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[1] The reactive-infiltration instability, which develops
when a porous matrix is dissolved by a flowing fluid,
contains two important length scales. Here we outline a
linear stability analysis that simultaneously incorporates
both scales. We show that the commonly used “thin-front”
model is a limiting case of a more general theory, which
also includes convection-dominated dissolution as another
special case. The wavelength of the instability is bounded
from below and lies in the range 1 mm to 1 km for physically
reasonable flow rates and reaction rates. We obtain a closed
form for the growth rate when the change in porosity is
small. Citation: Szymczak, P., and A. J. C. Ladd (2013), Inter-
acting length scales in the reactive-infiltration instability, Geophys.
Res. Lett., 40, 3036–3041, doi:10.1002/grl.50564.

1. Introduction
[2] The reactive-infiltration instability [Ortoleva, 1994] is

an important mechanism for pattern development in geol-
ogy, with a range of morphologies (see Figure 1) and scales,
from cave systems running for hundreds of miles [Ford and
Williams, 2007] to laboratory acidization on the scale of cen-
timeters [Daccord, 1987]. In this paper we show that the
instability is characterized by two length scales: an upstream
length where the material is fully dissolved and a down-
stream length over which it transitions to the undissolved
state. Previous work [Chadam et al., 1986; Ortoleva et al.,
1987a; Sherwood, 1987; Hinch and Bhatt, 1990] consid-
ered one or the other of these lengths to be dominant, which
limits the applicability of their results. In particular, we
show that the thin-front limit [Chadam et al., 1986; Ortoleva
et al., 1987a] is only valid when a particular combination of
reaction rate (r), fluid velocity (v0), and diffusion constant
(D), Dr/v2

0 is large. Here we develop a general theory of the
reactive-infiltration instability, valid for all flow rates and
reaction rates; in addition, we obtain closed-form solutions
in the limit where the change in permeability is small.

2. Dissolution of Porous Media
[3] When a porous matrix is infiltrated by a reactive fluid,

a front develops once all the soluble material at the inlet has
dissolved. This front propagates into the matrix as illustrated
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in the inset of Figure 2, which shows its position (solid
line) at a later time. A planar front develops perturba-
tions because of the feedback between flow and dissolution
[Chadam et al., 1986; Sherwood, 1987; Hinch and Bhatt,
1990]. Upstream of the front, all the soluble material has
dissolved and the porosity is constant, � = �1. Ahead of
the front, the porosity gradually decays to its value in the
undisturbed matrix, � = �0.

[4] Dissolution of a porous matrix can be modeled by
coupled equations describing flow, reactant transport, and
dissolution:

@t� + r � v = 0, v = –K(�)rp/�, (1)

@t(�c) + r � (vc) – r � Drc = –rc� (�1 – �), (2)

csol@t� = rc� (�1 – �), (3)

where � is the Heaviside step function, v is the superficial
velocity, and csol is the concentration of soluble material.
In the upstream region, where all the soluble material has
dissolved (� = �1), the reaction terms vanish and the trans-
port equation reduces to a convection-diffusion equation.
We assume a constant diffusivity D = D1 and reaction
rate r, which captures the essential characteristics of the
reactive-infiltration instability. A complete description of
solute dispersion and reaction in porous media is complex
[Golfier et al., 2002; Panga et al., 2005], but more gen-
eral dispersion D(�, v) and reaction r(�) coefficients can be
incorporated within the same framework.

[5] The rate of increase in porosity (@t�) is much smaller
than the reaction rate (r) because the molar concentration
of solid (csol) is typically orders of magnitude larger than
the reactant concentration (c). This time scale separation
can be quantified by introducing the acid capacity number,
�a = cin/[csol(�1 – �0)], which corresponds to the volume of
porous matrix dissolved by a unit volume of reactant. In typ-
ical geophysical systems, the reactant is dilute cin � csol
and therefore �a � 1; for example, when calcite is dis-
solved by aqueous CO2, �a � 10–4. This allows us to drop
the time derivatives in the flow and transport equations (1)
and (2) and treat the velocity and concentration fields as sta-
tionary, slaved to the porosity field by means of the erosion
equation (3).

[6] The resulting equations are closed by auxiliary condi-
tions far from the front:

v(–1) = v0ex vy(1) = 0, (4)
c(–1) = cin, c(1) = 0, (5)
�(–1) = �1, �(1) = �0, (6)

where ex is a unit vector in the direction of the flow (x). Far
upstream (x! –1), the fluid velocity (v0) and reactant con-
centration (cin) are uniform, and the matrix is fully dissolved.
Far downstream (x ! 1), the reactant has been entirely
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Figure 1. Examples of patterns produced by the reactive-infiltration instability: (a) wormholes (30 cm long) produced
during carbonate acidization [McDuff et al., 2010], (b) holes formed by limestone dissolution (5–10 cm across) [Ortoleva
et al., 1987a], (c) a uranium roll (�1 m), and (d) terra rossa fingers (�10 m). Images are reproduced by permission (see
acknowledgments).

consumed, the matrix is undisturbed, and the pressure is
uniform across the sample (@yp = 0).

[7] Equations (1)–(3) have steady one-dimensional solu-
tions, cb(x0) and �b(x0), in a frame x0 = x – Ut moving with a
constant velocity U:

v0@x0 cb – D@2
x0 cb = –rcb� (�1 – �b), (7)

– csolU@x0 �b = rcb� (�1 – �b). (8)
The fluid velocity v0 is constant throughout the domain (in
one dimension), and a mass balance on the reactant con-
sumption requires that U = �av0. By taking the limit of small
acid capacity (�a ! 0), the term proportional to U can be
dropped from equation (7) but not from (8) where it sets the
dissolution time scale td = ld/U.

[8] Upstream of the front, indicated by the dashed line
in Figure 2, all the soluble material has dissolved and the
porosity is constant, � = �1. Nevertheless, because of the
diffusive flux, the concentration profile is not uniform in
this region but decays from its inlet value cin over a char-
acteristic length lu = D/v0. Convection-dominated theories
[Sherwood, 1987; Hinch and Bhatt, 1990] neglect this scale,
setting the concentration at the front to cin, but our analysis
shows that this is a singular limit (see equation (15)) and that
even small diffusive contributions to the reactant flux make
a large difference to the growth rate.

[9] Downstream from the front, material is still being dis-
solved and here the concentration decays with a different
length scale, ld = 2D/(

p
v2

0 + 4Dr – v0); the porosity returns
to its initial value �0 on the same scale. If the thickness

of the downstream front is neglected, then the reactive-
infiltration instability can be mapped to a thin-front problem
[Chadam et al., 1986; Ortoleva et al., 1987a], with an
r-independent growth rate (see equation (16)). These results
have been widely used to draw inferences about the mecha-
nisms and growth rates for morphological changes in rocks,
but the range of validity of this limit is more restricted than
is generally realized.

Figure 2. Concentration and porosity profiles in the mov-
ing front frame x0 = x – Ut; the position of the front is
indicated by the dashed vertical line. The concentration pro-
file decays with different length scales, lu and ld, in the
upstream (x0 < 0) and downstream (x0 > 0) regions.

3037



SZYMCZAK AND LADD: REACTIVE-INFILTRATION INSTABILITY

[10] Chadam et al. [1986] and Ortoleva et al. [1987a] pro-
posed that the front thickness can be neglected whenever the
acid capacity is small (�a � 1), a condition that is widely
applicable in nature and which is implicit in equation (7).
By including the acid capacity in their definition of reac-
tion rate, r? = r/�a, they necessarily take the fast-reaction
limit r ! 1 as �a ! 0 (keeping r? finite) [Ortoleva et al.,
1987b]. Missing from this analysis is what physical quan-
tity r must be large with respect to; equation (7) suggests
that a sharp front, meaning ld � lu (Figure 2), will only
occur when r� v2

0/D. Thus, there is no general reduction of
the reactive-infiltration instability to a thin-front problem; it
is only appropriate as a limiting case when the dimension-
less combination of reaction rate, flow rate, and diffusion,
H = Dr/v2

0 � 1.
[11] The importance of the interplay between reaction,

diffusion, and convection in a dissolving rock matrix was
first noted by Lichtner [1988] and Phillips [1990], while the
relevance of the parameter H to wormhole growth was rec-
ognized by Steefel and Lasaga [1990]; nevertheless, they did
not incorporate their insights into a stability analysis. How-
ever, Aharonov et al. [1995] discussed a similar interaction
of length scales in the related problem of melt flow in the
mantle; here the interplay of matrix compaction and solu-
bility gradient leads to an instability in an otherwise steady,
nonpropagating porosity profile. Fracture dissolution is also
characterized by an instability in a nonpropagating (but
time-dependent) front [Szymczak and Ladd, 2012]. How-
ever, the impact of diffusion in systems with propagating
versus nonpropagating fronts is fundamentally different: In
moving front problems, diffusion can completely stabilize
the growth [Chadam et al., 1986], whereas in the case of
nonpropagating profiles, it weakens the growth but does
not make it stable [Aharonov et al., 1995; Szymczak and
Ladd, 2011a]. In this paper we present a new analysis of
the instability in a steadily propagating dissolution front,
which includes both upstream (where the material is fully
dissolved) and downstream regions; we recover previous
results [Chadam et al., 1986; Sherwood, 1987; Hinch and
Bhatt, 1990] as limiting cases.

3. Linear Stability Analysis
[12] Stationary one-dimensional solutions of equation (1)

form the base state for the linear stability analysis:

cb

cin
= 1 –

ex0/lu

1 + Pe
, �b = �1 x0 < 0; (9)

cb

cin
=

e–x0/ld

1 + Pe–1 ,
�b – �0

�1 – �0
= e–x0/ld x0 > 0. (10)

The Péclet number is defined on the scale of the downstream
length, Pe = v0ld/D, and is equal to the ratio of upstream
and downstream length scales, ld/lu; it is a function of the
dimensionless parameter H = Dr/v2

0; Pe = 2/(
p

1 + 4H – 1).
Although Pe is usually based on pore size or sample size,
geophysical systems are typically unbounded; then the reac-
tant penetration length is the largest and most important
length scale.

[13] Perturbations to the porosity, velocity, and concentra-
tion fields are determined by linearizing about the base state,
e.g.,

�(x0, y, t) = �b(x0) + ı�(x0) sin(uy)e!t. (11)

The result of the stability analysis is a fifth-order differential
equation for the downstream porosity perturbation ı�, with
solutions that depend on Pe, u, !, and K(�). Here we take a
�3 relation for the permeability,

K(�) = K0

�
�

�0

�3

, (12)

and solve for the downstream ı� using a spectral method
[Boyd, 1987]. Boundary conditions at the front were con-
structed by matching to analytic solutions for the upstream
perturbations in velocity and concentration. Two bound-
ary conditions suffice to determine ı� for a given !, and
the remaining boundary condition is used to determine the
growth rate !(u, Pe,�), where

� = (�1 – �0)/�0 (13)

is the porosity contrast. Details of the linear stability analysis
are given in the supporting information.

[14] The connection between the various limiting cases
Pe � 1, Pe � 1, and Pe � 1 can be made explicit by
developing a perturbation expansion in the porosity contrast
�. The final result for the growth rate is

!td =
1
2

�
Pe –

q
Pe2 + 4u2l2d

�
+�!1td + O(�2), (14)

where the time scale td = ld/�av0, and !1(uld, Pe) is a simple
but lengthy algebraic function (see the supporting infor-
mation). Characteristic dispersion curves for convection-
dominated dissolution (Pe � 1) are shown in Figure 3
(top) for a small porosity contrast � = 0.1. For large
Péclet numbers, equation (14) can be replaced by a simpler
expression:

!td =
3� uld

2(1 + uld)
–

u2l2d
Pe

+ O(Pe–2), (15)

with results that are indistinguishable from equation (14) on
the scale in Figure 3 (top).

[15] In the convective limit (Pe!1), ! rises monoton-
ically with increasing wave vector, reaching an asymptotic
value !td = 3�/2 as in Hinch and Bhatt [1990]. However,
even a small diffusivity cuts off the short wavelengths (uld >
1), leading to a pronounced maximum in the growth rate.
This implies that there will be a strong wavelength selection
even in highly convective flows and that short wavelength
perturbations will not grow. Thus, the convective limit is sin-
gular; unstable terms saturate for large values of uld and are
eventually overwhelmed by the diffusive stabilization.

[16] As the Péclet number decreases, diffusional stabi-
lization reduces the growth rate and pushes the range of
unstable wavelengths toward u = 0. When Pe � 1, the
dispersion relation (14) takes a particularly simple form in
variables scaled by the upstream length and time, ulu and
!tu, where the upstream time scale tu = lu/�av0. Physically,
this rescaling is associated with the change in length scale
from convection-dominated infiltration, ld = v0/r � lu, to
diffusion-dominated infiltration, ld � lu = D/v0. Figure 3
(bottom) shows that the dispersion relation in this scaling
reaches a limiting form for small Pe,

!tu =
3�
2

ulu +
�

1
2

+
3�
4

��
1 –

q
1 + 4u2l2u

�
+ O(Pe2), (16)
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Figure 3. Instability growth rates for a small porosity
contrast, � = 0.1. (top) The dispersion curves in the
downstream scaling for large values of Péclet number:
Pe = 1 (solid), Pe = 104 (dashed), Pe = 103 (dotted),
and Pe = 102 (dash-dotted). (bottom) The dispersion curves
in the upstream scaling for small values of Péclet num-
ber: Pe = 0 (solid), Pe = 1 (dashed), Pe = 10 (dotted), and
Pe =100 (dash-dotted).

shown by the solid line; this is the thin-front limit (ld/lu ! 0)
considered in Ortoleva et al. [1987a], with �� 1.

[17] The most important result from an analysis of the
reactive-infiltration instability is the wavelength of the
fastest-growing mode, �max(Pe,�) = 2� /umax. Natural pat-
terns are expected to develop on this scale [Ortoleva et al.,
1987a], at least initially, since this particular wavelength
grows exponentially faster than neighboring ones, with a
time scale tmax = 1/!max = 1/!(�max). The fastest-growing
length and time scales are shown in Figure 4 over a range of
Darcy velocities, from 10–8 to 10–1 cm s–1. The lower end of
the scale covers the range of naturally occurring flow rates,
while much higher velocities (up to 0.1 cm s–1) are found in
reservoir acidization. Results are shown for three different
reaction time scales: r –1 = 108 s, which is characteristic of
slowly dissolving minerals such as quartz and certain redox
reactions, r –1 = 104 s, which is typical of the dissolution of
clays, and r –1 = 1 s which is characteristic of fast-dissolving
minerals such as calcite or gypsum; we will consider some
specific examples in section 4. Throughout we will assume
a constant diffusion coefficient, D = 10–5 cm2 s–1.

[18] Figure 4 shows there is a lower bound to the wave-
length and time scale with respect to the flow velocity, which
occurs around Pe = 10 in each case. Starting in the thin-front
limit (v0 � 10–8cm s–1), an increasing velocity reduces the
wavelength by decreasing the upstream penetration length
lu = D/v; in this region (Pe < 1), the downstream penetration
length is small. However, as v0 increases further, the down-
stream length begins to grow and when Pe > 1 takes over
as the dominant scale; in this case, an increase in velocity

Figure 4. The (top) maximally unstable wavelength �max =
2� /umax and (bottom) time scale, tmax = 1/!max are shown
for different reaction rates: r = 10–8 s–1 (black), r = 10–4 s–1

(blue), and r = 1 s–1 (red). For each reaction rate, results are
shown at three different porosity contrasts: � = 0.1 (solid
line), � = 1 (dashed line and circles), and � = 10 (squares).
Analytic results from (14) are shown by lines, and numerical
results from the spectral code are shown by the solid sym-
bols. The acid capacity �a is needed to determine the actual
dissolution time scale for a specific mineral.

increases the penetration length and so the scale of the insta-
bility grows. Interestingly, the plot suggests that instability
wavelengths will fall in a range between millimeters and a
few hundred meters, since the highest flow rates are typi-
cally associated with reservoir acidization, where reaction
rates are high (red curves). Similarly, there is a lower bound
to the time scale; once the downstream penetration length
starts to take over, the growth rate of the instability becomes
independent of velocity. It should be noted that in order to
obtain universal curves, we have plotted �atmax in Figure 4;
the dissolution time for a particular mineral can be found by
dividing by the acid capacity (typically �a � 10–6 – 10–4).

[19] The most unstable wavelength �max decreases with
increasing porosity contrast up to � � 1. In the diffu-
sive regime it then saturates, but in the convective regime
�max increases sharply with velocity, as shown by the solid
squares in Figure 4 (top). This results from the appearance of
a long wavelength maximum in the dispersion curve at high
porosity contrasts (� � 10), which persists from Pe � 10 to
the convective limit [Szymczak and Ladd, 2011b]. The ana-
lytic theory (14) remains valid up to � = 1 (dashed lines)
as can be seen by the comparison with numerical results
(solid circles).

4. Discussion
[20] A reactive-infiltration instability can occur in almost

any system in which chemical dissolution is coupled with
fluid flow. Variations in reaction rate (r) and flow rate
(v0) give rise to a wide range of length scales, from

3039



SZYMCZAK AND LADD: REACTIVE-INFILTRATION INSTABILITY

centimeter scale redox fronts in siltstones [Ortoleva, 1994]
to kilometer-long scalloping of a dolomitization front
[Merino and Canals, 2011]. The span of timescales is also
large; acidized plaster [Daccord, 1987] and limestone cores
[Hoefner and Fogler, 1988] or salt flushed with water
[Kelemen et al., 1995; Golfier et al., 2002] finger in
minutes, while geological structures evolve over hundreds
of thousands of years. Groundwater velocities are usu-
ally small, v0 � 10–8 – 10–5cm s–1, while the timescale
for dissolution (r –1) varies from seconds to years; thus,
both diffusion-dominated (Dr/v2

0 � 1) and convection-
dominated (Dr/v2

0 � 1) dissolution can occur.
[21] The formation of salt sinkholes is an example of

diffusion-dominated dissolution; here r � 2 � 10–4 s–1 and
v0 is in the range 3 � 10–7 – 3 � 10–6cm s–1 [Shalev et al.,
2006], which means it is in the diffusive regime (H > 1).
For the large porosity contrast typical of salt dissolution
(� � 10), the maximum unstable wavelength (Figure 4) is
then �max � 0.7 – 7 m, which is in the range of the results
reported in Shalev et al. [2006]. The associated timescales
are of the order of 1.5 – 150 years (with �a � 0.18); thus,
sinkholes would be expected to develop over tens of years,
which is comparable with experimental observations [Shalev
et al., 2006].

[22] Even though the natural flow rates in most rock for-
mations are small, convection-dominated dissolution can
still occur, particularly if only a small fraction of the grains
are reactive. Relevant examples include uranium deposi-
tion, in which a solution containing soluble uranium salts
reacts with pyrites (FeS) embedded in a sandstone matrix;
this alters the redox potential and causes uranium to precip-
itate as uraninite (uranium oxide) [Lake et al., 2002]. Since
the pyrites constitute only about 2% of the total rock matrix
[Dewynne et al., 1993], the rate of uranium precipitation is
small, r � 10–8 s–1 [Lichtner and Waber, 1992]. Oxidation
of pyrites produces sulfuric acid, which dissolves some of
the rock matrix; the increase in porosity (� � 4, Dewynne
et al. [1993]) causes a reactive-infiltration instability in the
uraninite front. Within the typical range of sandstone per-
meability, dissolution can be either convection-dominated or
diffusion-dominated. The thin-front limit applies when the
flow velocity is less than 10–7cm s–1; here the scale of the
front is predicted to be about 20 m, varying as v–1

0 . How-
ever, at higher flow velocities, the scale decreases more
slowly because of the transition to convection-dominated
dissolution, with a minimum wavelength of about 6 m
(at v0 = 10–6cm s–1). At v0 = 10–5cm s–1, the scale is
again about 20 m, whereas the thin-front prediction would
be more than an order of magnitude smaller. Field obser-
vations indicate spacings between uraninite fingers in the
range of 1m to 1km [Dahlkamp, 2009]; in the latter case,
since the fingers are very prominent the observed spacing
most likely reflects a non-linear selection process, which
eliminates many smaller channels (see below).

[23] Fluid velocities during acidization of carbonate reser-
voirs are larger than in naturally occurring groundwater
flows, v0 � 10–3cm s–1 – 0.1cm s–1 [Economides and
Nolte, 2000], and it is frequently assumed that acidiza-
tion is convection-dominated [Sherwood, 1987; Hoefner and
Fogler, 1988]. However, rapid dissolution of calcite by con-
centrated hydrochloric acid (frequently used in acidization),
combined with the large reactive surface area of calcite, can
lead to reaction rates as high as 10 s–1 [Cohen et al., 2008],

although weaker acids, such as acetic or formic acid, have
dissolution rates that are 100 times slower. Thus, acidiza-
tion spans the range from convection-dominated (H � 10–4)
to diffusion-dominated dissolution (H � 100), but the pre-
dicted length scales are always in the subcentimeter range.
At the smallest flow rates (v0 � 10–3cm s–1), dissolution
tends to be diffusion-dominated, with a typical length scale
of the order of �max � 0.1cm, independent of reaction
rate. At the highest flow rates (v0 � 0.1cm s–1), the reac-
tant penetrates downstream, leading to significantly larger
scales (� 0.1cm) than would be predicted from the thin-front
limit (� 0.001 cm). Intriguingly, there may be a connection
between the minimum scale of the instability (Figure 4) and
the optimization of reactant consumption during acidization
[Fredd and Fogler, 1998; Golfier et al., 2002; Panga et al.,
2005]. Although the dynamics of wormhole formation are
highly nonlinear, the interaction of convective, reactive, and
diffusive length scales may be similar.

[24] In this work we have presented the results of
an analysis of the reactive-infiltration instability, which
takes account of the two length scales that characterize
the concentration field; previous analysis [Chadam et al.,
1986; Ortoleva et al., 1987a; Sherwood, 1987; Hinch and
Bhatt, 1990; Szymczak and Ladd, 2011b] assumed that one
length or the other was dominant, corresponding to the
limiting cases H ! 1 [Chadam et al., 1986; Ortoleva et
al., 1987a] or H ! 0 [Sherwood, 1987; Hinch and Bhatt,
1990; Szymczak and Ladd, 2011b]. We have explained the
connection between these apparently disparate theories and
determined their range of validity; in particular, we have
shown that the thin-front limit only holds when H � 1 and
the convective limit when H� 1. We have given examples
of reactive infiltration systems—in nature, laboratory exper-
iments, and engineered systems—which span a wide range
of H, from H � 10–4 to H � 103.

[25] Finally, we note that there are significant limitations
to the use of a linear stability analysis to interpret geological
morphologies. First, reaction rates at the Darcy scale are not
well understood; field measurements are frequently orders
of magnitude smaller than those inferred from laboratory
experiments. Moreover, as the instability develops nonlinear
couplings lead to a coarsening of the pattern, with an increas-
ing wavelength between the fingers [Szymczak and Ladd,
2006]. The competition between different fingers causes the
shorter ones to be arrested, which can be clearly seen in the
terra rossa fingers in Figure 1 and also in maps of uraninite
formations [Dahlkamp, 2009].
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