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Abstract. – The problem of memory contribution to the collective diffusion coefficient of
interacting Brownian particles is considered. A well-defined theoretical expression for this
contribution, free of divergent integrals, is derived. Its value is then estimated for hard sphere
suspensions numerically by means of extensive computer simulations.

A good physical model for a broad class of suspensions is the system of interacting Brow-
nian particles. Despite a great number of important contributions to the field (see [1] for a
review), there are still many areas in which theoretical results are scarce. One of these is the
problem of memory contribution to the collective-diffusion coefficient in colloidal suspensions.

We consider N identical spherical particles performing Brownian motion in an incom-
pressible viscous fluid at temperature T . On the time scale characteristic for light scattering
experiments the evolution of the configuration space distribution function P (X, t) is described
by the generalized Smoluchowski equation [1]

∂

∂t
P (X, t) = D(X, t)P (X, t),

D(X, t) ≡
N∑

i,j=1

∂

∂Ri
· Dij(X) ·

[
∂

∂Rj
+ β

∂Φ(X)
∂Ri

]
, (1)

where X = (R1,R2 . . . ,RN ), Ri being the position of the i-th particle and β = 1/kBT . The
potential Φ(X) incorporates both an external force field and direct pair interactions. Next,
D(X) is the diffusion matrix connected with the mobility matrix µ by the generalized Einstein
relation Dij = kBTµij . According to the definition of the mobility matrix, the contribution
of force F j acting on particle j to the velocity of particle i is given by µijF j . In general,
due to hydrodynamic interactions, µ depends on the configuration X and is non-diagonal
in particle indices. Discussions of topics related to the mobility matrix can be found in the
monograph [2].
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Light scattering experiments give us access to the intermediate scattering function

F (k, t) = lim∞
1
N

〈
N∑

i=1

N∑
j=1

eik·(Ri(0)−Rj(t))

〉
, (2)

where k is the wave vector, lim∞ stands for the thermodynamic limit and brackets stand
for the average over equilibrium distribution. Finally, Ri(t) is the position of the i-th par-
ticle at time t. The Laplace transform of the intermediate scattering function defined as
F (k, z) =

∫ ∞
0

e−ztF (k, t)dt can be written in the frame of the Zwanzig-Mori projection oper-
ator formalism [3,4] as

F (k, z) =
S(k)

z + D(k, z)k2
, (3)

where S(k) is the static structure factor and D(k, z) is the generalized diffusion function of
the following structure:

D(k, z) =
1
k2

Ω(k)(1 − M(k, z)), (4)

with the first cumulant Ω(k) and the Laplace transform of the memory function M(k, z). The
collective-diffusion coefficients are given by the following limits:

Dl
c = lim

k→0
lim
z→0

D(k, z), Ds
c = lim

k→0

Ω(k)
k2

, (5)

where Dl
c and Ds

c stand for the long- and short-time diffusion coefficient, respectively. Their
difference is caused by the memory effects in the system, which come from the relaxation of
the distribution function. The dimensionless factor ∆ measuring the strength of these effects
is given by [5]

∆ =
Ds

c − Dl
c

Ds
c

= lim
k→0

M(k, z = 0). (6)

The explicit expression for ∆ may be obtained not only from the Zwanzig-Mori formalism,
but also by solving the problem of linear reaction of the system to the external force field
E(r, t) acting on the particles [6] (sedimentation problem). In the frame of linear response
one gets for the particle current j(r) induced in the system

〈j(r)〉t =
∫

dr′
∫ t

−∞
dt′X(r − r′, t − t′)E(r′, t′). (7)

The symbol 〈〉t stands for the average over the time-dependent, non-equilibrium probability
distribution. The response kernel X can be written in the form

X(r, t) = X ins(r)δ(t) + Xret(r, t), (8)

where the kernel X ins(r) describes the instantaneous response of the system,whereas Xret(r, t)
the retarded one. For interacting Brownian particles these read [6]

X ins(r − r′) =

〈
N∑

i,j=1

δ(r − Ri)µijδ(r
′ − Rj)

〉
, (9)
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Xret(r − r′, t) = −β−1

〈
N∑

i,j,k,l=1

δ(r − Ri)[(∇k + βF k)µki] ·

·eLt [(∇l + βF l) · µlj ] δ(r
′ − Rj)

〉
. (10)

Here L is the adjoint Smoluchowski operator, obeying DPeq(X)... = Peq(X)L..., and F j is
the total interparticle force acting on particle j. In the response operator language one gets
for the memory function

M(k, t) = −X̂ret(k, t)
X̂ins(k)

, (11)

where X̂ins(k) and X̂ret(k, t) are the traces of Fourier transforms of kernels X ins(r) and
Xret(r, t), respectively.

It has been noticed (see, e.g., ref. [7]) that the memory factor ∆ identically vanishes either
when hydrodynamic interactions are neglected (i.e. when µij = µ0δij , where µ0 is the single-
particle mobility) or the two-body approximation for the matrix µ is used. Ackerson [7] has
suggested that if at least three-body hydrodynamic interactions are taken into account, the
factor ∆ should have non-zero value. Also Pusey points out in ref. [1] that “it seems that
there should be a non-zero memory term in the collective diffusion”, however “the extant
experimental evidence indicates” that the term “is relatively small”. There are, alas, no
papers in the literature taking up this problem. The aim of the present work is to fill a gap,
to provide theoretical results for the memory factor ∆ and to obtain numerical estimates of
its value for hard-sphere suspensions.

The main theoretical difficulty one encounters when analyzing the problem is caused by the
long-range character of hydrodynamic interactions: elements of mobility matrix decay with
interparticle distance R as R−γ with γ = 1, 2, 3. This results in the fact that the response
kernels (9) and (10) are non-local (e.g., they depend on the shape of the container enclosing
the suspension) and are not integrable. Hence various functions characterizing the suspension
(like the memory function M(k, z)) are not continuous at k = 0 [8]. This in turn means that
one has to perform a cumbersome k → 0 limit in order to get ∆ from eq. (6) and cannot just
put k = 0 there.

The problem can be solved by the following renormalization procedure. First, one must
introduce the average velocity of suspension 〈v(r)〉t. Here v(r) is equal to the fluid velocity
wherever r is inside the fluid, and coincides with the rigid-body motion wherever r lies inside
the particle. Note that 〈v(r)〉t is generally non-zero, even when viewed from the laboratory
frame (cf. the intrinsic convection problem [9]). However, using the incompressibility of the
fluid one can prove that when the container is at rest, the integral of 〈v(r)〉t over the total
suspension volume V vanishes. In the Fourier-transform language this can be expressed as

〈v̂(k = 0)〉t = 0 . (12)

The above must be taken into account when the limit k → 0 in eq. (6) is being carried out.
In the next step of the procedure the linear-response scheme (7) is generalized by intro-

ducing additional disturbance —an imposed flow field v0(r), which satisfies hydrodynamic
equations in the absence of particles. As a consequence, one must add a term of the form∫

dr′ ∫ t

−∞ dt′Y (r−r′, t−t′)v0(r′, t′) to the right-hand side of eq. (7). Finally, the imposed flow
v0(r) is expressed in terms of 〈v(r)〉t and henceforth eliminated from the response equation
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which then takes the form

〈j(r)〉t =
∫ t

−∞
dt′

∫
dr′X irr(r − r′, t − t′)E(r′, t′)+

+
∫ t

−∞
dt′

∫
dr′Y irr(r − r′, t − t′)〈v(r′)〉t′ . (13)

It turns out that the “irreducible” kernels X irr(r) and Y irr(r) are devoid of all infinite-range
terms and therefore their Fourier transforms have well-defined k = 0 value. All the geometrical
effects are now accounted for in the average suspension velocity 〈v(r)〉t.

In the case of instantaneous response the above renormalization procedure has been carried
out in refs. [10–13]. However, generalization of the scheme to incorporate effects of relaxation
of the distribution function (described by the retarded-response kernel) is not trivial, as the
evolution operator L in eq. (10) is long-ranged itself. To carry it out, we have performed
the scattering expansion [14] of all operators including the evolution operator L. A special
diagrammatic technique [15], has been developed to facilitate operations on subsequent terms
in the expansion. In particular, the diagrams corresponding to long-range, non-integrable
terms in the expansion turn out to have common topological features, which makes it easy
to resum them and to incorporate them into the average velocity field 〈v(r)〉t. As a final
result, theoretical expressions for the irreducible retarded-response kernels X irr and Y irr are
obtained. The details of the derivation will be given in a subsequent regular article. It is
worth mentioning that a similar renormalization scheme have been carried out in ref. [16] for
frequency-dependent viscosity.

In the long-wavelength limit, which is of interest for us, the Fourier transform of eq. (13)

takes a slightly simpler form as limk→0 Ŷ
irr

(k, t) = nδ(t)I, where I is the identity matrix.
Thus for k → 0 one has

〈ĵ(k)〉t− n〈v̂(k)〉t =
∫ t

−∞
dt′X̂

irr
(k, t − t′)Ê(k, t′), (14)

where, as before, the hat denotes a Fourier transform of a given quantity. Now, this equation
together with the condition (12) allows us to derive a well-defined expression for the limit
M(t) = limk→0 M(k, t). Namely, in the same way in which the formula (11) has been obtained
from eq. (7) one gets

M(t) = −X̂ irr
ret(k = 0, t)

X̂ irr
ins(k = 0)

. (15)

The quantities X̂ irr
ins and X̂ irr

ret are defined as traces of the instantaneous and retarded part of

the kernel X̂
irr

, respectively. The above formula leads also to a well-defined expression for
the memory factor since, according to eq. (6),

∆ =
∫ ∞

0

M(t)dt. (16)

The next aim is to estimate values of the factor above numerically. It is reasonable to
divide this task into two stages: calculations of the initial value of the memory function
M(t = 0) and calculations of the mean relaxation time τM = M(t = 0)−1

∫ ∞
0

M(t)dt. The
reason why we have singled out the initial value of the memory function is that it can be
estimated by means of equilibrium averaging only, which can be done with much greater
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Table I – The estimates of the factor ∆ for hard-sphere suspension of volume fraction φ obtained
from initial values of the memory function M(t = 0) calculated by Monte Carlo averaging and the
relaxation time τc = a2S(0)/Ds

s.

φ D−1
0 a2M(t = 0) D0a

−2τc ∆est

0.01 (1.55 ± 0.05) · 10−4 0.94 0.01%
0.1 (1.7 ± 0.1) · 10−2 0.55 1%
0.2 (9.2 ± 0.3) · 10−2 0.32 3%
0.3 0.24 ± 0.015 0.20 5%
0.4 0.54 ± 0.03 0.13 7%
0.45 0.67 ± 0.02 0.10 7%

accuracy than the calculations of τM, which require Brownian dynamic simulations. Therefore,
as was noted by Zwanzig and Ailawadi [17], such a two-step procedure increases considerably
the accuracy of the numerically obtained memory function. Additionally, even without the
Brownian dynamics simulations, one can estimate the value of the memory factor ∆, provided
one assumes that the mean relaxation time τM would be similar to characteristic times of
other relaxation processes in the system.

There are two main numerical problems that one encounters when calculating the response
kernels. The first is the computation of the mobility matrix µ for a given configuration of
particles. It is achieved by means of numerical implementation of the multipole expansion
method [18]. The second, even more complex problem, is the calculation of the divergence of
the mobility matrix ∇·µ. Although in principle this can be done by numerical differentiation
of µ, such a scheme is not only extremely time- and memory-consuming but also inaccurate.
Instead, we have devised a scheme of calculation of the divergence of the mobility matrix in
an analytical way with the use of the above-mentioned multipole expansion method [19]. Such
a scheme can be helpful not only in the present problem but also in any numerical studies on
Brownian suspensions whenever the divergence of mobility is needed, for example in Brownian
dynamics simulations.

Numerical calculations have been performed for hard-sphere suspensions. The direct pair
interactions are then described by the hard-core potential.

For small particle concentrations the value of M(t = 0) can be assessed by means of the
virial expansion. The first non-vanishing term in the expansion corresponds to the three-
particle contribution. For the hard-sphere system one gets, from eq. (15),

a2

D0
M(t = 0) = m3φ

2 + O(φ3), (17)

with

m3 =
9η2

8a2

∫
dR2dR3


 3∑

i,j=1

∇j · µij




2

W (1, 2, 3). (18)

In the equations above φ is the volume fraction, a is the sphere radius and D0 = kBT (6πηa)−1

with η standing for the fluid viscosity. The initial value of the memory function is rescaled
by a2/D0 in order to make it dimensionless. Finally, W (1, 2, 3) is unity for non-overlapping
configurations of the spheres and vanishes otherwise. By means of the numerical integration
in the three-body configuration space (analogous to that presented in [20]) we have obtained
m3 = 1.42 ± 0.02.
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Table II – The values of the factor ∆ and the mean relaxation time τM for the hard-sphere suspension
of volume fraction φ obtained from the equilibrium Monte Carlo averaging and Brownian dynamics
technique.

φ D0a
−2τM ∆

0.2 0.126 ± 0.025 0.01 ± 0.003
0.3 0.120 ± 0.015 0.03 ± 0.01
0.4 0.09 ± 0.02 0.05 ± 0.015

Virial expansion results can be used for very dilute suspensions only. For larger concen-
trations we have calculated M(t = 0) by means of the Monte Carlo averaging for the system
with periodic boundary conditions. The use of such conditions simplifies considerably the
expression for the memory function. In fact, when deriving the mobility matrix for a periodic
system one must add the constrain that the net suspension velocity in the whole sample van-
ishes [21–23], as otherwise the divergences in the fluid velocity field would appear. In that way
eq. (12) is automatically satisfied, which, in turn, implies that we can relax the irreducibility
condition in eq. (15) and the expression for M(t) in case of hard spheres takes the simple form

M(t) =

〈∑N
i,j,k,l=1

(∇j · µij(0)
) · (∇l · µkl(t)

)〉
per

β
〈∑N

i,j=1 Tr µij

〉
per

, (19)

where ∇·µ(t) is the divergence of the mobility matrix at time t, the symbol 〈 〉per stands for
the average over hard-sphere configurations with periodic boundary conditions.

To account for the finite-size effects in the periodic sample, one analyzes the dependence
of M(t = 0, N) on the number of spheres in the periodic cell N . It turns out that the
dependence of the data on N can be described by the function A + BN−1/3. By fitting the
data for N = 30, 50, 60, 70 and 100 to the dependence above we have obtained the asymptotic
values M(t = 0, N = ∞) for a wide range of volume fractions (see table I).

Now we turn to the estimation of the mean relaxation time τM. This is obtained by means
of Brownian dynamics simulations [24, 25] in which one constructs the configuration space
trajectories of the system which are realizations of the stochastic process described by eq. (1).
In this way one can assess the time dependence of the memory function M(t). The simulations
have been performed for three values of the volume fraction: φ = 0.2, 0.3 and 0.4 for different
numbers of spheres in a periodic cell (up to 100). By combining the results for τM with the
values of M(t = 0), we calculate the values of the memory factor ∆. The results obtained in
this way are given in table II. One concludes from inspecting the data that the memory effect
is expected to be quite small but it is growing with the volume fraction.

As was mentioned before, some estimation of the mean relaxation time of the memory func-
tion can be obtained from the hypothesis that it would not be much different from character-
istic times of other relaxation times for the collective processes in a suspension. These may be
estimated with the use of the semi-phenomenological reasoning due to Medina-Noyola [26]. He
argued, namely, that the effect of hydrodynamic interactions on the dynamics of a suspension
can be taken into account by replacing in the formulae the one-particle diffusion coefficient
D0, which describes the diffusion in the absence of hydrodynamic interactions, by the short-
time self-diffusion coefficient Ds

s. As the characteristic time for the collective phenomena in
the absence of hydrodynamic interactions reads simply τ0

c = a2S(0)/D0, the reasoning above
would give the characteristic time for the collective processes for systems with hydrodynamic
interactions to be τc = a2S(0)/Ds

s. Assuming that the relaxation time of our memory function
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τM is not very different from τc and taking the values of Ds
s from the numerical simulations

of Ladd [27], we get the estimations of ∆, which together with the values of τc are presented
in table I. We see that these estimations are reasonable.

The obtained results agree qualitatively with the experimental data (cf. [1]), quantitative
comparison being difficult because of large experimental errors. It is to be hoped that the
present results would stimulate experimentalists to perform more precise measurements of the
collective diffusion coefficients.
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[20] Cichocki B., Ekiel-Jeżewska M. L. and Wajnryb E., J. Chem. Phys., 22 (1999) 3265.
[21] Hasimoto H., J. Fluid Mech., 5 (1959) 317.
[22] Smith E. R., Snook I. K. and van Megen W., Physica A, 143 (1987) 441.
[23] Felderhof B. U., Physica A, 159 (1989) 1.
[24] Ermak D. L. and McCammon J. A., J. Chem. Phys., 69 (1978) 1352.
[25] Brady J. F. and Bossis G., Ann. Rev. Fluid Mech., 20 (1988) 111.
[26] Medina-Noyola M., Phys. Rev. Lett., 60 (1988) 2705.
[27] Ladd A. J. C., J. Chem. Phys., 93 (1990) 3484.


