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[1] Microscopic simulations of fracture dissolution are
reported, taking account of the explicit topography of the
pore space, the transport of reactants and products, and the
chemical kinetics at the solid surfaces. A three-dimensional
numerical model has been constructed, in which the fluid
velocity field is calculated with an implicit lattice-Boltzmann
method, and the transport of dissolved species is modeled by
an innovative random walk algorithm that incorporates the
chemical kinetics at the solid surfaces. Themodel contains no
free parameters or semi-empirical mass-transfer coefficients.
The simulated morphological changes in a complex fracture
are compared with recent laboratory experiments [Detwiler et
al., 2003] with the same initial topography. INDEX TERMS:
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1. Introduction

[2] The dissolution of a fractured rock by a reactive fluid
depends on a subtle interplay between chemical reactions at
mineral surfaces and fluid motion in the pores. The complex
geometry of a typical fracture makes a first-principles
calculation very demanding, and models of fracture disso-
lution are rarely constructed on a microscopic (pore-scale)
level (but see Békri et al. [1997] and Verberg and Ladd
[2002]). Instead, various approximations are resorted to in
order to make the analysis more tractable. For example, the
Reynolds (or lubrication) approximation is often used
[Groves and Howard, 1994; Adler and Thovert, 2000;
Cheung and Rajaram, 2002], although it has been shown
[Brown et al., 1995; Oron and Berkowitz, 1998; Nicholl et
al., 1999] that it may significantly overestimate the flow
rate, especially for fractures of high roughness and small
apertures. Furthermore, the transport of dissolved material
into the bulk of the fluid is usually accounted for in a
simplified way, with the effects of convection in the fracture
assumed to be adequately expressed by a Sherwood
number for transport in ducts [Groves and Howard, 1994;
Dreybrodt, 1996; Cheung and Rajaram, 2002]. However
fracture erosion is a complex process involving several
nonlinear feedback mechanisms, which makes it hard to
estimate or control the effects of approximations. Recent

advances in numerical algorithms for flow and transport
[Verberg and Ladd, 1999, 2000; Szymczak and Ladd, 2004]
now make it feasible to simulate systems of relevance to
laboratory experiments without resorting to semi-empirical
approximations. Instead the fundamental equations for fluid
flow, transport of reactants and products, and chemical
kinetics are solved directly. The simulations incorporate
the explicit topography of the pore space, and the transport
coefficients–viscosity, diffusivity, and reaction rate–are
determined independently, so there are no fitting parame-
ters. In this work we will describe an application to the
erosion of a synthetic fracture. The simulations account for
the key features of the experimental erosion patterns as well
as the statistical distribution of the depth of erosion. Our
results suggest that fully microscopic simulations can be a
useful tool in the development of Darcy scale models of
dissolution.

2. KDP Fracture

[3] We have studied the dissolution of the artificial
fracture system investigated experimentally by Detwiler
et al. [2003]. The system was created by mating a 99 �
152 mm plate of textured glass (spatial correlation length
of �0.8 mm) with a flat, transparent plate of potassium-
dihydrogen-phosphate (KDP). Since only the KDP surface
dissolves, it is possible to repeat the experiment with
identical initial conditions by mating the same glass surface
with another flat KDP plate. The relative position of the two
surfaces was fixed during the experiment, eliminating the
effects of confining pressure, which are hard to control
experimentally [Durham et al., 2001] and even harder to
model numerically in an unambiguous way [Verberg and
Ladd, 2002].
[4] Constant head reservoirs were connected to each end

of the fracture to generate hydraulic gradients of 4% and
16%, corresponding to initial values of the Peclet number,
Pe = Uh0/D, of 54 and 216 respectively. Here U is a
characteristic fluid velocity, h0 is the initial mean aperture
and D is the solute diffusion coefficient (for KDP in water
D = 6.8 � 10�10 m2 s�1). The mean velocity U = Q/wh0, is
determined from the flow rate, Q, and the mean cross
section of the fracture, wh0, where w is the fracture width.
The fracture was dissolved by an inflowing solution of
KDP at 5% undersaturation. High spatial resolution data
(1192 � 1837, 0.083 � 0.083 mm pixels) was obtained
by Detwiler et al. [2003] for the change in fracture aperture
as a function of spatial position. The experiments were
continued until the mean aperture of h0 = 0.126 mm
increased approximately twofold; i.e., Dh � h0, with
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Dh being the difference between the final and initial
aperture.

3. Numerical Simulation Method

[5] The numerical simulations consist of a sequence of
three separate calculations. First the fluid flow field in
the pore space is calculated, using the exact topography of
the solid surface. Given the flow field and the chemical
kinetics at the solid surfaces, we first determine the solute
concentration field and then the local rate of dissolution
over the whole fracture surface. Finally the fracture surfaces
are eroded in proportion to the local dissolution rate and the
whole process is repeated. The key assumption here is that
the relaxation times of the velocity and concentration fields
are much shorter than the characteristic relaxation time for
dissolution. Within this quasi-static approximation, the
velocity and concentration fields in the fracture reach a
steady state for each configuration.

3.1. Flow Field Calculation

[6] The Reynolds number Re = rUh0/h characterizing
the flow in laboratory-scale fractures [Durham et al., 2001;
Dijk et al., 2002;Detwiler et al., 2003] is typically less than 1.
Thus, inertia can be neglected and fluid motion is then
governed by the Stokes equations

r � u ¼ 0; hr2u ¼ rp; ð1Þ

where u is the fluid velocity, h is the viscosity and p is the
pressure. The velocity field in the fracture has been
calculated using the lattice-Boltzmann method with
‘‘continuous bounce-back’’ rules applied at the solid-fluid
boundaries [Verberg and Ladd, 2000]. These rules allow the
solid surface to be resolved on length scales less than a grid
spacing, so that the fracture surfaces erode smoothly. It has
been shown [Verberg and Ladd, 2002] that the flow fields in
rough fractures can be calculated with one-half to one-
quarter the linear resolution of the traditional lattice
Boltzmann method, leading to an order of magnitude
reduction in memory and computation time. A further order
of magnitude saving in computation time can be obtained
by solving equation (1) directly by conjugate gradients
[Verberg and Ladd, 1999] rather than by time stepping.
These improvements allow us to calculate velocity fields in
fractures with a characteristic size of several centimeters.
For example, the calculation of a single flow field in the
KDP fracture described above takes 1 hour at the beginning
and about 8 hours at the final stages of the dissolution
process. The corresponding times for the traditional lattice
Boltzmann method would be measured in weeks rather than
hours.
[7] Computational limitations imposed by our single-

processor flow simulator mean that the spatial resolution
of the pore space is limited, and the mean aperture of the
initial fracture corresponds to about 1.5 grid spacings. We
therefore carried out test calculations on a subsection of the
fracture, comparing dissolution patterns for grid spacings of
0.083 mm and 0.0415 mm. The overall features of the
dissolution patterns were found to be similar although there
were differences in the small-scale details.
[8] The permeability of the initial fracture was calculated

at 0.083 mm resolution and then non-dimensionalized by

the mean aperture, h0. The dimensionless permeability for
the simulated fracture was found to be K/h0

2 = 0.1, while an
estimate based on the experimental data was lower, K/h0

2 =
0.05 [Detwiler et al., 2003]. The experimental measurement
is known to be low, since the pressure drop was measured
across the whole apparatus, not just the fracture. In view of
this and the coarse resolution of the simulated flow field, the
agreement is reasonable.

3.2. Solute Transport Modeling

[9] Solute transport in the fracture is modeled by a
random walk algorithm that takes explicit account of the
chemical reactions at the pore surfaces. We thereby obtained
a stochastic solution to the convection-diffusion equation,

@tcþ u � rc ¼ Dr2c; ð2Þ

with the flow field, u, derived from the lattice-Boltzmann
simulation and boundary conditions determined by the local
dissolution flux. The drawback of the classical random walk
method [Békri et al., 1995] is that a very large number of
particles must be tracked simultaneously, so that the
concentration near the pore surface can be determined
accurately enough to obtain a statistically meaningful
dissolution flux. However, there is a considerable simpli-
fication for linear dissolution kinetics, where the erosion
flux through the interface is given by

J ¼ r cs � c0ð Þ; ð3Þ

here c0 denotes the solute concentration at the interface, cs is
the saturation concentration, and r the rate constant. In this
case it is possible to derive a single-particle stochastic
propagator which satisfies the boundary condition in
equation (3) [Szymczak and Ladd, 2004]. Using this
propagator, the dissolution flux in the fracture can be
calculated by tracking a single particle at a time. Each
particle undergoes many encounters with the fracture
surface, losing mass on each encounter according to the
rate constant. This scheme is computationally more efficient
by several orders of magnitude than one which requires
local concentration measurements, and can be used to
calculate the concentration profiles in very large fractures.
The changes in fracture morphology are then realized by
removing material from the fracture walls in proportion to
the local dissolution flux calculated in the random walk
step. The time evolution of the velocity field and local
aperture are determined by iteration, removing small
amounts of material (equivalent to a layer of about 1% of
the mean aperture) at each step and then recalculating the
flow field and concentration field for each new geometry.

3.3. Dissolution Kinetics

[10] According to [Koziejowska and Sangwal, 1988], the
KDP dissolution kinetics can be adequately described by a
birth-and-spread model [Ohara and Reid, 1973]. In the
undersaturation range 0–6% the dissolution flux is then
given by

J ¼ A 1� c0=csð Þ5=6 exp �B= 1� c0=csð Þð Þ; ð4Þ

where the parameters A and B depend in particular on the
temperature and crystal geometry. To apply our random

L23606 SZYMCZAK AND LADD: MICROSCOPIC SIMULATIONS OF DISSOLUTION L23606

2 of 4



walk method, the dissolution kinetics are approximated by a
linear function of the form in equation (3). From the
experimental data [Koziejowska and Sangwal, 1988] we
obtain r = 2.6 � 10�6 ms�1. However, this value should be
treated as a rough estimate–not only because the real
kinetics are nonlinear, but most importantly because of the
dependence of J on the crystal structure and orientation.

3.4. Splitting of the Fracture

[11] The computational bottleneck is the memory
required to store the flow field and our calculations are
currently limited to about 5 � 106 fluid nodes. The dissolving
KDP fracture does not fit into this amount of memory at a
resolution of 0.083 mm. To circumvent this difficulty we
have divided the fracture into three overlapping pieces, each
with length equal to the full fracture length and width equal
to half the fracture width. The third piece, overlapping with
the first two, is needed to eliminate the effects associated
with the artificial boundary at y = w/2, y being the
coordinate in the fracture plane perpendicular to the flow.
[12] Test calculations, together with the experimental and

numerical results of Hoefner and Fogler [1988], have shown
that at the beginning of the dissolution there is a very limited
interaction between different areas of the fracture. The
dissolution pattern at a given y0 depends only on the
topography in its immediate neighborhood jy � y0j < d,
with d of the order of a few spatial correlation lengths.
However, as the dissolution channels develop, the range of
interaction increases. Hoefner and Fogler [1988] observed
that channels interact when the difference in their lengths is
of the order of the distance between them. When the
difference in lengths is much larger than the distance
between the channels, the flow in the shorter channel is
substantially reduced and it ceases to grow.

[13] At Pe = 216, the interaction range, d, remains less
than w/4 to the end of the dissolution experiment. In this
case the three sections can be combined to give the final
dissolution pattern, but at Pe = 54 the interaction range
grows quickly as soon as pronounced channels develop; in
this case the pieces were combined at Dh = 0.4h0. The
dissolution simulation was continued with a coarser grid
spacing of 0.166 mm, but since the fracture aperture has
grown in the meantime, the reduced resolution still allows
us to obtain the flow field with an acceptable accuracy. We
have tested this process on smaller sections of the fracture
and verified that the final dissolution pattern is not signif-
icantly affected by the rescaling to a coarser grid.

4. Results

[14] Figure 1 shows histograms of the aperture distribu-
tion at the beginning and end of the dissolution, obtained
from experiment [Detwiler et al., 2003] and numerical
simulation. At Pe = 54 the distribution of small apertures
is similar to the original distribution, indicating minimal
dissolution in a substantial portion of the fracture, while the
long tail corresponds to the rapid growth of pronounced
dissolution channels during the experiment. In contrast, at
Pe = 216 the entire distribution has shifted to larger aper-
tures, indicating a more uniform dissolution, with the median
aperture much larger than for the Pe = 54 experiment.
[15] These features of the experimental aperture distribu-

tion are well reproduced in the simulations with the excep-
tion of the tail of the simulated distribution at Pe = 216,
which extends toward larger apertures than in the experi-
mental case. Possible reasons for the discrepancy include
the error associated with the finite amount of material taken
away from the fracture surface in each step and the coarse
resolution of the flow field.
[16] Figures 2 and 3 compare the dissolution patterns

obtained by simulation and experiment at two different
Peclet numbers. At Pe = 216 (Figure 2) the unsaturated
fluid penetrates deep inside the fracture and the dissolution
tends to be uniform throughout the sample, but at Pe = 54
(Figure 3) the erosion is slower and much more inhomoge-
neous, with a clearly visible dissolution front. This front
becomes unstable with respect to fingering instabilities
[Ortoleva et al., 1987], since an increase in permeability
within a channel enhances solute transport, leading to faster
growth of the channel. As the dissolution proceeds, the
channels compete for flow and the growth of the shorter
channels eventually ceases. At the end of the experiment,

Figure 1. Histograms of aperture distributions at different
Peclet numbers. The solid line is the initial aperture
distribution, while the dashed and dotted lines are final
aperture distributions at Pe = 54 and Pe = 216 respectively.

Figure 2. Aperture growth due to dissolution of a KDP
fracture at Pe = 216. The figures show the dissolution
patterns at Dh = h0. The experimental result is shown on the
left and the corresponding simulation result is on the right.
The flow direction is from left to right.
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the flow is focused in a few main channels while most of the
pore space is bypassed.
[17] The experimental and numerical dissolution patterns

are strikingly similar. At low Peclet number, the dominant
channels (Figure 3) develop at the same locations in the
simulation and experiment, despite the strongly nonlinear
nature of the dissolution front instability. While there are
differences in the length of the channels, relatively small
changes (of the order of 10%) in the diffusion constant, D,
or rate constant, r, can lead to comparable differences in the
erosion patterns. Our results suggest that the simulations are
capturing the effects of the complex topography of the pore
space quite faithfully, despite the coarse aperture resolution
in the flow solver.

5. Summary

[18] We have developed a fully microscopic numerical
method to simulate the dissolution of rock fractures on
experimentally relevant length scales. Dissolution morphol-
ogies similar to those seen experimentally have been
observed. In particular, the strong dependence of the
erosion patterns on Peclet number Pe is well reproduced.
Algorithmic improvements now make it possible to simulate
laboratory-scale flows, without the uncertainties introduced
by lubrication approximations to the flow field or empirical
mass-transfer coefficients. However, on larger scales approx-
imate or up-scaled methods must still be used. Our results
suggest that it will be possible to use microscopic simulations
as an aid to the development and testing of Darcy scale
models of dissolution.
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Figure 3. Aperture growth due to dissolution of a KDP
fracture at Pe = 54. The figures show dissolution patterns at
(top) Dh = 1/2h0 and (bottom) Dh = h0. The experimental
results are shown on the left and the corresponding
simulation results are on the right. The flow direction is
from left to right.
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