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The Rotne–Prager–Yamakawa (RPY) approximation is a commonly used approach to
model the hydrodynamic interactions between small spherical particles suspended in
a viscous fluid at a low Reynolds number. However, when the particles overlap, the
RPY tensors lose their positive definiteness, which leads to numerical problems in the
Brownian dynamics simulations as well as errors in calculations of the hydrodynamic
properties of rigid macromolecules using bead modelling. These problems can be
avoided by using regularizing corrections to the RPY tensors; so far, however, these
corrections have only been derived for equal-sized particles. Here we show how
to generalize the RPY approach to the case of overlapping spherical particles of
different radii and present the complete set of mobility matrices for such a system.
In contrast to previous ad hoc approaches, our method relies on the direct integration
of force densities over the sphere surfaces and thus automatically provides the correct
limiting behaviour of the mobilities for the touching spheres and for a complete
overlap, with one sphere immersed in the other one. This approach can then be used
to calculate hydrodynamic properties of complex macromolecules using bead models
with overlapping, different-sized beads, which we illustrate with an example.
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1. Introduction

The dynamics of particles suspended in a viscous fluid is governed by the
hydrodynamic interactions. Owing to their multi-body and nonlinear nature,
hydrodynamic interactions are hard to take into account in their full complexity.
Instead, one must resort to various approximations in order to make the computations
more tractable. One of the most popular approaches is the Rotne–Prager–Yamakawa
(RPY) approximation, based on the following idea. When a force (or torque) is
applied to particle i, that particle begins to move, inducing flow in the bulk of the
fluid. The effect of this flow on the translational and rotational velocities of another
particle (j) is then calculated using Faxen’s laws (Kim & Karrila 1991). In that way,
one neglects not only the multi-body effects (involving three and more particles)
but also the higher-order terms in two-particle interactions (e.g. the impact of the
movement of particle j back on particle i). The RPY tensor is by far the most popular
method of accounting for hydrodynamic interactions in soft matter modelling (Nägele
2006). In comparison, the very accurate multipole method employs the multiple
scattering expansion, which involves summing up the infinite number of reflections
of the Stokes flow between all of the particles. The reflected flows include also the
higher-order singular and regular solutions of the Stokes equation which are generated
during successive reflections. In this framework, the RPY approximation corresponds
to a single scattering only, and thus involves pairs of particles and never larger groups.

Notably, the RPY tensor is divergence-free, which considerably simplifies the
application of the Brownian dynamics algorithm (Ermak & McCammon 1978).
However, when one goes beyond the RPY approximation and includes many-body
effects in hydrodynamic interactions, the divergence of the mobility matrix becomes
non-zero and needs to be taken into account in Brownian dynamics simulation
schemes (Wajnryb, Szymczak & Cichocki 2004). The RPY is a far-field approximation
with the corrections decaying at least as fast as the inverse fourth power of the
interparticle distances; but it is less accurate at smaller distances. In particular, when
the particles overlap, the hydrodynamic tensors calculated based on RPY may become
non-positive definite, which causes a problem in the Brownian dynamics simulations
where the square root of the mobility matrix is needed. To avoid this problem, one
usually uses a regularizing correction for Rij < ai + aj, which is not singular at
Rij = 0 and positive definite for all the particle configurations. For the translational
components of the mobility matrix of equal-sized spherical particles, such a correction
has already been derived by Rotne & Prager (1969). In a recent paper (Wajnryb et al.
2013) we have rederived the original RPY tensor using direct integration of force
densities over the sphere surfaces and we used this approach to derive the regularizing
corrections for rotational and dipolar components of the generalized mobility matrix.
Here we show how to use this method to derive the RPY tensors for the particles of
different sizes, both non-overlapping and overlapping. The latter case is of particular
interest, since the regularizing corrections for unequal overlapping particles have
not been derived previously, even for the translational degrees of freedom. Instead,
a number of ad hoc formulae have been used, such as the Zipper–Durchschlag
correction (Zipper & Durchschlag 1997), which lack continuity and do not have the
proper limiting behaviour.

The calculation of hydrodynamic tensors for overlapping particles is important
for bead–spring models of macromolecules, both rigid and flexible. These models
allow for calculation of the dynamic properties of macromolecules, such as the
diffusion coefficient and intrinsic viscosity (Kirkwood & Riseman 1948; Bloomfield,

741 R5-2



Rotne–Prager–Yamakawa approximation for different-sized particles

Dalton & Van Holde 1967; Antosiewicz & Porschke 1989; Carrasco & de la Torre
1999). In the case of flexible molecules, one can also track the internal motions
and global conformational changes using the Brownian dynamics. The overlapping
bead models are particularly often used in coarse-grained models of proteins, in
which each amino acid is represented as a number of beads that interact via
effective force fields (Tozzini 2005; Clementi 2008; Hills & Brooks 2009). In
the simplest version, there is just a single bead per amino acid, usually centred
on the position of the Cα atom (which is the carbon atom to which the side chain
of the amino acid is attached), whereas more complex models involve additional
beads representing side chains as well. By tuning the diffusion coefficient of a
protein as a whole to the experimental data, Szymczak & Cieplak (2007) found the
hydrodynamic radius of the amino acids to be a ≈ 4.1 Å. Other authors have used
similar values of a in their models: e.g. a = 5.1 Å (Antosiewicz & Porschke 1989),
a = 3.6 Å (Hellweg et al. 1997), a = 4.5 Å (Banachowicz, Gapinski & Patkowski
2000) and a= 5.3 Å (Frembgen-Kesner & Elcock 2009). However, since the distance
between successive Cα atoms along the protein backbone is 3.8 Å, in all of these
models some of the beads representing amino acids overlap.

In fact, the non-overlapping bead models (a < 1.9 Å) were found to perform
unsatisfactorily in protein modelling (de la Torre, Huertas & Carrasco 2000). This
reflects the facts that: (i) the interior of the protein is densely packed; (ii) the side
chains of amino acids are usually longer than 1.9 Å; and (iii) the protein is covered
by a hydration layer of tightly bound water molecules. On the other hand, different
amino acids are of different sizes, and a more appropriate protein model would be
that of unequal-sized beads. However, the lack of a theoretically sound formulation
for hydrodynamic interactions in this case has prevented the wider use of such
models (Byron 1997; de la Torre et al. 2000). Our paper seeks to fill this gap by
showing how to construct the hydrodynamic tensors in the RPY approximation for
different-sized overlapping beads. Importantly, the use of this formalism is not limited
to proteins only; in principle, any complex shape of a macromolecule would be more
faithfully represented by the collection of unequal-sized beads rather than same-sized
ones.

We demonstrate that, for rigidly connected overlapping spheres, the hydrodynamic
properties calculated using the virtually exact multipole method are surprisingly
well reproduced by the corrected RPY model. Additionally, the RPY method is
shown to work in the regime where the standard multipole approach cannot be used
(corresponding to the situations where the centre of one sphere is inside another).

It is important to realize that the two aforementioned techniques (the multipole
method and RPY approximation) are designed with different applications in mind.
The multipole technique is a very accurate, although numerically expensive, method
of evaluating the hydrodynamic interactions of suspensions of spherical particles. On
the other hand, the RPY method is often used for fast simulations of Stokesian and
Brownian dynamics of bead-and-spring models of soft-matter systems, where the
approximation involved in treating the system as a collection of beads is usually
more severe than the fact that not all of the terms in the hydrodynamic interactions
have been taken into account.

2. The Rotne–Prager–Yamakawa approximation

We consider a suspension of N spherical particles of different radii ai, in an
incompressible fluid of viscosity η at a low Reynolds number, in a linear shear flow
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v∞(r)= K∞ · r, (2.1)

where K∞ is the velocity gradient matrix. Owing to the linearity of the Stokes
equations, the forces and torques exerted on the fluid by the particles (Fj and Tj)
depend linearly on the translational and rotational velocities of the particles (Ui and
Ωi). This relation defines the friction matrices ζ ,

(Fj

Tj

)
=−

∑
i

(
ζ tt

ji ζ tr
ji ζ td

ji

ζ rt
ji ζ rr

ji ζ rd
ji

)
·
 v∞(Ri)−Ui

ω∞(Ri)−Ωi

E∞

 , (2.2)

where ζ pq (with p= t, r and q= t, r, d) are the Cartesian tensors and the superscripts
t, r and d indicate the translational, rotational and dipolar components, respectively.
The tensor E∞ is the symmetric part of K∞ and ω∞ = 1

2∇× v∞(Ri)= 1
2ε :K∞ is the

vorticity of the incident flow. Finally, Ri is the position of particle i. The reciprocal
relation giving the velocities of particles moving under external forces and torques in
external flow v∞ is determined by the generalized mobility matrix (Dhont 1996)(

Ui

Ωi

)
=
(

v∞(Ri)

ω∞(Ri)

)
+
∑

j

[(
µtt

ij µtr
ij

µrt
ij µrr

ij

)
·
(Fj

Tj

)]
+
(

C t
i

Cr
i

)
: E∞, (2.3)

where the elements of the shear disturbance tensor C are defined as

C t
i =
∑

j

µtd
ij , Cr

i =
∑

j

µrd
ij . (2.4a)

Finally, the single-particle mobility matrices have the form

µtt
ii =

1
ζ tt

i
1, µrr

ii =
1
ζ rr

i
1, µtr

ii =µrt
ii =µtd

ii =µrd
ii = 0, (2.5)

with friction coefficients for a spherical particle ζ tt
i = 6πηai and ζ rr

i = 8πηa3
i .

Relation (2.3) can be rewritten in a more concise form by introducing the so-called
super-vector notation:(

Ũ
Ω̃

)
=
(

ṽ∞
ω̃∞

)
+
(
µtt µtr

µrt µrr

)
·
(
F̃
T̃

)
+
(

C t

Cr

)
: E∞. (2.6)

Here F̃= (F1,F2, . . . ,FN) is the 3N-dimensional vector of external forces acting on
the particles, and analogously for T̃, Ũ and Ω̃ . Because of the neglect of inertia, the
external forces and torques acting on the particles are equal (and opposite) to those
exerted by the fluid on the particles. Finally ṽ∞ = (v∞(R1), v∞(R2), . . . , v∞(RN)) and
analogously for ω̃∞. Note that the mobility matrices µpq (p, q= t or d) are then 3N×
3N Cartesian tensors. Finally, the whole 6N × 6N matrix in (2.6) comprising µtt, µtr,
µrt and µrr is called the N-particle mobility matrix.

In order to make the subsequent analysis more concise, we also introduce the
tensors (Wajnryb et al. 2013)

wt
i(r)=

1
4πa2

i
1 δ(ρi − ai), wr

i (r)=
3

8πa3
i
ε · ρ̂i δ(ρi − ai), (2.7)
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where ρj= r−Rj is the distance from the centre of sphere j and [ε · ρ̂j]αβ = εαβγ [ρ̂j]γ .
The above tensors multiplied by force wt ·F and torque wr · T have the interpretation
of surface force densities on the surface of the sphere due to the force and torque
acting on the sphere. Using this notation, the RPY tensor can be conveniently
expressed as (Wajnryb et al. 2013)

µ
pq
ij = 〈wp

i |T0|wq
j 〉 =

∫∫
dr′ dr′′ [wp

i (r′)]T · T0(r′, r′′) ·wq
j (r′′), (2.8)

with p, q= r, t and superscript T denoting tensor transposition. In the above, T0(r′, r′′)
is the Green’s function for the Stokes flow given by the Oseen tensor (Kim & Karrila
1991)

T0(r)= 1
8πηr

(1+ r̂r̂). (2.9)

In an analogous manner, one can express the elements of the shear disturbance
tensor. First, one observes that the contribution to the surface force density due to
the straining fluid motion is equal to 3ηδ(ρj− aj)E∞ · ρ̂j, which defines the additional
tensor wc(r) by

wc(r) : E∞ = 3ηδ(ρj − aj)E∞ · ρ̂j. (2.10)

Next, in analogy to (2.8), for the dipolar components of the mobility matrix one gets

µtd
ij : E∞ = 〈wt

i|T0|wc
j 〉 : E∞ (2.11)

and
µrd

ij : E∞ = 〈wr
i |T0|wc

j 〉 : E∞. (2.12)

3. The explicit form of RPY tensors

Below, we present the analytical expressions for the full set of mobility matrices
defined by (2.8)–(2.12). In the following formulae Rij = Ri − Rj is the interparticle
distance, a> (a<) denotes the radius of the larger (smaller) particle in the pair i, j,
and Θ(x) is the Heaviside function.

The integration of (2.8) gives the following form of the translational–translational
mobility matrix:

µtt
ij =



(
1+ a2

i + a2
j

6
∇2

)
T0(Rij)

= 1
8πηRij

[(
1+ a2

i + a2
j

3R2
ij

)
1+

(
1− a2

i + a2
j

R2
ij

)
R̂ijR̂ij

]
, ai + aj < Rij,

1
6πηaiaj

[
16R3

ij(ai + aj)− ((ai − aj)
2 + 3R2

ij)
2

32R3
ij

1

+ 3((ai − aj)
2 − R2

ij)
2

32R3
ij

R̂ijR̂ij

]
, a> − a< < Rij 6 ai + aj,

1
6πηa>

1= 1
ζ tt
>

1, Rij 6 a> − a<,

(3.1)
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whereas the rotational–rotational mobility matrix is given by

µrr
ij =


−1

4
∇2T0(Rij)= 1

16πηR3
ij
(3R̂ijR̂ij − 1), ai + aj < Rij,

1
8πηa3

i a3
j
(A 1+BR̂ijR̂ij), a> − a< < Rij 6 ai + aj,

1
8πηa3

>
1= 1

ζ rr
>

1, Rij 6 a> − a<,

(3.2)

with

A =
5R6

ij − 27R4
ij(a

2
i + a2

j )+ 32R3
ij(a

3
i + a3

j )− 9R2
ij(a

2
i − a2

j )
2 − (ai − aj)

4(a2
i + 4ajai + a2

j )

64R3
ij

(3.3)

and

B = 3((ai − aj)
2 − R2

ij)
2(a2

i + 4ajai + a2
j − R2

ij)

64R3
ij

. (3.4)

The rotational–translational part of the mobility matrix simply reads

µrt
ij =



1
2
∇×

(
1+ a2

j

6
∇2

)
T0(Rij)= 1

2
∇× T0(Rij)= 1

8πηR2
ij
ε · R̂ij, ai + aj < Rij,

1
16πηa3

i aj

(ai − aj + Rij)
2(a2

j + 2aj(ai + Rij)− 3(ai − Rij)
2)

8R2
ij

ε · R̂ij,

a> − a< < Rij 6 ai + aj,

θ(ai − aj)
Rij

ζ rr
i
ε · R̂ij, Rij 6 a> − a<.

(3.5)

Owing to the symmetry (Kim & Karrila 1991), the translational–rotational mobility
matrix is of the same form as µrt

ij but with interchanged ai and aj (note that in
equation (3.16) of Wajnryb et al. (2013) it was erroneously stated that µrt

ij is the
transpose of µtr

ij ).
Finally, the dipolar components of the mobility matrix are of the form

µtd
ij =



5
6

aj

[
−2(5a2

i a2
j + 3a4

j )

5R4
ij

1R̂ij +
a2

j (5a2
i + 3a2

j − 3R2
ij)

R4
ij

R̂ijR̂ijR̂ij

]
, ai + aj < Rij,

5
6

aj[C 1R̂ij +DR̂ijR̂ijR̂ij], a> − a< < Rij 6 ai + aj,

−θ(aj − ai)Rij1R̂ij, Rij 6 a> − a<

(3.6)

with

C = 10R6
ij − 24aiR5

ij − 15R4
ij(a

2
j − a2

i )+ (aj − ai)
5(ai + 5aj)

40aiajR4
ij

, (3.7)

D = ((ai − aj)
2 − R2

ij)
2((ai − aj)(ai + 5aj)− R2

ij)

16aiajR4
ij

(3.8)

741 R5-6



Rotne–Prager–Yamakawa approximation for different-sized particles

and

µrd
ij =


−5

2

[
aj

Rij

]3

(ε · R̂ij)R̂ij, ai + aj < Rij,

− 5
3a3

i
B(ε · R̂ij)R̂ij, a> − a< < Rij 6 ai + aj,

0, Rij 6 a> − a<,

(3.9)

where [1R̂ij]αβγ = δαβ[R̂ij]γ . Several remarks are in order here. First, for non-
overlapping particles, the integrals defined in (2.8) can be conveniently expressed
in terms of the differential operators acting on T0, as detailed in the formulae
(3.1)–(3.5) (upper row). For the dipolar components, the analogous formulae read

µtd : E∞ = 20
3

πηa3
j

{[(
1+ 5a2

i + 3a2
j

30
∇2

)
T0(Rij)

]
←−∇
}
: E∞ (3.10)

and
µrd : E∞ = 10

3
πηa3

j {[∇× T0(Rij)]←−∇ } : E∞, (3.11)

where ∇ is a differential operator with respect to Rij and [T0(Rij)
←−∇ ]αβγ = ∂γT0 αβ(Rij).

Note that µtd and µrd are not determined uniquely, since they define only the
symmetric and traceless parts of the mobility matrix. Given this freedom, in (3.6)–(3.9)
we write the matrices in the simplest algebraic form, following the convention of
Wajnryb et al. (2013).

Next, the self-mobilities of the particles in the RPY approximation can be recovered
by taking the limit Rij→ 0 in (3.1)–(3.9) and they read (for ai > aj)

µtt
ii = lim

Rij→0
µtt

ij =
1
ζ tt

i
1, µrr

ii = lim
Rij→0

µrr
ij =

1
ζ rr

i
1, (3.12)

whereas

µtr
ii =µrt

ii =µtd
ii =µrd

ii = 0. (3.13)

Note that the above correspond simply to the single-particle mobilities, since within
the RPY approximation the hydrodynamic effects do not enter at this level.

Importantly, the formulae (3.1)–(3.9) reproduce the single-particle mobilities also in
the case when the smaller sphere is completely immersed in the larger one. This is to
be expected, since in such a case only the external sphere interacts hydrodynamically
with the outside world. Note, however, that the phenomenological formulae proposed
for the RPY tensors for unequal overlapping spheres (Zipper & Durchschlag 1997;
Carrasco, de la Torre & Zipper 1999; Arya, Zhang & Schlick 2006) do not have this
property. These issues are discussed in more detail in the next section.

Additionally, one notes that there is no simple correspondence between the RPY
formulae for the equal-sized spheres and those for different-sized ones. The notable
exception is the translational part of the mobility matrix for non-overlapping particles,
which can be obtained from the corresponding formulae for identical spheres by the
substitution a→[(a2

i + a2
j )/2]1/2, as already noted by de la Torre & Bloomfield (1977).

Unfortunately, such a simple mapping ceases to work as soon as the particles begin
to overlap.
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Finally, let us stress that the RPY approximation can be generalized to any
boundary conditions and corresponding propagators (e.g. in the vicinity of a wall
or in periodic boundary conditions), as detailed in (Wajnryb et al. 2013). Importantly,
the regularizing corrections (corresponding to the extra terms that need to be added to
the RPY tensors derived for the non-overlapping case to obtain those for overlapping
particles) turn out to be independent of the specific form of the propagator. Thus
one can use the above-derived result to construct the RPY approximation for unequal
particles with different conditions at the boundaries of the system.

4. Other forms of RPY tensors for overlapping spheres

Several ansätze have previously been proposed in the literature to account for the
different sphere radii in RPY tensors. All of them have employed the original RPY
formulae for equal spheres, replacing the sphere radius by an effective radius aeff ,
defined as some function of ai and aj. Arguably, the most popular is the ansatz due
to Zipper & Durchschlag (1997), where

aeff = [(a3
i + a3

j )/2]1/3, (4.1)

motivated by the fact that in this case the volume of the two spheres of radius aeff is
the same as that of the pair ai and aj. Such an effective radius is then inserted into
the RPY formula for overlapping equal-sized spheres, i.e. (according to (3.1))

µtt
ij =

1
6πηaeff

[(
1− 9Rij

32aeff

)
1+ 3Rij

32aeff
R̂ijR̂ij

]
, Rij < ai + aj, (4.2)

whereas for the non-overlapping spheres the formula (3.1) (upper row) is used, i.e.

µtt
ij =

1
8πηRij

[(
1+ a2

i + a2
j

3R2
ij

)
1+

(
1− a2

i + a2
j

R2
ij

)
R̂ijR̂ij

]
, Rij > ai + aj. (4.3)

On the other hand, Carrasco et al. (1999) have analysed the model in which aeff in
the overlapping region is a simple arithmetic mean of ai and aj, i.e.

aeff = (ai + aj)/2, (4.4)

whereas, in the non-overlapping region, (4.3) is again used. Finally, Arya et al. (2006)
have proposed to use

aeff = [(a2
i + a2

j )/2]1/2, (4.5)

which reproduces the correct formula for the translational mobility matrix for non-
overlapping spheres. Below, we analyse the predictions of these models and compare
them with that of the previously derived (3.1)–(3.9).

As an example, let us calculate the translational mobility of a pair of particles with
a2= a1/2 as a function of the distance between their centres. Owing to the symmetry
of the problem, the mobility tensor µtt

12 is then of the form

µtt
12 =µ‖(R12)R̂12R̂12 +µ⊥(R12)(1− R̂12R̂12) (4.6)

with the components µ‖(R12) and µ⊥(R12) presented in figure 1 for a number of
different mobility models:
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1.19
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ZDC
CC
RPYC
RPY
STK(a () b)

FIGURE 1. The mobility coefficients (a) µ⊥ and (b) µ‖ as defined in (4.6) for a system
of two overlapping particles with a2 = a1/2. The dashed vertical lines mark the point
of touching (R12/(a1 + a2) = 1) and the distance at which the smaller sphere becomes
immersed in the larger one (R12/(a1 + a2) = 1/3). The inset shows the discontinuity of
ZDC, AC and CC formulae at R12 = a1 + a2.

(i) STK = the Stokeslet model, with the mobility matrix given by

µtt
ij =

1
8πηRij

(1+ R̂ijR̂ij), i 6= j, µtt
ii =

1
ζ tt

1; (4.7)

(ii) RPY = the Rotne–Prager–Yamakawa model without the regularizing correction,
which corresponds to using the upper formula in (3.1) over the entire distance
range;

(iii) RPYC = the RPY model with the regularizing correction, following the full
formula (3.1);

(iv) ZDC = the RPY model with the Zipper–Durchschlag correction, see (4.1);
(v) CC = the RPY model with the correction by Carrasco et al. (1999), see (4.4);

(vi) AC = the RPY model with the correction by Arya et al. (2006), see (4.5).

Importantly, in figure 1 we plot only the values that correspond to the positive
definite 6× 6 mobility matrix µtt defined by the relation analogous to (2.6). For small
interparticle distances, the Stokeslet model produces a non-positive definite matrix, a
fact already recognized by Zwanzig, Kiefer & Weiss (1968). An explicit calculation of
the determinant of µtt shows that it loses its positive definiteness at R?12 = 3

√
a1a2/2,

which for a2 = a1/2 corresponds to R?12/(a1 + a2) = 1/
√

2, as indeed observed in
figure 1. The uncorrected Rotne–Prager model also loses its positive definiteness as
the distance between the centres decreases. This time an explicit calculation shows
that the threshold value is

R?12 = 1
4

√
a1a2{1+ [f (a1/a2)]1/3 + [f (a1/a2)]−1/3} (4.8)

with
f (x)= 1+ 8/x+ 8x+ 4

√
(1+ x2)(4+ x+ 4x2)/x2. (4.9)

For the case at hand, this corresponds to R?12/(a1+ a2)≈ 0.56. On the other hand, the
corrected models remain positive definite in the entire range of interparticle distances,
which was in fact the main reason for their introduction. It needs to be stressed,
however, that there is no formal proof that the ad hoc models (ZDC, CC and AC) will
give positive definite mobility for a general configuration of N particles. Contrastingly,
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FIGURE 2. The friction coefficients for a snowman-shaped particle comprising two rigidly
connected, overlapping spheres with a2 = a1/2. The panels present the (a) transverse
friction coefficient ζ⊥ and (b) longitudinal friction coefficient ζ‖ calculated using the
RPYC formulae (solid) and the multipole expansion (dashed). The inset shows the
magnification of the small R12 region.

the RPYC model derived here is positive definite by construction, as it arises from the
action of a positive definite operator T0 on the vectors wq (cf. (2.8)–(2.12); see also
the discussion in Cichocki et al. (2000) and Wajnryb et al. (2013)).

The analysis of figure 1 shows further that the ad hoc models are not continuous at
the point of touching, i.e. a1+ a2=R12. Such a discontinuity in mobility, albeit small,
can lead to numerical artifacts in the Brownian dynamics simulations. In particular, it
will affect the resulting shape of the pair distribution function of close particles. An
additional negative aspect of the ad hoc corrections is their behaviour in the complete
overlap region, i.e. when R12 < a> − a<. As already mentioned, the mobility matrices
in this region should become independent of R12 and reduce to those of the larger
(external) particle. Such a behaviour is indeed observed for RPYC tensors, but not in
the case of other corrections.

5. Bead models of macromolecules

The overlapping bead models can be used for the calculation of hydrodynamic
properties of complex-shaped macromolecules, both rigid and flexible. To illustrate
this, we consider a simple example of a snowman-like molecule, formed by two
rigidly connected overlapping particles of radii a1 and a2 = a1/2. The recent advent
of microassembly techniques allows such structures to be relatively easily fabricated
(Duguet et al. 2011). Figure 2 presents the longitudinal and transverse friction
coefficients for such a snowman, defined in analogy to (4.6). These are obtained
by inverting the N-particle mobility matrix of (2.6) and then projecting the resulting
friction matrix on the rigid-body motion of the snowman as a whole. This is compared
with the friction coefficients calculated using the (virtually) exact multipole series
expansion method (MLTP) (Cichocki et al. 1994; Zurita-Gotor, Bławzdziewicz &
Wajnryb 2007).

The data presented in figure 2 show that, even though the RPY approach is
formally a far-field expansion, it works surprisingly well also for very small distances
between the particles, including the case of overlap. The transverse component is
underestimated by the RPYC approximation by no more than ∼1 %, whereas the
longitudinal component is underestimated by no more than ∼2 %. Such a good

741 R5-10



Rotne–Prager–Yamakawa approximation for different-sized particles

accuracy of RPY tensors is due to the fact that the rigid connection between
the particles removes the lubrication singularities that normally dominate the
hydrodynamic interactions between close particles. This leads to a satisfactory
performance of the bead models in which hydrodynamic interactions are accounted
for on the RPY level.

Another feature that can be noted in figure 2 is that the multipole results are plotted
down to R12/(a1 + a2) = 2/3 only. This is not coincidental, but a manifestation of
a fundamental property of the displacement theorem (Felderhof & Jones 1989), by
means of which one expands the singular flows generated by one sphere into regular
flows about the centre of another sphere in the multipole method. Namely, when the
two spheres are so close that the centre of the smaller one gets inside the larger
one, the aforementioned expansion is no longer convergent and the multipole method
ceases to work. For a2 = a1/2 this corresponds to the dimensionless distance of
R12/(a1 + a2) = 2/3, at which the lines in figure 2 terminate. The RPYC method is
not limited by this issue, and produces continuous results for arbitrary overlapping,
with correct limiting behaviour when one sphere is completely immersed in the other.

Importantly, the RPYC approximation can also be used to track the motion of
overlapping spheres that are not rigidly connected, a case that the multipole method
cannot handle, again because of the lack of convergence. The physical interpretation
of the RPYC results in this case is, however, more problematic than in the case of
rigid molecules, since the RPY approximation neglects the lubrication effects, which
strongly hinder the normal relative motion of the particle pair as the gap between
the sphere surfaces goes to zero. Nevertheless, the overlapping bead models based
on the RPY approximation do seem to work adequately for flexible molecules, e.g.
proteins (Frembgen-Kesner & Elcock 2009; Szymczak & Cieplak 2011). This is
possibly because the individual amino acids behave more like rough, porous objects
than smooth impermeable spheres, and thus the lubrication forces are expected to
play a less important role there. Also, the steric forces involved in these models limit
the amount of relative normal motion of neighbouring particles.

6. Concluding remarks

Reformulation of the RPY approximation using the integral formalism (equations
(2.8)–(2.12)) derived in Wajnryb et al. (2013) has been extended here to the case
of spherical particles of different radii. This has led to several results which, to our
knowledge, have not been derived so far. In particular, we have found the explicit
form of the dipolar components of the mobility matrix (3.6) and (3.9), needed in order
to track the dynamics of the system under shear flow. Additionally, we have derived
expressions for all the components of the mobility matrix for overlapping particles,
which is needed in both the Brownian dynamics simulations (Długosz, Zieliński &
Trylska 2011; Geyer 2011) as well as in the calculation of hydrodynamic properties
with bead models (Byron 1997; Zipper & Durchschlag 1997; de la Torre et al. 2000).
By construction, the N-particle mobility matrix obtained using (2.8) is positive definite
and all the hydrodynamic tensors have the correct limiting behaviour for touching
spheres and for complete overlap, with one sphere immersed in another.
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