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Abstract Dissolution of fractured rocks is often accompanied by the formation of highly localized flow
paths. While the fluid flow follows existing fractures in the rock, these fissures do not, in general, open
uniformly. Simulations and laboratory experiments have shown that distinct channels or “wormholes”
develop within the fracture, from which a single highly localized flow path eventually emerges. The aim
of the present work is to investigate how these emerging flow paths are influenced by the initial aperture
field. We have simulated the dissolution of a single fracture starting from a spatially correlated aperture
distribution. Our results indicate a surprising insensitivity of the evolving dissolution patterns and flow
rates to the amplitude and correlation length characterizing the imposed aperture field. We connect the
similarity in outcomes to the self-organization of the flow into a small number of wormholes, with the
spacing determined by the length of the longest wormholes. We have also investigated the effect of a
localized region of increased aperture on the developing dissolution patterns. A competition was observed
between the tendency of the high-permeability region to develop the dominant wormhole and the
tendency of wormholes to spontaneously nucleate throughout the rest of the fracture. We consider the
consequences of these results for the modeling of dissolution in fractured and porous rocks.

1. Introduction

In general, modeling physical or chemical processes requires a complete knowledge of the state of the sys-
tem at some earlier point in time. This is problematic in geological systems where much of the initial state of
the Earth is hidden from view and can only be determined by inference. On the other hand, there are many
examples of nonlinear systems [Meakin, 1998; Jamtveit and Hammer, 2012] in which patterns are formed spon-
taneously, with intrinsic length scales that are independent of initial conditions. It is therefore of interest if
predictions can be made about the evolution of geological formations without making explicit reference to
the initial conditions. In general, the relative importance of noise, initial fluctuations, and intrinsic instability
in pattern formation is complex [Stanley and Ostrowsky, 1988]. For example, in columnar growth [Meakin and
Krug, 1992; Krug et al., 1993], the final distribution of the growing columns can be either dependent or inde-
pendent of the initial noise, depending on the particulars of the growth process. The investigation reported
in this paper focuses on pattern formation during the dissolution of a single fracture, where the flow spon-
taneously focuses itself in dissolution channels or “wormholes.” We have systematically varied the statistical
properties of the initial aperture field, so that the homogenization scale varies by nearly 3 orders of magni-
tude. At long times, we find that the distribution of wormholes within the fracture is almost independent of
the initial aperture field.

Petroleum engineers first noticed that the permeability increase around a wellbore during acidization
depended in a nonmonotonic way on flow rate [Rowan, 1959], with the maximum corresponding to the spon-
taneous development of highly localized flow paths, or wormholes. Subsequently, wormhole formation was
investigated in the laboratory using a variety of materials, for example, plaster dissolved by water [Ewers, 1982;
Daccord, 1987], acidized limestone cores [Hoefner and Fogler, 1988; Fredd and Fogler, 1998; Polak et al., 2004;
Luquot and Gouze, 2009; Noiriel et al., 2013; Luquot et al., 2014], transparent KH2PO4 crystals [Detwiler et al.,
2003; Detwiler, 2010], and salt [Kelemen et al., 1995; Golfier et al., 2002]. Different dissolution regimes were
identified, depending on the flow rate in the sample [Hoefner and Fogler, 1988; Fredd and Fogler, 1998; Golfier
et al., 2002]. At low flow rates, dissolution was limited to a region near the inlet, whereas at high flow rates the
sample dissolved uniformly; wormhole formation was observed at intermediate flow rates.
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Figure 1. Examples of nonuniform fracture dissolution accompanied by wormhole formation. (a) A fractured wall
(marked by black arrows) at a limestone quarry in Smerdyna, Poland. Two wormholes have developed along the width
of the fracture; the one on the left is 11 cm in diameter. (b) Wormholes formed at the inlet of a vertical joint in the
limestone quarry near Katowice, Poland (photo courtesy of Daniel Koehn, University of Glasgow). (c) Wormhole at the
outlet of a fractured limestone core flushed with a CO2-rich solution (courtesy of María García Ríos and Linda Luquot,
Technical University of Catalonia) [García Ríos, 2015]. (d) A dissolutionally enlarged styolite with several wormholes in a
limestone wall of Mitzpe Ramon quarry, Israel (photo courtesy of Paweł Kondratiuk, University of Warsaw). (e) A conduit
in a phreatic cave in Dan Yr Ogof, Swansea Valley, South Wales. The yellow arrows mark the initial fissure (photo
courtesy of Brendan Marris, Dudley Caving Club).

Understanding the processes underlying wormhole formation and development remains an important prob-
lem for the petroleum engineering community [Panga et al., 2005; Cohen et al., 2008; Maheshwari and
Balakotaiah, 2013; Ishibashi et al., 2013], usually with the aim of optimizing reservoir acidization. In recent
years, further research has been initiated because of the relevance of wormhole formation to CO2 sequestra-
tion [Luquot and Gouze, 2009; Ellis et al., 2011; Elkhoury et al., 2013; Hao et al., 2013; Deng et al., 2013; Carroll
et al., 2013; Smith et al., 2013; Elkhoury et al., 2015; Ott and Oedai, 2015]. Since many of the potential reservoirs
for CO2 storage are in carbonate strata, it is crucial to understand how the flow of CO2-acidified brine impacts
the long-term changes in porosity and permeability of the reservoirs, and how it affects the caprock proper-
ties. Finally, elucidation of wormhole dynamics in dissolving fractures is important in understanding a number
of karst processes, such as cave and solution tube formation, as well as the denudation of hydraulic struc-
tures [Hanna and Rajaram, 1998; Cheung and Rajaram, 2002; Szymczak and Ladd, 2011a; Oltean et al., 2013;
Chaudhuri et al., 2013].

It has been established theoretically that the dissolution of a porous matrix is unstable to infinitesimal pertur-
bations in the porosity field [Chadam et al., 1986; Ortoleva et al., 1987]. The dissolution regimes observed in
the laboratory can be understood within the framework of linear stability analysis [Szymczak and Ladd, 2014]
by noting that the penetration length lp (the scale over which the concentration decays) has two different
limiting behaviors [Szymczak and Ladd, 2013]: at low flow rates lp ∼ D∕v0 (D is the diffusion coefficient, and
v0 is the characteristic velocity of the flow), whereas at high flow rates lp ∼ v0𝜏 , where 𝜏 is the characteris-
tic time scale for the dissolution reaction. In this context, a low flow rate means v0 ≪

√
D∕𝜏 whereas a high

flow rate corresponds to v0 ≫
√

D∕𝜏 . A linear stability analysis of transport-limited dissolution (v0 ≪
√

D∕𝜏)
[Ortoleva et al., 1987] shows that there is a minimum wavelength 𝜆min ∼ lp for an instability to grow. When
D∕v0 becomes comparable to the dimensions of the system, the planar front is stable and penetration is
limited to the region near the inlet. At larger velocities the front becomes unstable [Chadam et al., 1986],
and this instability leads to the development of wormholes. At still larger velocities, lp increases with velocity
(as v0𝜏) and eventually becomes comparable to the length of the system; at this point wormhole formation is
overtaken by uniform dissolution.

A stability analysis of the dissolution front in an initially uniform fracture [Szymczak and Ladd, 2011b, 2012]
reveals some important distinctions from the more familiar case of a porous matrix. In fact, there are
two separate instabilities in the dissolution of a porous matrix. The most commonly studied instability
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Figure 2. Dissolution of a rough fracture of length L and width W . Fluid flow is in the x direction, and the fracture
surfaces dissolve in the normal (z) direction. The aperture h(x, y) is the distance between the fracture surfaces.

[Chadam et al., 1986; Ortoleva et al., 1987; Szymczak and Ladd, 2014] occurs when there is a steadily propagat-
ing front separating the dissolved and undissolved regions, but the dissolution of an entirely uniform porous
matrix (before the front even develops) is also unstable [Szymczak and Ladd, 2011b]. Fracture dissolution is
similar to this second instability because the aperture opens without limit (in essence) and there is then no
propagating front. The stability analysis for a uniform fracture indicates that all wavelengths are unstable,
although there is a strong selection in favor of wavelengths that are of the same scale as the penetration
length [Szymczak and Ladd, 2011a]. Thus, the front is unstable at low velocities, and there is no range of flow
rates where the dissolution is limited to the inlet; although its growth rate may be small, eventually an insta-
bility will always develop. Nevertheless, at sufficiently high flow rates (v0 ≫

√
Dr∕𝜏) it remains possible for

fractures to dissolve uniformly, once the penetration length approaches the dimensions of the system.

Once perturbations in a planar front develop, they quickly grow into wormholes which advance deep into
the fracture, finally leading to breakthrough when the longest one reaches the outlet. Some illustrations of
inhomogeneous dissolution in natural fractures are compiled in Figure 1. A striking example of nonuniform
dissolution is the process of limestone cave formation. Even though cave formation starts along fractures and
bedding planes, which have quasi two-dimensional slot-like geometries, the mature cave is almost always a
system of pipe-like conduits [Groves and Howard, 1994b; Howard and Groves, 1995], such as the one depicted
in Figure 1e.

In this paper we investigate the extent to which the dissolution patterns in a fracture are controlled by dis-
tinctive features of the initial aperture distribution and to what extent they arise from random perturbations
through an instability mechanism. Wormholes have also been observed in melt flows [Aharonov et al., 1995;
Spiegelman et al., 2001] as well as in the hypogene karst [Andre and Rajaram, 2005; Chaudhuri et al., 2008].
However, the physical mechanism behind their formation is somewhat different. The dissolution in these
systems is driven by macroscopic solubility gradients, which lead to the formation of extended conduit
systems, with a well-defined spacing between the wormholes. Since the wormholes form simultaneously
along the entire length of the system, the competition between them is suppressed and they do not form a
hierarchical, self-affine structure as is the case with the flow-driven systems.

The paper is divided as follows: in section 2 we present details of the simulation method, which follows the
pioneering work reported by Hanna and Rajaram [1998] and Cheung and Rajaram [2002], but extended to
much larger systems (up to 67 million cells) in order to accommodate a wide range of length scales. Results
are presented in section 3 followed by a discussion of their geophysical implications in section 4 and the
conclusions in section 5.

2. Simulation Method

The analysis in this paper is based on numerical simulations of the time-dependent aperture field of a dis-
solving fracture, using a variety of initial aperture distributions. The key assumptions are that the velocity and
concentration fields can be averaged over the fracture aperture [Hanna and Rajaram, 1998], which allows us
to study much larger systems than would be feasible with a fully three-dimensional simulation. By using par-
allel computing, we were able to simulate systems up to 8192 cells on a side, which for a typical grid resolution
(∼1 cm) corresponds to fracture dimensions of the order of 100 m.
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Figure 3. Initial aperture distributions in a 8192Δ × 8192Δ fracture with roughness 𝜎 = 0.2: (a) correlation length
𝛾 = 10Δ and (b) correlation length 𝛾 = 1000Δ. The color bar indicates the local variation in aperture h(x, y), in units of
the initial mean aperture h0.

2.1. Fracture Geometry
The fracture geometry used in these simulations is sketched in Figure 2; here h(x, y, t) is the (nonuniform)
aperture, while L ≫ h and W ≫ h are the fracture dimensions. We will assume that the imposed pressure
gradient is along the length of the fracture (x direction). The initial state of the system is created from a random
aperture field h(x, y, t = 0), with a mean aperture

h0 = ⟨h(t = 0)⟩ (1)

and roughness

𝜎 =
√⟨h2⟩ − ⟨h⟩2⟨h⟩ . (2)

We used a regular grid of points with periodic boundary conditions in the y direction and a spacingΔbetween
the nearest neighbor points. The aperture at each grid point was sampled from a lognormal distribution,

ln h(x, y) = b + f (x, y), (3)

with a spatial correlation length, 𝛾 , defined by the autocorrelation of the variations in f ,

⟨f (x, y)f (x + 𝛿x, y + 𝛿y)⟩ = 𝜈2 exp

[
−
√
𝛿x2 + 𝛿y2

𝛾

]
. (4)

Initial aperture distributions with the desired mean, h0 = exp(b + 𝜈2∕2), roughness 𝜎 =
√

exp(𝜈2 − 1), and
correlation length 𝛾 , were generated using the Fourier filtering method [Saupe, 1988]. Two example aper-
ture distributions, with correlation lengths of 10Δ and 1000Δ are shown in Figure 3. The large sample size
(8192Δ × 8192Δ) allows for a wide range of correlation lengths (from 2Δ ≤ 𝛾 ≤ 1000Δ), while maintaining
a statistically homogeneous initial condition. Previous work [Hanna and Rajaram, 1998; Cheung and Rajaram,
2002; Kalia and Balakotaiah, 2009; Maheshwari and Balakotaiah, 2013; Maheshwari et al., 2013] only considered
relatively small correlation lengths (𝛾 < 30Δ).

2.2. Reactive Transport Model
Fracture dissolution can be described by coupled equations for flow, concentration, and fracture aperture
[Hanna and Rajaram, 1998; Cheung and Rajaram, 2002]. Fluid flow is modeled within the framework of the
lubrication approximation, which assumes a parabolic velocity profile across the fracture at each location in
the xy plane. The fluid flux in the fracture plane, q(x, y) = ∫ h

0 v(x, y, z)dz can then be found from the lubrication
equations:

𝛁 ⋅ q = 0, q = − h3

12𝜇
𝛁p, (5)

where 𝜇 is the fluid viscosity. Transport of reactant can be described in terms of a two-dimensional
velocity-averaged or “cup-mixing” concentration field [Bird et al., 2001],
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Figure 4. A dissolutional instability developing from a homogeneous initial condition in a 4096Δ × 4096Δ fracture. The
flow direction is from left to right. The panels show the dimensionless concentration field, ĉ, at (a) t = 0 and (b) t = 20td .
The initial aperture distribution was characterized by a roughness 𝜎 = 0.1 and correlation length 𝛾 = 0.014lp . The
penetration length lp = 286Δ was selected so that the linear stability analysis predicts exactly three wavelengths across
the width of the system (𝜆max = 4.74lp).

c(x, y) = 1
q(x, y)∫

h

0
v(x, y, z)c(x, y, z)dz. (6)

The three-dimensional convection-diffusion equation for reactant transport in the fracture can then be
reduced to a two-dimensional convection-diffusion-reaction equation for the cup-mixing concentration
[Hanna and Rajaram, 1998; Detwiler and Rajaram, 2007; Szymczak and Ladd, 2012],

𝜕t(hc) + q ⋅ 𝛁c = D𝛁h ⋅ 𝛁c − 2R(c), (7)

where 2R(c) accounts for the concentration depletion at both fracture surfaces by dissolution. The dissolution
reactions also increase the aperture,

csol𝜕th = 2R(c), (8)

where csol is the molar concentration of mineral. We assume the rock is composed of entirely soluble mineral,
for example, calcite or gypsum.

Dissolution kinetics in fractures are often nonlinear in the concentration and limited by transport across
the fracture aperture. Here we have chosen to ignore these complications and use a linear rate law,
R = k(csat − c), where csat is the saturation concentration of dissolved mineral ions and k is the reaction rate
constant. Although kinetic order is important in one-dimensional models of fracture dissolution [Dreybrodt,
1990; Groves and Howard, 1994a; Dreybrodt, 1996], two-dimensional simulations [Szymczak and Ladd, 2011a]
suggest that it may play only a minor role in actively developing wormholes. This is because the large flow
in the wormhole keeps the concentration near the tip well below saturation (see section 3.3 for further
discussion).

There are a number of parameters that determine the outcome of a simulation, as well as different possibilities
from statistically equivalent distributions of the initial aperture. In addition to the parameters character-
izing the aperture distribution—h0, 𝜎, and 𝛾—there are parameters that determine the flow, transport,
and reaction rate in the fracture—𝛁p, D, and k. The parameter space can be reduced by a suitable scaling
of the fields:

q̂ =
q

q0
, p̂ =

p
lpp′

0

, ĉ =
csat − c

csat
, ĥ = h

h0
. (9)

Here q0 is the flow rate in a uniform fracture of aperture h0 with a pressure gradient p′
0; i.e., q0 = −h3

0p′
0∕12𝜇.

The length scale lp is the reactant penetration length, which for convection-dominated flows (typical in
fractures) is [Szymczak and Ladd, 2011a]

lp =
q0

2k
. (10)
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Figure 5. Concentration fields (ĉ) for different correlation lengths 𝛾 , with constant roughness 𝜎 = 0.1. The fracture
dimensions and flow conditions are the same as in Figure 4. Only the inlet (left) side of the systems is shown here; the
concentration in the remainder of the system is negligible. The time for each concentration profile was selected at a
roughly comparable point in the evolution of the dissolution pattern: (a) 20td , (b) 15td , (c) 11td , and (d) 7td .

After scaling distances by the penetration length, x̂ = x∕lp, the flow in the fracture is described by the
dimensionless equations:

̂𝛁 ⋅ q̂ = 0, q̂ = ĥ3
̂𝛁p̂. (11)

At the fracture inlet R = kcsat, and the aperture grows linearly in time with a velocity 2k𝛾 , where 𝛾 = csat∕csol

is the acid capacity number (or volume of rock dissolved by a unit volume of reactant). In most geological
systems 𝛾 ≪ 1, for example, in calcite fractures it is of the order 10−4. A natural timescale is then

td =
h0

2k𝛾
= 𝜏

𝛾
, (12)

which is the time for the initial aperture at the inlet to double. With this scaling of length and time (t̂ = t∕td),
the dimensionless transport equation is

𝛾𝜕t̂(ĥĉ) + q̂ ⋅ ̂𝛁ĉ = H ̂𝛁ĥ ⋅ ̂𝛁ĉ − ĉ, (13)

where H = 2kh0D∕q2
0 is a dimensionless number that determines the relative magnitudes of diffusive and

convective fluxes on the scale of lp [Szymczak and Ladd, 2012]. However, since 𝛾 ≪ 1, we solve for the steady
state concentration field directly, ignoring the time derivative in (13).

In fracture flows it is almost invariably the case that H ≪ 1 (see section 3.3); the essential transport process is
the balance between the convective flux of reactant into the fracture and the dissolution flux at the surfaces.
The outcomes are then independent of H, although the simulations maintain a small diffusive current (H ∼
10−6) to ensure stability. Note that in dissolving porous media, the opposite limit frequently applies; H ≫ 1
and the dissolution is then independent of reaction rate [Ortoleva et al., 1987; Szymczak and Ladd, 2013].

The dimensionless equation for the aperture increase is

𝜕t̂ ĥ = ĉ, (14)

where the dimensionless aperture at the inlet, ĥ(x̂ = 0, ŷ), increases by 1 in every unit of time (the dimen-
sionless concentration at the inlet ĉ(x̂ = 0, ŷ) = 1). Under the assumptions of linear, reaction-limited kinetics,
fracture dissolution (with H ≈ 0) is specified (in the statistical sense) by just the roughness and correlation
length (in units of lp); the mean aperture does not appear in the scaled equations.
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Figure 6. Root-mean-square (RMS) flow rate, q̂ =
√

q2
x + q2

y∕q0, for different correlation lengths and constant roughness
𝜎 = 0.1. RMS flow rates are shown at the same elapsed times as the concentration fields in Figure 5: (a) 20td , (b) 15td ,
(c) 11td , and (d) 7td . Only the inlet (left) half of the system is shown in each case.

2.3. Numerical Implementation
Numerical solutions of the dimensionless equations (11), (13), and (14) were obtained from finite difference
discretization. The fracture surface is divided into a structured grid with a uniform spacing, Δ, in both x and
y directions. Since the fields develop in complex and unpredictable ways there is little to be gained from a
graded mesh; we did not investigate the complexities associated with adaptive mesh resolution. The aperture,
pressure, and concentration fields are determined at the grid positions, while the fluid flux was calculated
by differencing the pressure. Upwind differencing was used to calculate the convective concentration flux
throughout the domain. We found that satisfactory resolution of the concentration (the most rapidly varying
field) can be obtained with 10 points spanning the penetration length lp. In some cases we used significantly
more points to increase the resolution of the images, but the dissolution patterns and flow rates were similar.
An explicit time stepping method (fourth-order Runga-Kutta) was used to update the aperture fields.

The simulations employed periodic boundary conditions in the transverse (y) direction, and a constant pres-
sure was applied at the inlet and outlet. Except for the results presented in Figure 8, the simulations were
halted long before breakthrough and there was little difference in the dissolution patterns between constant
flow rate and constant pressure drop conditions. A uniform concentration ĉ = 1 was set at the inlet.

In order to examine pattern formation over as wide a range of scales as possible, the equations were solved in
parallel using up to 64 processors. Communication between processors was managed by the Message Pass-
ing Interface toolkit [Forum, 1994]. The linear systems of equations resulting from discretizing equations (11)
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Figure 7. (a–d) Concentration distribution and (e–h) aperture growth in fractures (4096Δ × 4096Δ) of different
roughness; the correlation length 𝛾 = 1.4lp . Concentration fields ĉ at two different times are shown in Figures 7a–7d,
and the corresponding aperture growths 𝛿ĥ (15) are shown in Figures 7e–7h. The odd panels (Figures 7a, 7c, 7e, and 7g)
correspond to a smooth fracture, 𝜎 = 0.02, while the even panels (Figures 7b, 7d, 7f, and 7h) are for a rougher fracture
𝜎 = 0.2. (a) 𝜎 = 0.02, t = 60td ; (b) 𝜎 = 0.2, t = 60td ; (c) 𝜎 = 0.02, t = 120td ; (d) 𝜎 = 0.2, t = 160td ; (e) 𝜎 = 0.02, t = 60td ;
(f ) 𝜎 = 0.2, t = 60td ; (g) 𝜎 = 0.02, t = 120td ; and (h) 𝜎 = 0.2, t = 160td . The penetration length, lp = 28.6Δ, corresponds
to 30 wavelengths across the initial fracture. The complete evolution of the concentration and aperture fields are shown
in Movies S1–S4 in the supporting information: Figures 7a and 7c are included in Movie S1, Figures 7b and 7d in Movie
S2, Figures 7e and 7g in Movie S3, and Figures 7f and 7h in Movie S4.

and (13) were solved using the HYPRE (High Performance Preconditioners) Library [Falgout and Yang, 2002].

HYPRE is an open source library with a selection of solvers, preconditioners, and grid layouts, designed to

solve massive, sparse linear systems of equations in parallel; we used the Semi-Coarsening Multigrid solver

for these simulations.

The results in Figure 10 required an algorithm to count the number of wormholes as a function of their length.

First, a threshold criterion was implemented where wormholes were defined as regions where the local aper-

ture field was more than twice the initial mean aperture h ≥ 2h0. The points marking the transition between

matrix and wormholes were mapped to a single contour outlining the wormholes. A distance into the fracture

of the order of the penetration length (x0 = 4lp) was used to define the base of the wormholes; only those

wormholes that extended beyond x0 were counted. Wormholes were then identified by counting the cross-

ings of the boundary contour with the line x = x0. Counting at the base ensures that wormholes with multiple

branches were only counted once. Finally, at any given distance x > x0, a wormhole whose length was greater

than or equal to x was counted, which gives rise to the distribution of channel lengths N(L) in Figure 10.
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Figure 8. Flow rates in dissolving fractures: (a) varying roughness
and constant correlation length (𝛾 = 4lp) and (b) varying correlation
length and constant roughness (𝜎 = 0.2). Sample flow rates for
particular realizations are plotted up to the breakthrough times,
which are characterized by a rapid increase in q. The inset figures
show the average breakthrough time tB, defined by q(tB) = 10q0,
for five realizations of each initial condition; the error bars are one
standard deviation. The fracture has dimensions 1024Δ × 1024Δ
with a penetration length lp = 10Δ.

3. Results

Simulations of fracture dissolution from a
wide range of initial conditions have been
carried out using the model described in
section 2. Since this work is directed toward
field-scale observations, where system
boundaries do not play a significant role,
lp is the only physically important length
in the system. We have investigated the
dependence of the dissolution patterns on
the roughness 𝜎 and correlation length 𝛾

of the initial aperture distribution. As noted
in section 2, once the reactant penetration
length lp = q0∕2k is fixed, the transport pro-
cesses in the fracture are determined. Since
lengths are scaled by lp, the only parameters
to be varied are 𝜎 and 𝛾∕lp.

3.1. Development of Dissolution Fronts
in Rough Fractures
Initially, the dissolution front is planar, as
shown in Figure 4a. The concentration is
constant across the fracture (y direction)
with small lateral fluctuations arising from
the stochastic variation in aperture. How-
ever, even a uniform aperture distribution is
unstable to infinitesimal perturbations, with
a characteristic wavelength proportional to
the penetration length lp. In a smooth frac-
ture, characterized by high Péclet number
transport, the most unstable wavelength is
𝜆max = 4.74lp [Szymczak and Ladd, 2011a,
2012]. This wavelength grows exponen-
tially faster than all the others, and a planar
dissolution front develops sinusoidal per-
turbations [Szymczak and Ladd, 2011a], the
remnants of which can be seen in Figure 4b
in the region near the inlet. The wave-
length of the high-concentration region
(red and yellow) matches closely with the
prediction of a Linear Stability Analysis (LSA),
𝜆max = 4.74lp [Szymczak and Ladd, 2012].
However, as the amplitude of the perturba-
tions grow, nonlinear couplings between

the neighboring peaks cause competition for the flow [Szymczak and Ladd, 2009a], which leads to the
development of distinct wormholes, such as those visible in Figure 4b.

The fine structure superimposed on the main flow paths arises from the fluctuations in initial aperture; it grad-
ually vanishes as the wormholes develop further (see Figure 7 for later times). Although the specific location
of individual wormholes is unpredictable, the overall characteristics of the dissolution pattern, and in partic-
ular the length and spacing of the wormholes as a function of time, are quite reproducible. In the remainder
of this section we investigate the effects of initial conditions on the development of the dissolution patterns
within a fracture.

Independent initial conditions were sampled from a lognormal distribution, varying the correlation length
(𝛾) and roughness (𝜎). The extremes of correlation length in initial aperture fields for a roughness 𝜎 = 0.2
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Figure 9. Dimensionless aperture fields (ĥ = h∕h0) in rough fractures (𝜎 = 0.2). Results for varying correlation lengths in
the initial aperture are shown at a time t = 2000td : (a) 𝛾 = 0.2lp , (b) 𝛾 = 2lp , (c) 𝛾 = 20lp , and (d) 𝛾 = 100lp . The initial
aperture field is also shown and appears as a background to the developing wormholes, which appear in red. The
penetration length lp = 10Δ, and the fracture dimensions were 8192Δ × 8192Δ. The aperture field at the inlet,
ĥ(x = 0) = 2000, greatly exceeds the scale used in Figure 5.

are illustrated in Figure 3. Small correlation lengths lead to a uniform distribution of aperture variations over
the fracture (Figure 3a), in contrast with larger 𝛾 , which has regions of highly correlated apertures (Figure 3b).
The development of the concentration fields for a range of correlation lengths is shown in Figure 5. The fields
were sampled when the leading wormhole reached the halfway point; the elapsed time for each snapshot
is given in the caption in Figure 5. More correlated roughness promotes instability in the front, so that at
higher correlation lengths patterns develop more rapidly. For 𝛾 < 0.05lp the concentration field shows three
distinct waves, but for larger correlation lengths additional perturbations are observed, which derive from the
highly correlated roughness. However, like the fine structure in Figure 4 these additional wormholes gradually
die away as dissolution progresses, so that the number of wormholes at later times is roughly independent
of 𝛾 (Figure 7).

The RMS flow rates q =
√

q2
x + q2

y in the initial fractures, shown in Figure 6 (top row), give little hint of the

emerging dissolution patterns. For small correlation lengths (𝛾 < 0.05lp) there are no discernible flow paths
in the initial fracture; the fluid flow is uniform throughout, with small random fluctuations. Nevertheless, dis-
tinct and highly correlated flow paths emerge at later times as shown in Figure 6 (bottom row). These flow
paths correlate with the development of wormholes with localized concentration fields (Figure 5). The begin-
nings of potential flow paths can be seen at the higher correlation lengths, especially when 𝛾 = 0.14lp. These
initial flow paths appear correlated with the later development of wormholes, suggesting that highly corre-
lated fluctuations in the initial aperture field are capable of nucleating wormholes. Interestingly the spacing
between the flow paths is roughly independent of 𝛾 , although the wormholes nucleate faster in fractures with
larger correlation lengths (Figure 5).

The results presented in Figures 5 and 6 show that roughness in the aperture field, especially if it is corre-
lated over significant distances, increases the number of wormholes forming when a planar front breaks up.
However, as the dissolution front develops, only a small fraction of the wormholes continue to grow, with
the longer wormholes draining flow and reactant from the shorter ones. The pressure in a short wormhole
is higher than the pressure in a longer neighboring wormhole because the flow rate is smaller and therefore
the pressure gradient is less [Szymczak and Ladd, 2006]. Long wormholes thereby capture fluid and reactant
from surrounding regions, and their growth is reinforced at the expense of neighboring wormholes. Thus, the
pattern coarsens as dissolution proceeds, with an ever increasing distance between the wormholes.

Concentration (ĉ) and aperture growth,

𝛿ĥ(x, y, t) = ĥ(x, y, t) − ĥ(x, y, 0), (15)

UPADHYAY ET AL. INITIAL CONDITIONS OR EMERGENCE 6111



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012233

Figure 10. Distribution of wormhole lengths in rough fractures. The number of wormholes across the width of the
system is shown as a function of the wormhole length for different roughness and constant correlation length (𝛾 = 4lp)
and for different correlation lengths with constant roughness (𝜎 = 0.2). The horizontal arrow indicates the number of
wavelengths predicted by linear stability analysis, NLSA = 173. The penetration length lp = 10Δ, and the fracture
dimensions were 8192Δ × 8192Δ.

provide different ways to examine fracture dissolution patterns. Concentration fields (for example,
Figures 7a–7d) only show the active wormholes; once a wormhole stops growing, its concentration is
depleted and transferred to the active flow paths. But the aperture distribution preserves the whole history
of the dissolution, including those regions which are no longer growing. It is these morphological changes
that can be observed in the field. Figure 7 shows concentration fields and aperture growth for larger fractures
than in Figures 5 and 6. At later times (t > 100td) the number of active wormholes is nearly independent
of roughness; compare the concentration profiles in Figures 7c and 7d. An approximate doubling of the
wormhole length—Figure 7a→Figure 7c or Figure 7b→Figure 7d—results in half as many active wormholes.
By contrast the aperture growth shows that there were more channels at earlier times in the rougher
fracture—Figures 7f and 7g—than in the smoother fracture—Figures 7e and 7f.

The increased roughness—Figures 7b, 7d, 7f, and 7g—causes frequent attempts at branching, but the side
branches are quickly killed off as the longer wormhole drains their flow [Cheung and Rajaram, 2002]. Thus,
the number of active wormholes remains independent of roughness, but the velocity of the tips is reduced
by repeated attempts at branching. Wormholes in rougher fractures—Figures 7d and 7h—propagate more
slowly than wormholes in smooth fractures—Figures 7c and 7g. Nevertheless, the dissolution patterns at later
times are strikingly similar, ruled by wormhole competition which sets the scale for the distance between the
wormholes. The competition between developing wormholes can be seen in Movies S1–S4; the connection
of each movie to the panels in Figure 7 is indicated in the caption.

3.2. Breakthrough and the Distribution of Wormhole Lengths
The evolution of the volumetric flow rate is shown in Figure 8 for a range of initial aperture distributions: from
𝜎 = 0.001 to 𝜎 = 0.5 and from 𝛾 = 0.4lp to 𝛾 = 40lp. A small penetration length, lp = 10Δ, was chosen to
increase the number of flow paths and hence the competition between the growing wormholes.

The initiation of localized flow paths (or wormholes) plays a critical role in the evolution of fracture aperture,
reducing the breakthrough time by orders of magnitude in comparison with a smooth (one-dimensional)
fracture [Szymczak and Ladd, 2011a]. With linear reaction kinetics (7) the length of a uniform aperture increases
only logarithmically in time, and the smoothest fractures in Figure 8 (𝜎 = 0.001 − 0.005) follow this trend
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Figure 11. Aperture distribution in a fracture seeded with a local perturbation at the inlet (18): (a) background
lognormal distribution with roughness 𝜎 = 0.05 and correlation length 𝛾 = 4Δ and (b) same distribution with the seed
superimposed. The image shows a 128Δ × 128Δ portion of a 2048Δ × 2048Δ fracture, located at the inlet.

initially. There is essentially no increase in flow rate for times up to 20–50 td ; but after wormholes start to form
the flow rate increases more rapidly.

Breakthrough times, tB, exhibit a nonmonotonic dependence on roughness (Figure 8a, inset), which reflects
the interplay between the onset of the instability and the growth of individual wormholes. Higher roughness
promotes the onset of instability, and an initially flat dissolution front develops wormholes faster in rougher
fractures. However, roughness impedes the extension of these wormholes because of the tendency to form
side branches. There is a minimum in the breakthrough time, which in these simulations (2048Δ × 2048Δ)
occur around a roughness, 𝜎 ≈ 0.05. These relatively smooth fractures have sufficient variation in per-
meability to break the front quickly, but not sufficient to cause extensive branching. The canceling effects
of roughness—more rapid initiation of wormholes but slower propagation—means that breakthrough
times show little variation with aperture distribution, staying within the range 90td –120td , over 2 orders of
magnitude variation in roughness and correlation length.

A similar dependence of the breakthrough times on roughness has been reported for dissolving fractures
[Hanna and Rajaram, 1998; Cheung and Rajaram, 2002] and porous media [Kalia and Balakotaiah, 2009;
Maheshwari and Balakotaiah, 2013; Maheshwari et al., 2013]. Interestingly, some of these features turn out
to be scale dependent, with smaller systems showing nonergodic behavior, with a large variability in break-
through times between different realizations of the same aperture distribution. For example, in a small
(12.5 m × 12.5 m) fracture, Hanna and Rajaram [1998] find tB to be monotonically decreasing with 𝜎, whereas
Cheung and Rajaram [2002] find that larger systems show a minimum in tB associated with the mechanism
elucidated above. Nevertheless, for large enough 𝜎, Cheung and Rajaram [2002] find that tB again decreases,
due to the strong flow focusing of the rough fracture, which results in the rapid formation of a solitary
wormhole. Our data, obtained for even larger fractures, suggest that this is another finite size effect. Thus,
in the limit of an infinite domain we expect a single minimum in tB(𝜎), a result of the interplay between
flow focusing and branching at the channel tips. A pronounced minimum in tB(𝜎) was also found in porous
media [Kalia and Balakotaiah, 2009; Maheshwari and Balakotaiah, 2013; Maheshwari et al., 2013], both two and
three dimensions.

The breakthrough time shows no systematic dependence on correlation length, at least at the level of sta-
tistical accuracy achieved in these simulations (10%). There is more statistical variability at intermediate
correlation lengths, as measured by the larger variance, than at either extreme. By contrast, a minimum in
tB(𝛾) was found in simulations of porous media dissolution [Kalia and Balakotaiah, 2009; Maheshwari and
Balakotaiah, 2013; Maheshwari et al., 2013]. It is not clear if this is a consequence of the smaller system sizes
used in that work or an intrinsic difference between fractures and porous media.

In order to investigate flow focusing over as wide a range of length scales as possible, we have simulated a
number of systems on a domain of 8192 × 8192 cells, varying both the roughness and correlation length.
Images of the aperture fields at late times (t = 2000td) are shown in Figure 9 for a range of correlation lengths.
The range of apertures is too large to be rendered (the maximum aperture in these simulations is 2000h0),
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Figure 12. Comparison of concentration fields in a seeded and unseeded fracture. A localized increase in aperture (18)
is superposed on a random distribution with roughness 𝜎 = 0.05 and a correlation length 𝛾 = 0.166lp . The fracture
dimensions are 2048Δ × 2048Δ. The panels compare the concentration fields at two different times: (a) t = 25td
unseeded, (b) t = 25td seeded, (c) t = 50td unseeded, and (d) t = 50td seeded. The channel growing from the initial
seed is shown with a semitransparent overlay. The penetration length, lp = 24Δ.

and the scale must be truncated (at 5h0); the wormholes then appear as dark red regions. The initial aperture
distribution is also shown and appears as a background image to the well-defined wormholes.

Late time dissolution patterns (t = 2000td) are shown in Figure 9 for four different correlation lengths:
𝛾 = 0.2lp, 𝛾 = 2lp, 𝛾 = 20lp, and 𝛾 = 100lp. The dissolution patterns show constant attempts at branching as
the wormholes propagate, which is characteristic of a rough fracture [Cheung and Rajaram, 2002]. However,
the newly formed branches are suppressed by competition with the parent wormhole, and on large scales the
wormholes tend to grow more or less straight, parallel to the pressure gradient (left to right). However, as the
correlation length increases, the initial aperture distribution starts to influence the growth of the wormholes.
In Figures 9c and 9d it can be seen that wormholes are at least partly following initial regions of large aper-
ture. Nevertheless, because the flow paths are controlled by the length of the longest wormholes, the same
selection mechanism operates irrespective of correlation length. Thus, the number of channels of a given
length is approximately independent of correlation length. The velocity of the wormholes is insensitive to the
correlation length of the initial aperture, varying by about 50% over the range of 𝛾 we investigated.

The concentration fields in Figure 7 indicate the active (or growing) wormholes, whereas the count N(Lw)
in Figure 10 includes all wormholes with length greater than Lw , both active (still growing) and inactive (no
longer growing). It has been previously noticed that a long wormhole drains reactant from the region around
it up to a distance comparable to its length [Hoefner and Fogler, 1988; Szymczak and Ladd, 2009a]. The validity
of this relationship can be seen in Figure 7; the spacing between the active wormholes (those regions with sig-
nificant reactant concentration) is roughly the same as their length. Thus, a dissolution pattern automatically
coarsens, with fewer, longer wormholes as time progresses.

Insight into the mechanisms underlying wormhole competition has been obtained from a network model
[Szymczak and Ladd, 2006]. Wormholes were represented by a small resistance per unit length, with a much
larger resistance connecting adjacent wormholes through the surrounding matrix. As long as there was a sig-
nificant contrast between the wormhole and matrix permeabilities, the dissolution patterns were insensitive
to the precise values of these parameters. The system was seeded with up to 1200 short wormholes which
then extended according to the local current of reactive fluid through the tip. The distribution of wormhole
lengths (both active and inactive) was found to be insensitive to the initial distribution of wormhole lengths,
decaying as a power law in the length,

N(Lw) ∼ L−1.25
w , (16)

over about a decade in N.

In this work we used the aperture model to perform a similar study without the limitations imposed by the
network model. We used large systems (8192Δ× 8192Δ), but still with significantly fewer wormholes than in
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Figure 13. Difference in the (dimensionless) concentration fields between a seeded and unseeded fracture. The results
illustrated in Figure 13 are replotted as a difference field, 𝛿ĉ = ĉseed − ĉ, at different times: (a) t = 25td , (b) t = 50td , and
(c) t = 125td . The time evolution of the difference field can be seen in Movie S5.

the network model; according to LSA [Szymczak and Ladd, 2011a], we expect 173 waves across the width of the
fracture. The simulations cover a wide range of roughness and correlation lengths (up to 1000Δ) but show a
remarkably similar distribution in each case, with a peak in the number of wormholes near Lw = lp followed by
a monotonic decay roughly proportional to 1∕Lw . The wormhole detection algorithm (section 2.3) requires a
finite amplitude perturbation in the front in order to register; thus, the number of wormholes detected initially
increases. It takes longer for the instability to develop in smoother wormholes, but the maximum number is
similar to the prediction of the LSA. When the roughness in the initial fracture is large and highly correlated,
wormholes form in regions of large aperture and a high degree of branching and tip splitting is seen later
on (Figure 9). Nevertheless, the later dissolution is characterized by about the same number and length of
wormholes regardless of the initial aperture distribution. The coarsening of the dissolution pattern follows a
power law, as in the network model, but with an exponent closer to unity

N(Lw) ∼ 1∕Lw. (17)

A similar exponent has been reported in numerical studies of wormhole growth in a network model of a
two-dimensional porous matrix [Budek and Szymczak, 2012]. Importantly, it also agrees with theoretical results
on the scaling of dendrite lengths [Krug et al., 1993] in models where the dendrites grow in response to a field
that satisfies the Laplace equation. In the present context, the pressure field in the undissolved rock satisfies a
Laplace equation, because the aperture is nearly uniform, with h ≈ h0. The results of Krug et al. [1993] would
then indicate that (up to logarithmic corrections) N(Lw) ∼ 1∕Lw if we assume that (a) the hydraulic resistance
of the wormholes is negligible in comparison with the undissolved matrix and (b) the a wormhole grows with
a speed proportional to the pressure gradient at its tip.

Note that the scaling (17) implies that the characteristic separation between wormholes of length Lw , w(Lw) =
W∕N(Lw), is proportional to Lw ; the data in Figure 10 imply that the proportionality constant is in the range
1–2. In other words, the spacing between wormholes is comparable to the wormhole length. This is consis-
tent with previous observations [Hoefner and Fogler, 1988; Szymczak and Ladd, 2009a] that the distance over
which a wormhole drains the reactant from neighboring wormholes is proportional to its length. This obser-
vation suggests an interesting geological connection; fractures dissolving by the mechanisms described in
this paper would develop dissolution patterns where the wormhole length and the wormhole spacing are
of comparable scale.

3.3. Mapping to Geophysical Lengths and Times
In section 2.2 it was shown that in fracture dissolution (with linear kinetics) there is only a single transport
parameter, the reactant penetration length lp = q0∕2k; our results have been presented in terms of this
length scale. To give a sense of the physical scales involved, we reevaluate the results presented in
Figures 8–10 in terms of parameters consistent with dissolution of fractured carbonates. The reactant
penetration length in carbonate rocks is usually less than 1 m [White and Longyear, 1962; Dreybrodt, 1990]. For
example, if the initial mean aperture is 0.2 mm and the hydraulic gradient is 2%, the volume flux in the fracture
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Figure 14. Concentration fields in a seeded fracture with different roughness. A localized increase in aperture (18) is
superposed on random distributions with varying roughness but constant correlation length 𝛾 = 0.042lp . The panels
show the concentration field at a time t = 24td , when the wormholes are well developed but have still only grown to
about one quarter of the length of the fracture: (a) 𝜎 = 0.02, (b) 𝜎 = 0.05, (c) 𝜎 = 0.1, and (d) 𝜎 = 0.2. The fracture
dimensions are 8192Δ × 4096Δ, and the penetration length, lp = 95Δ, corresponds to 10 wormholes developing at
early times. The seed was larger in this case (A = 0.1, 𝛼Δ = 0.02, 𝛽Δ2 = 0.005), more than compensating for the
doubling in system width. The channel growing from the initial seed is shown with a semitransparent overlay.

q0 ≈ 10−3cm2s−1; with a reaction rate constant k = 2.5×10−5cm2s−1 [Dreybrodt, 1996] the penetration length
lp ≈ 20 cm. Since the numerical method requires about 10 cells to resolve the concentration field across a dis-
tance lp, this sets the fracture size in Figure 8 as 40 m and as 160 m in Figures 9 and 10, with the individual grid
points about 2 cm apart. The inlet doubling time td determined from the saturation concentration of calcium
ions; taking csat = 2 × 10−3 m [Dreybrodt, 1996] and csol = 27 m we have from equation (12) td ≈ 0.17 years.
Thus, the breakthrough time for a carbonate fracture 40 m × 40 m is estimated to be approximately 20 years.

Nonlinear kinetics accelerates the growth of fracture aperture in a one-dimensional model [Dreybrodt, 1990;
Groves and Howard, 1994a; Dreybrodt, 1996], but in two-dimensional models flow focusing is more important
than kinetic order [Szymczak and Ladd, 2011a], at least when there are multiple flow paths in the fracture.
As wormholes form, the high flow rates in the wormhole convect reactant much further downstream than in
the surrounding matrix (Figure 7); the concentration at the tips of the wormholes remains far from saturation,
minimizing the effects of nonlinear kinetics. Competition between wormholes remains the most important
mechanism in determining the evolution of the flow rate in the fracture, until either the flow breaks through
to the outlet or only a single wormhole remains. Nonlinear kinetics are important in high-aspect ratio fractures
(L ∶ W ≫ 1), where competition reduces the region of significant flow to a single pathway long before
breakthrough. However, in this paper we concentrate on systems where many wormholes compete for flow
and therefore stay largely within the regime of linear reaction kinetics.

3.4. The Effects of Local Inhomogeneities
The heterogeneity in the permeability of fractured rocks cannot be entirely captured by stochastic variations
in fracture aperture. In this section we investigate the dissolution of a fracture that is seeded with a localized
increase in aperture near the center of the inlet:

ĥseed(x, y) = ĥ(x, y) + Ae−𝛼xe−𝛽(y−W∕2)2 . (18)

The perturbation has an amplitude A = 0.1 and extends over distances of the order of 10–20Δ: 𝛼Δ = 0.05,
𝛽Δ2 = 0.01. A portion (128Δ × 128Δ) of the initial aperture field (2048Δ × 2048Δ) is shown in Figure 11. The
seeded region is larger than the correlation length (𝛾 = 4Δ) but much smaller than the fracture dimensions.

Concentration fields for seeded and unseeded apertures (ĥseed and ĥ) are compared in Figure 12, at times
of 25td (a and b) and 50td (c and d). Results for the unseeded aperture ĥ(x, y), where all the wormholes
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Figure 15. Concentration fields in a seeded fracture with different dimensions. A localized increase in aperture is
superposed on a random distribution (parameters as in Figure 14) with fracture dimensions are (a–d) 8192Δ × 4096Δ
and (e–h) 8192Δ × 8192Δ. The panels show the concentration field at different time: (Figures 15a and 15e) t = 20td ,
(Figures 15b and 15f ) t = 40td , (Figures 15c and 15g) t = 80td , and (Figures 15d and 15h) t = 120td . The penetration
length, lp = 95Δ, corresponds to 10 wormholes (Figures 15a–15d) and 20 wormholes (Figures 15e–15h) developing at
early times. The channel growing from the initial seed is shown with a semitransparent overlay.

nucleate spontaneously, are shown in Figures 12a and 12c while Figures 12b and 12d are for the seeded aper-
ture ĥseed(x, y), which begins with a small localized wormhole at the center. The prominence of the seeded
wormhole is clearly visible in Figure 12; it is broader and grows faster than “natural” wormholes that are spon-
taneously nucleated. Nevertheless, its range of influence on the neighboring wormholes is still limited by
its length as in Figure 7; the more distant fingers in Figures 12b and 12d are almost exact replicas of the
corresponding wormholes in the unseeded fracture.

A comparison between seeded and unseeded fractures can be made more directly by plotting the difference
in concentration fields,

𝛿ĉ(x, y) = ĉseed(x, y) − ĉ(x, y) (19)

between seeded (ĉseed) and unseeded (ĉ) fractures. In Figure 13 red and yellow indicate regions of large
positive difference, where the seeded fracture has a wormhole and the unseeded one does not, while blue
(large negative difference) indicates regions where the unseeded fracture has a wormhole and the seeded
one does not.

At early times (t = 25td), the wormholes in the upper and lower quarters are growing independently of the
seed (Figure 12) as can be seen by the absence of a difference field; only the region near the seed is strongly
perturbed. Later (t = 50td) the wormholes within the central half of the fracture have been killed off by the
seed (Figure 12d), while even the most distant wormholes are being weakened by the competition with
the seeded wormhole. Finally at late times, just before breakthrough (t = 120td), the seeded wormhole has
drained all the reactant from the spontaneously nucleating ones. The time evolution of the difference field,
𝛿ĉ, can be followed in Movie S5.

When the roughness in the aperture field is small, evolution of permeability in a seeded fracture is governed
by the local perturbation, which draws all the flow due to lack of alternate flow paths (Figure 14a). This results
in the local perturbation propagating without significant competition and hence overcoming the natural
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Figure 16. Solution pipes in the limestone quarry at Smerdyna (Poland). Photo courtesy of dr Łukasz Użarowicz (Warsaw
University of Life Sciences - SGGW, Poland). The longest wormhole in the photograph is about 5 m.

instability. However, the effects of local heterogeneity can be overwhelmed by spontaneous nucleation of
flow paths. With increasing roughness, wormholes nucleate more frequently due to the larger number of
these flow paths. This introduces competition with the local heterogeneity, and if the roughness is suffi-
ciently high, the spontaneously nucleating wormholes can overwhelm the local perturbation. In Figure 14b,
the seeded wormhole still manages to overcome the natural instability, despite the increased competition,
although only by a small margin. Figures 15c and 15d show that with additional roughness the dominant
wormhole arises from the natural inhomogeneities in the fracture rather than the local perturbation in the
initial condition.

When the competition between seeded and spontaneously nucleating wormholes is comparable, as in
Figure 14b, the outcome of this competition can depend on the size of the system. In Figure 15, the evolution
of the relatively smooth fracture (𝜎 = 0.05) shown in Figure 14b is compared with a system twice as wide, hold-
ing all the other parameters the same. In the 4096Δ wide fracture (Figures 15a–15d) the seeded wormhole
eventually overwhelms the dominant natural wormhole (in the upper quarter of the fracture). However, in the
wider 8096Δ system the reverse happens; here the spontaneous wormholes eventually overwhelm the
seeded wormhole and one of the spontaneously nucleating wormholes eventually breaks through.

The number of flow paths through the fracture nucleating at any given time increases in proportion to the
width of the system, as illustrated in Figure 15, thereby increasing the competition with the seed. Moreover,
the seeded wormhole has to grow to longer lengths to diminish the flow in increasingly distant wormholes,
which then have more chance to develop into the dominant flow path. Hence, for large enough systems, it
seems plausible that the naturally growing instability will eventually overwhelms any local perturbation.

4. Geophysical Implications

Dissolution coupled with the flow has been recognized as an example of what has come to be called
“self-organization” [Ortoleva et al., 1987; Spiegelman et al., 2001]—a small enhancement in permeability at
some point in the reaction front increases the fluid flow in that region, which convects reactant further down-
stream. By this means any local variation in permeability is amplified as the reaction front passes through and
propagates downstream with the front, eventually developing into wormholes. As we have demonstrated in
this work, the statistical properties of the developing wormhole system are independent of the initial aper-
ture distribution (Figure 10); a wide range of roughness and correlation lengths in the initial aperture gives
rise to an essentially identical 1∕L distribution of wormhole lengths. On the other hand, the positions of indi-
vidual wormholes can but do not need to be influenced by local vugs or cavities, which are a characteristic
feature of carbonate porosity [Flügel, 2004]. These features can trigger the formation of wormholes in their
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Figure 17. The cumulative distribution N(L) of solution pipe lengths for the data reported in De Waele et al. [2011]
restricted to the pipes the full length of which is uncovered. The solid line has a slope of 1.05.

vicinity, but even in this case such a wormhole can eventually lose the competition with the spontaneously
appearing structures, particularly if they were formed at distances larger than the length of the initial cavity,
which prevented them from being screened in the early stages of their development.

It is precisely the strong competition between wormholes that makes the effects of the initial aperture distri-
bution less pronounced with time (for example, Figure 7). The larger flow in a wormhole leads to increased
dissolution, which generates the positive feedback loop resulting in fast growth of the longer wormholes and
starvation of the shorter ones. The process repeats itself, leading to the appearance of a scale-invariant distri-
bution of wormhole lengths, wiping out all the information about the initial conditions. The hierarchical, 1∕L
distribution will then appear no matter if the initial wormholes are formed spontaneously or are triggered
by preexisting vugs. Such hierarchical distributions, with many small wormholes and just a few longer ones,
are indeed a characteristic feature of dissolving systems, as illustrated in Figure 16, which shows a system of
solution pipes uncovered in a limestone quarry in Smerdyna, Poland.

De Waele et al. [2011] have described a collection of more than 200 solution pipes in the coastal areas of
the Mediterranean, suggesting that the distribution of lengths follows an exponential law. Whereas some of
the data quoted in De Waele et al. [2011] seem to support this hypothesis, there are two observations which
suggest an alternative interpretation. First, most of the pipes measured by De Waele et al. [2011] have been
partially buried, and thus, their full length remains unknown. Second, some of the distributions reported there
have shown a characteristic break when plotted on a semilog scale and thus needed to be fitted by two inde-
pendent exponential distributions, one for small L and one for large L. As shown previously [Szymczak and
Ladd, 2009b], a double exponential distribution can in fact be a power law in disguise. With that in mind, we
have plotted the length distribution reported in De Waele et al. [2011] on a log-log scale, restricting ourselves
to fully visible pipes for which the full length can be measured. The resulting distribution, shown in Figure 17,
is well fitted by a power law model with an exponent of 1.05, close to the one suggested by our studies and in
agreement with the exponents reported previously for similar systems [Krug et al., 1993; Szymczak and Ladd,
2006; Budek and Szymczak, 2012].

Some features of hierarchical growth manifest themselves in the examples shown in Figure 1. Figure 1a depicts
the outlet of an inclined fracture located near the bottom of one of the quarry walls, transporting water
from the surface about 2 m above. On the other hand, Figure 1b shows the inlet of a fracture located on the
floor of the quarry, which collects water that then percolates vertically downward. The difference between
the fracture inlet and output is reflected in the characteristics of the wormholes. At the inlet (Figure 1b) the
distance between the wormholes is comparable to their diameter, a feature also observed in our simula-
tions (Figure 9). On the other hand, in Figure 1a we observe the outlets of the only two wormholes that have
survived the competition as they propagated along the fracture. Their separation (∼1 m) is much larger than
their diameter (∼10 cm) and comparable with the length of the fracture (∼2 m) as measured from the surface
above. This agrees with our general observation that the spacing between the active wormholes should be
comparable to their length.
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5. Conclusions

In this paper, we have focused on the characteristics of wormholes growing in single fractures. Our conclusions
are based on numerical simulations, supplemented with field observations. The results suggest that fracture
dissolution patterns are largely insensitive to the initial conditions in the fracture. This has been established
over a wide range of roughness and correlation lengths, which in many cases are larger than what can be
expected in natural fractures. Nevertheless, at long times wormhole competition overwhelms the initial vari-
ations in aperture distribution, resulting in a universal relation between the separation of the wormholes and
their length. This hierarchy of scales even persists in the presence of localized perturbations in the fracture
aperture (vugs), which if the sample is large enough tend to be overwhelmed by the spontaneous growth
of instabilities. A natural consequence of wormhole competition is that the separation between growing
wormholes corresponds roughly to their length, something that is borne out by field observations.
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