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[1] During dissolution in porous or fractured rock, a
positive feedback between fluid transport and chemical
reactions at the mineral surfaces may lead to the formation
of pronounced, wormhole-like channels. As the dissolution
proceeds the channels interact, competing for the available
flow, and eventually the growth of the shorter ones ceases.
Thus the number of channels decreases with time while
the characteristic distance between them increases, which
leads to a scale-invariant, power-law distribution of channel
lengths. A simple resistor network model of the evolution of
dissolving channels is constructed and its properties studied.
The results are compared with pore-scale simulations of
fracture dissolution using a microscopic, three-dimensional
numerical model. Despite its simplicity, the resistor model
is found to retain the essential features of the nonlinear
interaction between the channels. Citation: Szymczak, P.,

and A. J. C. Ladd (2006), A network model of channel

competition in fracture dissolution, Geophys. Res. Lett., 33,

L05401, doi:10.1029/2005GL025334.

1. Introduction

[2] The coupling between fluid flow and chemical kinetics
is a key element to developing a quantitative or even a
qualitative understanding of important geological processes.
One manifestation of this coupling is the development of
channels during dissolution of fractured or porous rock.
These channels become a means for very rapid transport
within the rock matrix and play an important role in funda-
mental and applied geophysical problems, such as the devel-
opment of limestone caverns or the sequestration of CO2. It
has long been known [Ortoleva et al., 1987] that a planar
dissolution front propagating through a homogeneous porous
matrix is unstable with respect to small variations in local
permeability; regions of high permeability dissolve faster
because of enhanced transport of reactants, which leads to
increased rippling of the front.
[3] In this letter we concentrate on the next stage of the

system evolution, when nonlinear interactions between
finite-amplitude perturbations to the front cause the disso-
lution pattern to change qualitatively. Experiments
[Detwiler et al., 2003] and simulations [Cheung and
Rajaram, 2002; Szymczak and Ladd, 2004b] have shown
that under certain flow conditions the initially sinusoidal
instability grows into pronounced channels which advance
ahead of the front. Next, as the dissolution proceeds, the
channels interact and compete for flow [Hoefner and
Fogler, 1988]. As a result, the flux in the larger channels
increases whereas the smaller ones cease to grow and finally
disappear as the dissolution front advances. This leads to a
new dissolution pattern which is characterized by a length
scale different from the wavelength of the initial instability.

2. Pore Scale Simulations

[4] To investigate channel growth and interaction in a
dissolving fracture, we use a recently developed pore-scale
numerical model [Szymczak and Ladd, 2004b]. In the
model, the velocity field in the pore space is calculated by
an implicit lattice-Boltzmann technique [Verberg and Ladd,
1999] while the transport of dissolved species is modeled by
a random walk algorithm that efficiently incorporates the
chemical kinetics at the solid surfaces [Szymczak and Ladd,
2004a]. The fracture surfaces are divided into pixels (for the
results reported below 800 � 800 pixels were used) and the
height of each pixel is eroded in response to contacts by
tracer particles. The time evolution of the velocity field and
local aperture field in the fracture are determined by
iterating this procedure, removing small amounts of mate-
rial at each step and calculating the reactant distribution and
flow field for the updated topography. The simulation
method has been validated by comparison with experimen-
tal data on an identical initial topography [Szymczak and
Ladd, 2004b].
[5] This time, the model was applied to simulate disso-

lution in fractures with numerically generated topographies.
The fracture surfaces are initially flat and the space between
them is filled with several thousand randomly placed cubes
(3 � 3 � 3 pixels), which span the gap between the
surfaces. The reactive fluid enters from one side (left side
of Figure 1) and exits from the other, while no-slip bound-
aries are assumed on the other faces of the fracture. Thus
both the setup and the initial fracture topography resemble
that analyzed experimentally by Detwiler et al. [2003]. The
protrusions are initially placed at the vertices of a square
centered lattice with a separation of one pixel between them
and then randomly shifted by one pixel along the lateral
direction (perpendicular to the fluid flow). Such a procedure
guarantees that the fluid can percolate through the fracture,
and generates a short-range spatial correlation length with
no discernable long-range structure. Thus we could be sure
that the dissolution channels appear spontaneously and are
not determined by any pre-existing channels. In contrast,
variable aperture fractures often show strong channeling
even in the absence of the dissolution [e.g., Johns and
Roberts, 1991, and references therein]. Analysis of disso-
lution-induced phenomena in such systems is harder than
the present case, and will be the subject of a future
publication.
[6] A constant pressure difference was applied across the

ends of the fracture, to generate flows corresponding to
initial values of the Peclet number, Pe = Uh0/D, of 1 and
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8 respectively. Here U is a characteristic fluid velocity, h0 is
the initial mean aperture and D is the solute diffusion
coefficient. The dissolution at the fracture surfaces was
assumed to be instantaneous, corresponding to a zero
reactant concentration at the fluid-rock interfaces. A trans-
port limited case was chosen not just because of its
simplicity, but also because a number of preparatory simu-
lations, performed for a wide range of fluid flow and



8 respectively. Here U is a characteristic fluid velocity, h0 is
the initial mean aperture and D is the solute diffusion
coefficient. The dissolution at the fracture surfaces was

reaction rates, have shown that channeling is most pro-
nounced at high reaction rates and moderate Peclet numb-
ers. Simulations were carried out up to the point when the
total fluid volume inside the fracture increased approxi-
mately twofold; that is, Dh � h0, with Dh being the
difference between the final and initial aperture.
[7] A typical result of the simulation is shown in Figure 1,

where the dissolution patterns are captured at two different
times, corresponding to Dh = 0.15h0 and 0.5h0 respectively.
Only a small fraction of the channels present at Dh = 0.15h0
persist to later times (Dh = 0.5h0); the channels that do
survive have advanced considerably ahead of the dissolu-
tion front. As a result, the characteristic length between
active (growing) channels is increasing. If the simulation is
run longer, the process repeats itself, leaving only a few
active channels in the sample at the end. To analyze the
phenomenon more precisely, we consider the distribution of
channel length. The quantity of interest is N(L, t), the
number of channels longer than L at time t. The linear fit

in the log-log plot, shown in Figure 2, indicates a power law
decay,

N Lð Þ � L�m; ð1Þ

where the exponent m is equal to 1.2 ± 0.15 for Pe = 8 and
1.4 ± 0.2 for Pe = 1. Interestingly, these exponents are close
to those reported for the distribution of lengths of viscous
fingers in a Hele-Shaw cell [Roy et al., 1999]. The data
depicted in Figure 2 corresponds to the dissolution pattern at
Dh = 0.5h0 (cf. the right pattern in Figure 1) but the same
scaling and exponent are observed over a wide time range,
corresponding to a change in aperture between Dh � 0.3h0
and Dh = h0.
[8] The log-periodic oscillations in N(L), clearly visible

in Figure 2, as well as in the analogous data for Pe = 1 case,
are a signature of discrete scale invariance (DSI). Unlike
continuous scale invariance, where self-similarity is char-
acterized by an invariance with respect to arbitrary magni-
fying factors, a DSI system is invariant under a discrete set
of dilatations only. Discrete scale invariance has been
observed in distributions of joints formed under thermal
stress, in diffusion limited aggregation systems and in
viscous fingering patterns [see Huang et al., 1997; Sornette,
1998; Roy et al., 1999, and references therein].

3. The Model

[9] The power-law scaling shown in Figure 2 suggests a
simple mechanism underlying the phenomenon of channel
selection, which may be revealed if all inessential details are
eliminated. Specifically, we hypothesize that the core of the
interaction between the channels is the capture of flow from
shorter channels by longer ones. In fact, it was established
experimentally [Kelemen et al., 1995] that the flow lines in
the vicinity of a dissolving channel are converging near its
inlet and diverging at its outlet, as shown schematically in
Figure 3. This can be elucidated by looking at the pressure
drops in the channels, depicted schematically in the bottom
plot of Figure 3. For simplicity, we assume here that the
channels are of a constant aperture. Since there is a constant
pressure drop between the inlet and outlet, the pressure
gradient in the longer channel will be steeper than in the
shorter channel; this is because the flow rate is higher in the
long channel. In the upstream part of the fracture the short

Figure 1. Aperture growth due to dissolution in an
artificial fracture at Pe = 8. The figure shows dissolution
patterns at (left) Dh = 0.15h0 and (right) Dh = 0.5h0. The
colors indicate regions of low (blue), medium (green), and
high (red) aperture growth. The flow direction is from left to
right. Only 1/3 of the fracture (the leftmost part) is shown.

Figure 2. The cumulative distribution N(L) of channel
lengths in the fracture simulated with the pore scale model
(Pe = 8). The solid line has a slope of �1.2 and all
logarithms are natural.

Figure 3. Two dissolution channels in the fracture (top)
and the corresponding pressure drops (bottom). The flow
lines are converging toward a larger channel at the inlet and
diverging near the tip of the conduit.
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channel is at a higher pressure than the long one, so flow is
directed toward the long channel. Downstream, the region
around the tip of the long channel is at a higher pressure
than the surrounding medium and so flow is directed away
from the channel, resulting in the flow pattern seen in the
experiments [Kelemen et al., 1995]. Note that the larger the
difference in channel lengths, the higher the pressure drop
between the channels. Since the larger flow in the channel
leads to increased dissolution, this generates the positive
feedback loop resulting in fast growth of the longer chan-
nels and starvation of the shorter ones.
[10] We propose the following simplified model of chan-

nel-channel interactions, which retains the flow capturing
mechanism described above. In the model, the fracture is
represented as a resistor network with two types of resistors:
low resistance (C), representing the channels, and high
resistance (M), representing the undissolved medium. For
example, the two-channel system in Figure 3 can be
represented by eight resistors, as shown in Figure 4. To
keep the model simple, we assume that the resistance is
simply a product of the resistor length and a resistivity,
which is taken to be constant for both C and M resistors.
Thus, for the configuration in Figure 4

R1 ¼ R4 ¼ rCLA; R2 ¼ rC LB � LAð Þ;

R3 ¼ R6 ¼ rM Ltot � LBð Þ; R5 ¼ rM LB � LAð Þ;

R7 ¼ R8 ¼ rMLAB;

ð2Þ

where LB and LA are the lengths of the respective channels
(cf. Figure 3), Ltot is the total length of the fracture and LAB
is the distance between the channels. The resistivities
(resistance per unit length) are denoted by rC and rM. Next,
given the constant potential difference between the edges
(which corresponds to the constant pressure drop across the
fracture), all the respective currents I1 . . . I8 can be
calculated by straightforward algebra. In particular, it is
possible to show that, if LB > LA, then the lateral currents
between the conduits (I7 and I8) are directed as shown in
Figure 4. Thus the flow is indeed being sucked out of the
shorter channels by the nearby longer ones.
[11] Finally, a dissolution dynamics for the system must

be defined. Here we assume a simple rule that the increase
in the length of the channel is proportional to the current at
its tip, that is, for the configuration shown in Figure 4

dLB

dt
¼ I2;

dLA

dt
¼ I4: ð3Þ

This corresponds to the assumption that the Peclet number
is sufficiently high that an increase in the length of the
channel is much larger than the change in its lateral
dimensions. The limitation that the channels only grow at
the tip makes our model similar to needle models of growth
in diffusion-limited aggregation [Krug, 2002]. However, the
dynamics defined by equations (2) and (3) are quite
different from the Laplacian growth of diffusion-limited
aggregation.
[12] Let us now consider the situation at the early stages

of the dissolution process, when the lengths of the channels
are relatively small compared to the length of the sample,
LA, LB � Ltot. This condition, together with the condition
that the dissolved region has a much higher permeability
than the undissolved medium, rC/rM � 1, implies that

R3;R6 	 R7;R8;R5 	 R1;R2;R4: ð4Þ

In this limit, the ratio of the currents in both channels, which
according to equation (3) determines their evolution, is
simply

_LB
_LA

¼ I4

I2
¼ 1þ 2R5

R7

¼ 1þ 2 LB � LAð Þ
LAB

: ð5Þ

This result agrees with the qualitative observation of
Hoefner and Fogler [1988] that the ratio of the difference
in the lengths of the channels to the distance between them
is the quantity governing the evolution of the dissolving
conduits.
[13] Next, we generalize the model to the N-channel case.

As before, we connect the tip of each channel with every
other channel to allow for redistribution of the flow. This
defines a network of 2N2 resistors. The dissolution dynam-
ics is obtained analogously to equation (3),

dLi

dt
¼ Ii; i ¼ 1; . . . ð6Þ

where Ii is the current at the tip of i–th resistor. Again, the
currents for the given set of resistances may be obtained by
the linear solver and then the dynamics is iterated to track
the evolution of the system.

4. Results

[14] A typical result obtained with use of the above rules
is shown in Figure 5. Here, 1200 channels are simulated

Figure 4. A resistor network corresponding to the
configuration of Figure 3. The arrows denote the directions
of the currents between the channels.

Figure 5. Map of the channels grown according to the
resistor network rules. The figure shows 1/10 of the width
of the simulated system.
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with the initial length chosen uniformly at random from the
interval [6,10]. The spacing between the neighboring chan-
nels is constant and equal to 1 whereas the total length of
the sample Ltot = 1500. Finally, the resistivities are rC = 1
and rM = 20 respectively. To avoid finite-size effects, the
computation was continued until the longest channel
reached 1/10 of the length of the sample.
[15] Figure 6 shows the cumulative distribution of chan-

nel lengths for the simulated system. We find a power-law
decay over a wide range of L, with an exponent equal to m =
1.25, in very good agreement with the pore-scale simula-
tions. Moreover, the value of the exponent turns out to be
insensitive to the details of the simulation, such as the initial
distribution of channel length, channel spacing or even the
values of the resistivities as long as their ratio, rC/rM,
remains small. This suggests that the value of m may be
universal.
[16] The log-periodic oscillations observed in the pore-

scale simulations are absent from the data obtained from the
network model (Figure 6). This is due to the random
dephasing between channels in distant parts of the sample
[Sornette, 1998]. Indeed, in the early stages of the dissolu-
tion recent numerical simulations [Szymczak and Ladd,
2004b] found very limited interaction between different
areas of the fracture. The dissolution pattern at a cross-
stream location y0 depends only on the topography in its
immediate neighborhood jy � y0j < d, where d is the
interaction range. Although the interaction range increases
as the dissolution channels develop, still the distant parts of
the sample evolve essentially independently of each other.
Thus the process of self-averaging takes place, which
destroys the logarithmic oscillations [Sornette, 1998]. In
the pore-scale simulations, self averaging is absent because
of the small sample size (only �60 channels compared to
1500 in the network model). In fact, if we limit the sample
size in the network model and average N(L) over only one
hundred neighboring channels, the log-periodic oscillations
in N(L) appear once again.
[17] Naturally, the model we have described only cap-

tures some aspects of the fracture evolution. One feature
that is not taken into account is tip splitting, which plays an
important role in fractures of high aperture variability
[Cheung and Rajaram, 2002]. However, even in fractures
of smaller variability, tip splitting become very pronounced
as the channel tip nears the outlet. Thus, strictly speaking,
our model is applicable to the intermediate stages of fracture
dissolution, when on one hand the channels have grown
considerably from the initial ripples but on the other hand
they are relatively short in comparison with the length of the

fracture. In principle it would be possible to include the
effects of tip splitting into the resistor network model, by
allowing the vertical resistances, like R7 and R8 (Figure 4),
to dissolve as well. However this would make the model
significantly more complex.

5. Summary

[18] In this paper we have studied channel growth and
competition in a dissolving porous medium. The dissolution
patterns obtained with use of the pore-scale numerical
model have shown scale-invariant properties. A model of
interaction between flow channels was constructed, by
mapping the system into an evolving resistor network.
Although simple, the model retains the crucial flow captur-
ing mechanism, which causes a fast growth of longer
channels and starvation of the shorter ones. The network
model shows the same nontrivial scaling features as the
dissolving fracture system, which confirms the hypothesis
that the flow-capturing mechanism is indeed one of the
main driving factors in channel evolution.

[19] Acknowledgments. The lattice-Boltzmann code used in the
pore-scale simulations was written by Rolf Verberg (University of Pitts-
burgh). This work was supported by the Polish Committee of Scientific
Research (P03B 08127, 2004–2005), and by the U.S. Department of
Energy, Chemical Sciences, Geosciences and Biosciences Division, Office
of Basic Energy Sciences (DE-FG02-98ER14853).

References
Cheung, W., and H. Rajaram (2002), Dissolution finger growth in variable
aperture fractures: Role of the tip-region flow field, Geophys. Res. Lett.,
29(22), 2075, doi:10.1029/2002GL015196.

Detwiler, R. L., R. J. Glass, and W. L. Bourcier (2003), Experimental
observations of fracture dissolution: The role of Peclet number in evol-
ving aperture variability, Geophys. Res. Lett., 30(12), 1648, doi:10.1029/
2003GL017396.

Hoefner, M., and H. Fogler (1988), Pore evolution and channel formation
during flow and reaction in porous media, AIChE J., 34, 45–54.

Huang, Y., G. Ouillon, H. Saleur, and D. Sornette (1997), Spontaneous
generation of discrete scale invariance, Phys. Rev. E, 55, 6433–6447.

Johns, R. A., and P. V. Roberts (1991), A solute transport model for chan-
nelized flow in a fracture, Water Resour. Res., 27, 1797–1808.

Kelemen, P. B., A. Whitehead, E. Aharonov, and K. A. Jordahl (1995),
Experiments on flow focusing in soluble porous media, with applications
to melt extractions from the mantle, J. Geophys. Res., 100(B1), 475–496.

Krug, J. (2002), Origin of scale invariance in growth processes, Adv. Phys.,
46, 139–282.

Ortoleva, P., J. Chadam, E. Merino, and A. Sen (1987), Geochemical self-
organisation II: The reactive-infiltration instability, Am. J. Sci., 287,
1008–1040.

Roy, A., S. Roy, A. J. Bhattacharayya, S. Banarjee, and S. Tarafdar (1999),
Discrete scale invariance in viscous fingering patterns, Eur. Phys. J. B,
12, 1–3.

Sornette, D. (1998), Discrete scale invariance and complex dimensions,
Phys. Rep., 297, 239–270.

Szymczak, P., and A. J. C. Ladd (2004a), Stochastic boundary conditions to
the convection-diffusion equation including chemical reactions at solid
surfaces, Phys. Rev. E., 69, 036704.

Szymczak, P., and A. J. C. Ladd (2004b), Microscopic simulations of
fracture dissolution, Geophys. Res. Lett., 31, L23606, doi:10.1029/
2004GL021297.

Verberg, R., and A. J. C. Ladd (1999), Simulation of low-Reynolds-number
flow via a time-independent lattice-Boltzmann method, Phys. Rev. E, 60,
3366–3373.

�����������������������
A. J. C. Ladd, Chemical Engineering Department, University of Florida,

Gainesville, FL 32611-6005, USA.
P. Szymczak, Institute of Theoretical Physics, Warsaw University, Hoz: a

69, 00-618, Warsaw, Poland. (piotrek@fuw.edu.pl)

Figure 6. The cumulative distribution N(L) of channel
lengths from in the fracture simulated with the resistor
network model. The solid line has a slope of �1.25.
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