− φf r (D)|/φf r (D), where φf r (D) is the volume fraction at
freezing, increases with the growing dimension. Moreover,
the numerical simulations of Ref. 3 place the volume frac-
tion of maximally random jammed state at φ = 0.2 ± 0.01
for D = 6, which suggests that the transition at φ∗(D = 6)
= 0.21 might be kinetically inaccessible.

As far as the origin of the above discrepancies is con-
cerned the following remark can be made. According to a
thorough and subtle analysis of three-particle correlations
in hard spheres performed by Alder16 the superposition
approximation gives very good quantitative results provided
one extracts the radial distribution directly from the triplet
distribution without using the YBG hierarchy. His important
conclusion is that poor quantitative results of the Kirkwood
approximation “... are due to an extreme magnification of the
error by the integral equations in which it was introduced.”
So, it seems possible that the above mentioned discrepancies
between our results and numerical predictions are mainly due
to the fact that we apply the superposition approximation to
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the hierarchy equation. However, the qualitative conclusions
may be correct.

At this point another important problem must also be
considered. The discussion of our results presented so far as-
sumes that the threshold volume fraction φ∗(D) corresponds
to crystallization. But this cannot be really inferred from our
approach. All we know is that for φ(D) > φ∗(D) correlations
change their nature, and the law of exponentially damped
oscillations must be replaced by another one. The new law
must describe long-range, nonintegrable correlations. This
last condition is obviously satisfied by crystal structures. But
it would be also satisfied by states with correlations decay-
ing according to nonintegrable power laws. To our knowl-
edge, such power laws have not been found in jammed or
glassy states.9, 19 Consequently, the Kirkwood threshold vol-
ume fractions φ∗(D) cannot correspond to their appearance.
We shall come back to this question at the end of Sec. IV.

IV. D → ∞: POSSIBILITY OF STRUCTURAL
CHANGES

We now turn to the discussion of the high-dimensional
asymptotics D → ∞ having in view the answer to the fun-
damental question of existence of phase transitions within
Kirkwood’s approximation. It follows from the analysis pre-
sented so far that correlations change their nature provided
λ(D) > λ∗(D). We have, thus, to investigate the content of
the inequality

λ(D) > λ∗(D)

= − 21−D/2

√
π�[(D − 1)/2]

{
[j (1 + D/2, 1)]D/2

JD/2(j (1 + D/2, 1)

}
, (31)

Using the relation

Jν[j (1 + ν, 1)] = J ′
ν+1[j (ν + 1, 1)], (32)

together with asymptotic formulae for large ν (see Ref. 25)

j (ν, 1) ∼= ν + const ν1/3, J ′
ν(ν) ∼= −31/6�(2/3)

21/3πν2/3
, (33)

we find

λ∗(D)|D�1

= 21−D/2

√
π�[(D − 1)/2]

(1 + D/2)D/221/3

31/6�(2/3)
(1 + D/2)2/3.

(34)

In view of relations (29) and (30), we can rewrite Eq. (34) as

2D(D − 1)Y (1, φ∗(D))
�(1 + D/2)

�((1 + D)/2)
φ∗(D)

= 21−D/2

�[(D − 1)/2]

(1 + D/2)D/221/3

31/6�(2/3)
(1 + D/2)2/3. (35)

A straightforward calculation yields then the following large
D formula for the threshold volume fraction φ∗(D):

φ∗(D)Y (1, φ∗(D)) = const

(
D

2

)1/6 ( e

23

)D/2
, (36)

where

const = 21/3e/[
√

2π31/6�(2/3).

In order to check whether the volume fraction φ∗(D) sat-
isfying Eq. (36) can be attained one needs a precise knowl-
edge of the upper bound for possible volume fractions in D

dimensions. One also needs the behavior of the contact value
Y (1, φ(D)) for D → ∞.

According to the Mayer series study14 the hard-
hypersphere equation of state at D = ∞ has a remarkably
simple form

p = nkBT

[
1 + 1

2
nσDv(1,D)

]
, (37)

whereas the exact equation reads

p = nkBT

[
1 + 1

2
nσDv(1,D)Y (1, φ(D))

]
. (38)

It follows that Y (1, φ(D)) = 1 for D = ∞. In fact, we have
noticed within our approach the decrease of Y (1, φ(D))
with growing dimension when analyzing data for D

= 3, 4, 5, and 6. This observation suggests that Y (1, φ(D))
could monotonously approach 1 when D → ∞. We will thus
consider Y (1, φ∗(D)) in Eq. (36) for D � 1 as a number close
to 1. The resulting scaling of the volume fraction at phase
transition reads

φ∗(D) ∼
(

D

2

)1/6 ( e

23

)D/2
. (39)

A straightforward calculation shows that the Rogers rigorous
upper bound for lattice packings22, 23

φ(D) <
D

2D/2e
, (40)

is satisfied by scaling Eq. (39) of φ∗(D). Indeed

lim
D→∞

φ∗(D)
2D/2e

D
= 0.

Also the stronger Kabatiansky and Levenshtein bound24

φ(D) <
1

20.5990D
.

does not lead to contradiction with Eq. (39) for D → ∞. We
thus conclude that scaling Eq. (39) is compatible with existing
upper bounds for crystals.

The crossing of the threshold volume fraction φ∗(D)
leads to a change in the structure of hyperspheres reflected
by the appearance of long range correlations. As we have al-
ready remarked at the end of Sec. III, this is the reason why
we do not expect φ∗(D) to announce the passage to glassy or
jammed states. Let us just note that the scaling

φK (D) = 2−D D ln D, (41)

of the Kauzmann point φK (D) of the thermodynamic
glass transition9, 21 follows quite a different law compared
to that derived for φ∗(D) in Eq. (39). We note that
limD→∞ φK (D)/φ∗(D) = 0 which implies that for suffi-
ciently high D the glass transition would occur at lower vol-
ume fraction than the transition at φ∗(D).
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V. CONCLUDING COMMENTS

Our main objective in this paper was the investigation of
the possibility of structural transitions in hypersphere systems
within Kirkwood’s superposition approximation. To this end,
we employed the simple criterion derived from the equilib-
rium YBG hierarchy: exponential damping of the oscillating
pair correlation function H (x) disappears when the dimen-
sionless parameter λ(D) = nσD(D − 1)Y (1, φ(D))v(1,D

− 1) attains the threshold value λ∗(D) given by Eq. (26). For
λ(D) > λ∗(D), the large distance behavior of correlations is
necessarily changed. In order to check whether the transition
is possible we had to make sure that the threshold volume
fraction φ∗(D) corresponding to λ∗(D) was smaller than the
maximal possible value φmax . This was the most difficult
point because it required the knowledge of the contact value
of the radial distribution Y (1, φ∗(D)), and thus the solution
of the integral equation (19). We performed this program
for D = 3, 4, 5, and 6 concluding that the superposition
approximation does predict phase transitions for 3 ≤ D ≤ 6,
in accordance with numerical results, and is thus qualitatively
correct. However, it yields threshold values of the volume
fraction higher than those following from numerical studies
for crystallization.

Our investigation of the situation at D = ∞ permitted to
derive the asymptotic form of scaling Eq. (39) for the vol-
ume fraction at phase transition showing consistency of the
superposition approximation with crystallization. We checked
that the known lattice upper bounds for the maximal vol-
ume fractions in D dimensions are not restrictive enough to
eliminate the possibility of crystallization in arbitrarily high
dimension.

An interesting question left open is the limit
limD→∞ Y (1, φ∗(D)). We noticed in Sec. III that the
contact values Y (1, φ∗(D)) decreased with the increasing
dimension D. According to Ref. 14, the contact value at
D = ∞ is simply equal to 1. The evaluation of the above
limit within the superposition approximation would be thus
an important test for this theory.

Let us finally stress the fact that although our approach
predicts disappearance of the fluid structure characterized by
exponentially damped correlations, it cannot predict the pre-
cise nature of the new emerging phase. Clearly, further work
needs to be done on this point.
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