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Stochastic boundary conditions to the convection-diffusion equation including chemical
reactions at solid surfaces

P. Szymczak* and A. J. C. Ladd†
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~Received 22 July 2003; published 30 March 2004!

Simulations of heat and mass transport may require complex nonlinear boundary conditions to describe the
flow of mass and energy across an interface. Although stochastic methods do not suffer from the numerical
diffusion of grid-based methods, they typically lose accuracy in the vicinity of interfacial boundaries. In this
work we introduce ideas and algorithms to account for mass~or energy! transfer at reactive interfaces, with
accuracies comparable to the bulk phase. We show how to introduce particles into the system with the correct
distribution near the interface, as well as the correct flux through the interface. The algorithms have been tested
in a channel flow, for which accurate numerical solutions can be independently calculated.
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I. INTRODUCTION

Surface chemical reactions, involving deposition and d
solution of molecular species, are controlled by the transp
of reactants and products as well as by the intrinsic chem
kinetics. The two dominant transport mechanisms, conv
tion and diffusion, frequently produce quite different dyna
ics and structures within the system. We will consider s
tems containing a reactive solid surfaceS, which might, for
example, be the surface of a biological cell, the porous m
trix of a specimen of limestone, or a corroding metal surfa
The transport of chemical species in the surrounding fluid
described by the convection-diffusion equation

] tci1u•¹ci5Di¹
2ci , ~1!

whereci is the concentration of speciesi, Di is its diffusion
coefficient, andu is the fluid velocity field. The essentia
assumption here is that the chemical concentrations are
ficiently small that they do not affect either the diffusio
coefficient or the fluid velocity, which is then determine
solely by the solid geometry and external boundary con
tions on the flow.

Stochastic methods have long been used to solve p
lems in heat transport@1–3# and neutron transport@4#, be-
cause of the ease with which these methods can be ada
to complex interfaces. An extensive bibliography of applic
tions is contained in Ref.@3#. Stochastic methods have als
been applied to bulk-phase reaction-diffusion systems@5,6#,
and to the dispersion of passive tracers in a porous med
@7–9#. Recently, a stochastic method was used to calcu
the flux of reactive tracers between complex fractured s
faces@10#. Although stochastic methods can lead to accur
solutions of the convection-diffusion equation in bu
phases, they typically lose accuracy in the region of inte
cial boundaries. For example, the algorithms used in R
@7–10# introduce errors proportional to the square-root of
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time step in the vicinity of an interface@11,12#. However, in
recent work@12# we developed second-order implemen
tions of the zero-flux and constant concentration bound
conditions. Although we were not able to solve th
boundary-condition problem for a completely general flo
field, we were able to obtain quadratic convergence in two
the most important cases; a local shear flow parallel to
surface and a uniform flow across the interface. In this pa
we propose generalizations of these ideas to situations w
there are chemical reactions at the interface, which can
clude spatially varying nonlinear rate laws. Although w
only explicitly consider mass transfer in this paper, the sa
algorithms can also be applied to stochastic simulations
heat transfer.

The paper is organized as follows. In Sec. II we brie
summarize our previous work. In Sec. III we introduce t
different types of boundary condition that are encountered
systems with surface mass transport, and a method to m
sure the concentration in the vicinity of the interface is d
scribed in Sec. III B. Stochastic implementations of the
boundary conditions in the presence of a linear shear flow
constructed in Sec. IV. The implementations are tested
Sec. V, and conclusions are given in Sec. VI.

II. REFLECTION AND ABSORPTION

A stochastic processX(t), associated with the
convection-diffusion equation@Eq. ~1!# obeys the stochastic
differential equation

dX1v~X!dt5A2DdW, ~2!

wheredW is the differential of a Wiener process with un
variance. We use a Heun predictor-corrector method to so
Eq. ~2!;

Xp~ t1Dt !5X~ t !1v@X~ t !#Dt1A2DDW~ t !,

X~ t1Dt !5X~ t !1
1

2
$v@X~ t !#1v@Xp~ t1Dt !#%Dt

1A2DDW~ t !, ~3!

-

©2004 The American Physical Society04-1



r
n

y

s
in

h
ow
st
tw
is
ll

d-

a

en
tra

a-
-

i-
t

a

to
e

e

rce
er-
iver

n

ted
s in
of
nt-

ry.
x-

nly
is-
e

d to
or
ce

ig-
sure
the
ec-
ime

, at
ex-

by
his
en

ar
ple
bu-
e

P. SZYMCZAK AND A. J. C. LADD PHYSICAL REVIEW E69, 036704 ~2004!
where the incrementDW(t)5W(t1Dt)2W(t) is a Gauss-
ian random variable with varianceDt, and is the same fo
both predictor and corrector steps. The Heun method ca
shown to be weakly second-order convergent@13,14#, mean-
ing that, if Xex is an exact trajectory, then the error in an
polynomial function ofX is bounded by

u^g@Xex~ t !#2g@X~ t !#&u<d~Dt !2, ~4!

whered is a positive constant.
In a previous paper@12# we developed and tested stocha

tic algorithms to solve the convection-diffusion equation
the vicinity of reflecting and absorbing boundaries:

n̂~r !•¹c~r !50, rPS, ~5!

c~r ,t !50, rPS, ~6!

wheren̂(r ) is a unit vector normal to the surface. Althoug
we were not able to solve the problem for a general fl
field, we constructed second-order approximations to the
chastic processes near reflecting and absorbing walls for
physically relevant flow fields: a linear shear flow, which
characteristic of the flow near a solid interface, and a loca
uniform flow, which occurs near an inflow or outflow boun
ary. In the latter case we also generalized Eq.~6! to include a
constant nonzero concentration.

Near a solid boundary, an incompressible flow can be
proximated by a linear shear flow

vy5gx, ~7!

with a velocity gradientg normal to the surfacex50. In
order to determine the convective contribution to the tang
tial ~y! displacement, we must integrate over all possible
jectories between the initial and finalx positions. The aver-
age tangential displacement can then be computed
introducing a weighting functionp( x̃ux,x8,Dt) @12#

p~ x̃ux,x8,Dt !5

E
0

Dt

G~x,x̃,Dt2t !G~ x̃,x8,t !dt

G~x,x8,Dt !Dt
, ~8!

whereG(x,x8,t) is the one-dimensional diffusion propag
tor. The quantityp( x̃ux,x8,Dt)Dt is the mean time the par
ticle spends at a positionx̃ during its move fromx8 to x in
the time stepDt. The weight function turns out to be un
form in the region betweenx8 to x, but with tails that accoun
for indirect paths fromx8 to x. A typical distribution of
p( x̃ux,x8,Dt) is shown in Fig. 5 of Ref.@12#; the unit of
length in this paper is chosen to be the root-mean-squ
displacement in unit time,A2D, as before.

In the vicinity of the wall, a reflection must be applied
the negative (x̃,0) part of the function so that in this cas
the proper weight functionpr is ~see Fig. 1!

pr~ x̃ux,x8,Dt !5p~ x̃ux,x8,Dt !1p~2 x̃ux,x8,Dt !, ~9!

and is limited to the region (x̃.0). The average convectiv
velocity v̄y , during the time stepDt, can be calculated by
03670
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integrating the flow field vy5gx at each x̃, using
pr( x̃ux,x8,Dt) as the weight function,

v̄y5gE
0

`

x̃pr~ x̃ux,x8,Dt !dx̃, ~10!

although the final expression is quite lengthy. If the sou
and receiver positions are not too close to the wall the av
age velocity reduces to the mean of the source and rece
velocities, as in Eq.~3!. The details of the implementatio
can be found in Ref.@12#.

A zero-concentration~absorbing! boundary condition can
be implemented by modifying this scheme so that reflec
particles are converted into holes, carrying negative mas
the overall concentration balance. A virtual distribution
particles can be constructed to simulate a consta
concentration reservoir at an inflow or outflow bounda
Again the details of the implementation, together with e
amples, can be found in Ref.@12#.

To save computational time, boundary conditions are o
applied to particles close to the interface, the critical d
tance,dc , being of the order of the rms displacement. W
fully expect that these boundary conditions can be applie
curved surfaces by dividing them into locally flat regions, f
example by triangulation. If the distance from the sour
point to the nearest face is less thandc , the particle is ad-
vected according to Eq.~10! with the distancesx and x8
measured with respect to that face. Since this algorithm
nores the curvature of the interface, it is necessary to en
that dc is smaller than the characteristic length scale of
surface features. In the vicinity of a corner a reflected traj
tory may encounter more than one surface in a single t
step. In this case we have found@12# that the algorithm ap-
propriate to each interface can be applied sequentially
each successive encounter with a bounding surface. For
ample, a specular reflection at a reflecting wall followed
reflection plus conversion to holes at an absorbing one. T
is simple to implement in the absence of the flow or wh
the convection is included to the first order inDt. Second-
order corrections for the flow are difficult to implement ne
a sharp corner, where the flow field is no longer a sim
shear. However, in this case the first nonvanishing contri
tion to the flow field is quadratic in the distance from th
surface and a first-order method is sufficient.

FIG. 1. The conditional probability distributionpr( x̃ux,x8,Dt)
for a trajectory beginning atx852 and ending atx521 behind the
wall ~which is reflected to the pointx51) @Eq. ~8!#.
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III. MASS-TRANSFER BOUNDARY CONDITIONS

In this paper we will investigate more complex bounda
conditions describing mass transfer due to chemical react
at the interface:

Ji5 f i~c1 ,c2 , . . . !n̂, ~11!

where Ji is the flux of speciesi across the boundary
c1 ,c2 , . . . are theconcentrations of the respective species
the boundary, andn̂(r ) denotes a unit normal pointing int
the fluid. Conservation of mass leads to the boundary co
tion

2Di¹ci~r !•n̂~r !5 f „c1~r !,c2~r !, . . . …, rPS. ~12!

The convective contribution to the flux vanishes at a so
surface and is omitted from Eq.~12!.

There are two qualitatively different cases contained
Eq. ~12!, depending on the sign off i .

~1! f i(c1 ,c2 , . . . ).0. Particles are added to the flu
~dissolution!.

~2! f i(c1 ,c2 , . . . ),0. Particles are removed from th
fluid ~deposition!.

Although surface reaction rates may depend on sev
concentrations, from now on we consider only a single co
ponent in describing our implementation of the vario
boundary conditions; the generalization to multicompon
systems is straightforward. In this section we will consid
purely diffusive transport, for which the Green’s functio
near a planar interface are known analytically. In Sec. IV
will generalize these results to a linear shear flow.

A. Dissolution

A mass transfer boundary condition specifies the flux
particles, f (c0)n̂, entering or leaving the system;f is pre-
scribed by the chemical kinetics at the surface andc0 is the
concentration at the surfacec(rPS). The mass flux can be
generated by distributing an appropriate number of partic
along the interface, but the numerical implementation m
lead to the correct concentration profile near the interface
well. We first consider one-dimensional diffusion with a d
solving interface atx50, and show that the correct bounda
condition corresponds to a continuous~in time! concentra-
tion source of strength

s~x!5 f ~c0!d~x!. ~13!

In the absence of the flow, such a source produces the
centration profile

cs~x,t1Dt !

5 f ~c0!E
t850

Dt

2G~x,0,t8!dt8

5
f ~c0!

D FA4DDt

p
e2x2/4DDt2x ErfcS x

A4DDt
D G ~14!
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where it has been assumed that the concentration at the
c0, is essentially unchanged during the time stepDt. At the
same time the particles already in the system are reflecte
the x50 wall. The total concentration profile is then

c~x,t1Dt !

5cs~x,t1Dt !

1E
0

`

@G~x,x8,Dt !1G~x,2x8,Dt !#c~x8,t !dx8,

~15!

which is the solution of the diffusion equation with an initi
concentration profile c(x,t) and boundary conditions
]xc(0)52 f (c0)/D andc(`)50. The derivative of the con-
centration profile in Eq.~15!,

]c

]x
52

f ~c0!

D
ErfcS x

A4DDt
D , ~16!

matches the required fluxf (c0) at x50. It then follows that
a linear profilec02x f(c0)/D is stationary near the dissolv
ing wall.

In multidimensional systems, a continuous particle sou
again generates a matching particle flux and concentra
gradient. For example, in a two-dimensional system boun
by a dissolving wallx50, with a spatially varying flux
across the interfacef @c0(y)#,

lim
x→0

]xc~x,y,t1Dt !

5 lim
x→0

]xc
s~x,y,t1Dt !

5 lim
x→0

]xE
t850

Dt

dtE
2`

`

dy8
1

4pDt
e2

x21(y2y8)2

4Dt f @c0~y8!#

52E
2`

`

dy8
f @c0~y8!#

2pD
lim
x→0

]xEiS 2
x21~y2y8!2

4DDt D
52E

2`

`

dy8
f @c0~y8!#

D
e2

(y2y8)2

4DDt lim
x→0

1

p

x

x21~y2y8!2

52
f @c0~y!#

D
. ~17!

In implementing a continuous dissolution process, it is n
sufficient to simply ensure that the correct number of p
ticles, f (c0)DtdS, are introduced through the surface el
ment dS. For example, introducing the particles at the b
ginning of each time step, rather than continuou
throughout the time step, produces a concentration pro
with vanishing normal derivative at the wall, as shown
Fig. 2. Moreover discrete dissolution of particles even fa
to maintain the correct stationary state, as shown in Fig

The above analysis suggests the following procedure
implementing mass transfer boundary conditions, which
corporates continuous dissolution.

~1! Divide the interface into a number of cellsDSi .
4-3
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P. SZYMCZAK AND A. J. C. LADD PHYSICAL REVIEW E69, 036704 ~2004!
~2! Determine the concentrations of the individual spec
at the center of each cell,r i , ~see Sec. III B!, and calculate
the fluxesJ(r i)5 f @c(r i)#n̂(r i) according to Eq.~11!.

~3! Distribute particles in the surface elementDSi around
r i . The exact distribution of particles depends on the orde
the approximation scheme. It is usually sufficient to inclu
only linear variations in concentration along the surface,
that

f @c~r !#5 f @c~r i !#1~r2r i !•¹i f @c~r i !#, r ,r iPDSi ,
~18!

where¹i indicates a derivative along the interface.
~4! Advance the source particles with a time step pick

from a uniform random distribution in the range@0,Dt#, to
simulate continuous dissolution. Advance the particles in
bulk by Dt, using specular reflection at the solid surfaces

B. Measuring the concentration profile at the interface

In order to determine the interfacial fluxes in Eq.~11!, the
concentration profile of each species is required along

FIG. 2. Discrete~dashed! vs continuous~solid! dissolution. In
the discrete case, a particle concentrationc(x)5d(x) is placed on a
reflecting wall att50. In the continuous case, particles are relea
uniformly over the time stepDt51. The graphs show the concen
tration profilesc(x,1).

FIG. 3. Concentration profiles near a solid wall. A linear co
centration profile ~solid line!, c(x,0)5c02@ f (c0)/D#x, with
f (c0)52r (c02cs) and parameterscs51, c050.9, andr 50.1 is
advected for a single step (Dt51). The concentration profile
c(x,1) is shown for continuous dissolution~solid line! and discrete
dissolution~dashed line!. In the latter case the linear profile is un
steady.
03670
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system boundaries. We have investigated several pos
methods of measuring the concentration, and the method
sented below is the most accurate scheme we have dis
ered so far. It is also robust and relatively simple to imp
ment. First we discretize the system boundaries: for exam
on the x50 interface, mesh points are of the form (0,yk)
with 05y0,y1,•••,yn21,yn5Ly . This divides the wall
into n cells,C1 ,C2 , . . . ,Cn , with Ci extending fromyi 21 to
yi . The location of each element is taken to be the cente
cell Ci ,

yi
c5

1

2
~yi1yi 21!. ~19!

In order to determine the concentration profile onx50, we
measure the concentration profile in the vicinity of t
boundary by taking moments:

Wn1 ,n2

i 5
1

hwi
(

i
xn1~y2yi

c!n2, ~20!

wherewi5yi2yi 21 is the width of thei th cell and the sum
is over all particles in the region 0,x,h, yi 21,y,yi . The
value of h is empirically chosen as a compromise betwe
statistical errors, which are minimized by large values ofh,
and systematic errors, which are minimized by small valu
of h.

Given a set of momentsWn1 ,n2

i , with n1 ,n2<m, the con-

centration and concentration gradients can be determi
The concentration around a celli, located on the boundary
x50, is expanded in a Taylor series

ci~x,y!5c0
i 1cx

i x1cy
i ~y2yi

c!1•••, ~21!

where the concentrationc0
i 5c(0,yi

c) and derivativescx
i

5cx(0,yi
c) andcy

i 5cy(0,yi
c) are determined at the center o

the cell, (0,yi
c). In the zeroth approximation the concentr

tion in cell i is assumed to be uniform in they direction and
given by W0,0

i with errors of orderh. Solving the moment
equations to first order gives

c0
i 54W0,0

i 26h21W1,0
i , ~22!

cy
i 512w22W0,1

i , ~23!

with errors of orderh2. More involved expressions can b
derived at second order and beyond, and in general the e
is of orderhm11. Higher order schemes give more preci
results provided that enough particles are used to calcu
the moments~20!. However, increasing the number of trac
particles is computationally expensive and so only first- a
second-order schemes are used in this work.

To make a comparison of different order measureme
we have inserted 53106 particles, distributed in the region
0,x,h near the x50 wall with probability P(x,y)
}Aye2(x1y). Figure 4 shows measurements of the conc
tration profile on a uniform mesh yn5n/10, n
50,1, . . .,10. It can be seen that wherever the profi
changes sufficiently slowly both first- and second-ord

d

4-4
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STOCHASTIC BOUNDARY CONDITIONS TO THE . . . PHYSICAL REVIEW E 69, 036704 ~2004!
methods give accurate results. However, asy→0, where the
distribution has a singular derivative, it is difficult to obta
an accurate profile from the first-order technique.

C. Deposition

In a chemically reacting system, particles can also be
posited at an adsorbing wall, often in combination with t
dissolution of other species. The deposition boundary co
tion, f (c0),0 in Eq.~12!, can be implemented in an exact
analogous fashion to the dissolving interface by introduc
‘‘holes,’’ or particles of negative mass. The addition of hol
has the same effect on the concentration field in the b
regionV as removal of particles from the same locations,
it is simpler to construct the correct distribution near an
terface by the addition of holes than by the removal of p
ticles. It can be shown that this algorithm has the same p
erties as the dissolution algorithm described in Sec. III A
produces the correct mass flux across the interface an
linear distribution with the appropriate slope is again stati
ary.

The trajectories of particles and holes are construc
from the same increment distributions and the concentra
field is then determined by the difference between the p
ticle and hole concentrations. Particles and holes can be
celled in the bulk phase to reduce statistical fluctuations@12#.
In Sec. IV we will show how the dissolution and depositio
boundary conditions can be modified, along the lines de
oped in Ref.@12#, to take account of a linearly varying flow
field. In the remainder of this section we will discuss alt
native approaches, which have more limited applicabil
but which may be useful in some circumstances.

D. Linear kinetic laws

The simplest model for the dissolution of a solid spec
has a linear kinetic lawf (c0)5r (cs2c0), wherecs is the
saturation concentration andr is a positive rate constant. Ma
terial dissolves or deposits depending on whether the c
centration in the solution next to the interface is less than
greater than the saturation concentration. Heat transfer a

FIG. 4. Concentration profile from first-order~circles! and
second-order~squares! moment methods. The solid symbols ind
cate the normalized difference between the measured concentr
at the center of thei th cell, ci , and the analytic solutioncex

i : D
5(ci2cex

i )/cex
i . There is a substantial increase in the error neay

50 where the derivative is singular.
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interface can also be described by a similar rate law. If
surface kinetics are linear, then it is possible to construct
algorithm that does not require a measurement of the sur
concentration,c0.

The Green’s function for the one dimensional diffusio
equation with boundary condition

2DS ]c

]xD
x50

52rc0 ~24!

has the form

Gd~x,x8,Dt !5
1

A4pDDt
~e2(x2x8)2/4DDt1e2(x1x8)2/4DDt!

2
r

D
er (rDt1x1x8)/DErfcS x1x812rDt

A4DDt
D ,

~25!

where Erfc is the complementary error function. The boun
ary condition in Eq.~24! implies that the total mass of trace
particles decreases, so that

M0~x8,t !5E
0

`

Gd~x,x8,t !dx,1. ~26!

The mass of each reflected particle must therefore be
caled by the factorM0(x8,Dt), to account for deposition o
material at the boundary. The new location of a particle
ready at x8 is sampled from the probability distributio
Gd(x,x8,Dt)/M0(x8,t). A constant flux of particles,rcs is
added to the interface to account for the dissolution flux. T
key advantage is that no concentration measurements ar
quired, and this algorithm is therefore as accurate as
other reflection algorithms~for zero flux and zero concentra
tion!. However, it can only be implemented with a line
functional form for f (c0) and cannot account for more gen
eral surface kinetics.

E. Finite-range increments

It is not essential thatDW be a Gaussian increment i
order to obtain weak convergence. For example, any rand
variable with the correct second moment guarantees w
first-order convergence of the approximation scheme@13#.
Finite-range increments are frequently used@1,7,9# because
they are simpler and faster than Gaussian-sampled in
ments. However, near an interfaceany non-Gaussian incre
ment reduces the order of local convergence to 1/2@11,12#,
and does not guarantee global convergence even in theDt
→0 limit. As a result, the dissolution algorithm with non
Gaussian increments does not lead to the correct steady s
as can be seen in Fig. 5. This contrasts with the case
reflecting and absorbing boundaries, where non-Gaussia
crements immediately impose the correct boundary condi
@12#.

Nevertheless, it is possible to construct an algorithm t
leads to the correct stationary distribution, even with no

ion
4-5
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Gaussian increments. Let us again consider one-dimens
diffusion with a reacting interface atx50. Instead of a con-
tinuous source placed on the interface, we construct a vir
distribution of instantaneous sourcescv(x) in a region be-
hind the wall,x,0. The gradient incv is chosen to generat
the desired particle flux across the interface. When th
‘‘virtual’’ particles are propagated using an infinite spa
Green’s functionG(x2x8,Dt), their concentration profile a
t1Dt is

cv~x,t1Dt !5E
2`

0

dx8G~x2x8,Dt !cv~x8,t !. ~27!

After propagation, particles moving into the regionV (x
.0) are retained whereas those outsideV (x,0) are re-
moved from further consideration. Note that virtual partic
need only be placed in a small region@2xmax,0# behind the
wall, wherexmax is the maximum increment.

The distributioncv(x) is constructed so that, on averag
f (c0)Dt virtual particles cross the wall into the regionV in
one time step,

FIG. 6. Continuous dissolution from a point source in a line
shear flow@Eq. ~7!# with a Peclet number Pe510. The source is
located atx5y50 on a reflecting wall,x50. The concentration
profilesc(x, 0, t51) for Dt51 ~dash dotted!, Dt50.5 ~dotted! and
Dt50.1 ~dashed! are compared with the exact solution~solid!.

FIG. 5. Concentration profiles near a solid wall. A linear co
centration profile ~solid line!, c(x,0)5c02@ f (c0)/D#x, with
f (c0)5r (cs2c0) and parameterscs51, c050.9, andr 50.1 is ad-
vected for a single step (Dt51). The concentration profilec(x,1)
is shown for continuous dissolution with Gaussian increments~solid
line! and with increments distributed uniformly in@2A3,A3#
~dashed line!. In the latter case the linear profile turns out to
unsteady.
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cv~x,t !522
f ~c0!

D
x, x,0. ~28!

A linear concentration profilec02 f (c0)x/D is then station-
ary; after one time step,

c~x,t1Dt !5E
0

`

@G~x,x8,Dt !1G~x,2x8,Dt !#

3Fc02
f ~c0!

D
x8Gdx8

2E
2`

0

G~x,x8,Dt !2
f ~c0!

D
x8dx8

5c02E
2`

`

G~x,x8,Dt !
f ~c0!

D
x85c02

f ~c0!

D
x,

~29!

where it hasonly been assumed that the propagator is tra
lationally invariant and satisfies the first moment conditi
*2`

` G(x,x8,Dt)(x2x8)dx850.
For Gaussian increments, the distribution of virtual p

ticles cv(x,t1Dt) @Eq. ~27!# is exactly the same as the in
cremental concentration profile for continuous dissolut
~Sec. III A!. The key advantage of the virtual particle meth
is that the correct stationary state can be obtained by
translationally invariant propagator. The method can be g
eralized to more than one spatial dimension by includ
gradients along the interface into the virtual particle distrib
tion ~28! @cf. Eq. ~18!#. However, we have not been able
generalize this method to include a fluid flow field, at least
this point in time. Therefore, in the remainder of the pap
we will consider continuous dissolution only, with particle
placed on the interface itself and Gaussian increments u
to move them.

r
FIG. 7. Continuous dissolution from a point source in a line

shear flow@Eq. ~7!# with a Peclet number Pe510. The source is
located atx5y50 on a reflecting wall,x50. The concentration
profiles c(x, 0, t51) obtained with use of a simplified predicto
corrector scheme forDt51 ~dash dotted!, Dt50.5 ~dotted!, and
Dt50.1 ~dashed! are compared with the exact solution~solid!.
4-6
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STOCHASTIC BOUNDARY CONDITIONS TO THE . . . PHYSICAL REVIEW E 69, 036704 ~2004!
IV. MASS TRANSFER IN THE PRESENCE OF FLOW

The implementation of mass-transfer boundary conditi
presented in Sec. III can be generalized to the case of a l
shear flow by using the predictor-corrector scheme de
oped in Ref.@12#, which is summarized in Sec. II. The dis
solution and deposition fluxes are set up by placing an a
tional distribution of particles on the interface, as describ
in Sec. III. The convective contribution to the tangential d
placement of the source particles is determined by their n
mal displacements from the wall at the end of the time st
and by the local shear rate@Eq. ~10!#.

Figure 6 shows a concentration profilec(x, 0, t51) pro-
duced by a point source located on the wall (x50) in pres-
ence of a shear flow@Eq. ~7!#. The method is quadratically
convergent inDt, and reasonable results can be obtain
even forDt50.5 while for the time stepDt50.1 the con-

FIG. 8. Continuous dissolution from a point source in a line
shear flow@Eq. ~7!# with a Peclet number Pe510. The source is
located atx5y50 on a reflecting wall,x50. The concentration
profilesc(x, 0, t51) obtained with use of a 1st order Euler meth
for Dt51 ~dash dotted!, Dt50.5 ~dotted!, andDt50.1 ~dashed! are
compared with the exact solution~solid!.

FIG. 9. Continuous dissolution from a point source in a line
shear flow@Eq. ~7!# with a Peclet number Pe510. The source is
located atx5y50 on a reflecting wall,x50. The concentration
profiles c(x, 0, t51) were calculated using Gaussian propagat
truncated at 2ADt ~dot dashed!, 2.5ADt ~dotted! and 3ADt
~dashed!. The predictor-corrector method with specular reflection
used to integrate the stochastic differential equations withDt51.
The concentration profilesc(x, 0, 1) are compared with the exa
solution ~solid!. The results for truncation distances larger th
3ADt are indistinguishable on the scale of the figure from tho
obtained with a Gaussian distribution.
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centration profile is indistinguishable from the exact one
the scale of the figure.

Simpler algorithms are much less accurate and conve
only linearly with the time step. Figures 7 and 8 show co
centration profiles for the same system, using a simplifi
predictor corrector method and a first-order Euler sche
respectively. The predictor-corrector method uses the m
velocity at the beginning and end of the time step to estim
the convective displacement. The methods are both line
convergent inDt, but the errors in the Euler scheme a
much larger and extend deeper into the bulk.

To avoid complications associated with the infinite ran
of Gaussian propagators, it may prove advantageous
sample diffusive increments of the particles from trunca
Gaussian distributions instead. The truncated Gaussian
tribution is multiplied by a polynomial inx2 so as to recover
the first two non-zero moments@12#. Figure 9 shows the
concentration profile for different truncation distances;
truncations larger than 3ADt, the dynamics of the random
walk are not noticeably affected.

V. CONVECTION-DIFFUSION
IN A RECTANGULAR CHANNEL

In this paper we have constructed a consistent set of
gorithms that impose a wide range of mass transfer bound

r

r

s

e

FIG. 10. The concentration profile on a dissolving wall at Pec
number Pe50.1, as a function of the position along the chann
Random walk simulations~open circles! with a time stepDt51 are
compared with finite-difference results~solid line!.

FIG. 11. The concentration profile on a dissolving wall at Pec
number Pe510, as a function of the position along the chann
Random walk simulations~open circles! with a time stepDt51 are
compared with finite-difference results~solid line!.
4-7
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P. SZYMCZAK AND A. J. C. LADD PHYSICAL REVIEW E69, 036704 ~2004!
conditions. Here the algorithms are tested on tw
dimensional convection-diffusion problems whose solut
can be found independently. We take a channel of widthLy
510 and lengthLx, with a zero concentration inlet and ou
let, c(0,y,t)5c(Lx ,y,t)50. The solid wall aty50 is dis-
solving with kinetics described by the functionf (c0)5r (cs
2c0), while the wall aty5Ly is absorbing with kinetics
described byf (c0)52rc0. Herer is the reaction rate while
cs is the saturation concentration (c0,cs). We note that dis-
solution and deposition kinetics possess the important p
erty of negative feedback. An increase in concentration n
a dissolving wall leads to a decrease in the dissolution r
and vice versa, while on an adsorbing wall, an increase
concentration increases the deposition rate. Negative f
back at reactive boundaries is an important stabilizing f
ture, which improves the accuracy of the numerical solutio
because the errors in concentration measurement do
grow with time.

The tests were run from the diffusion-dominated limit
50.1, to the convection dominated limit Pe51000. The
channel length was increased at higher Peclet numbers
that the time step can remain large without particles ente
and leaving within a single step. The Peclet number
5VLy /D is defined in terms of the velocity at the center
the channel. The rate constantr was taken to ber 50.1,
which gives a Damko¨hler number Da5rL y /D52. For the

FIG. 12. The concentration profile on a dissolving wall at Pec
number Pe51000, as a function of the position along the chann
Random walk simulations~open circles! with a time stepDt50.1
are compared with finite-difference results~solid line!.

FIG. 13. The concentration profile on a dissolving wall at Pec
number Pe51000 at the inlet of the channel for time stepsDt51
~circles!, Dt51/3 ~triangles!, andDt51/10 ~squares!.
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Peclet number Pe510, the simulations were run at addition
Damköhler numbers Da50.2 ~Fig. 14! and Da520 ~Fig. 15!.
We have compared the concentration flux at the absorb
wall with a multi-grid finite-difference code from the NAG
library @15#.

The results in Figs. 10–15 show that the stochastic sim
lations are in essentially exact agreement with the fin
difference results over most of the channel, regardless of
Peclet or Damko¨hler numbers. However, there is a singula
ity in the concentration field in the corner (x50, y50),
where the boundary conditionsc51 ~along x50) and c
50 ~alongy50) meet. The errors are largest at the high
Peclet number, as shown in Fig. 13. Here the time step m
be reduced by a factor of 3 to obtain accurate results in
vicinity of the corner. The time step must also be reduced
high Damköhler number~Da.10, Fig 15!, but this is for
stability rather than accuracy. If the system is far from eq
librium then there are rapid changes in surface concentra
at the beginning of the calculation, while our dissolutio
deposition algorithms assume that the change in concen
tion over a single time step is small. At Da520 we had to
reduce the time step by an order of magnitude to obtai
stable solution, but it should be possible to use adap

t
l.

t

FIG. 14. The concentration profile on a dissolving wall at Pec
number Pe510 and Damko¨hler number Da50.2, as a function of
the position along the channel. Random walk simulations~open
circles! with a time stepDt51 are compared with finite-differenc
results~solid line!.

FIG. 15. The concentration profile on a dissolving wall at Pec
number Pe510 and Damko¨hler number Da520, as a function of the
position along the channel. Random walk simulations~open circles!
with a time stepDt50.1 are compared with finite-difference resul
~solid line!.
4-8
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STOCHASTIC BOUNDARY CONDITIONS TO THE . . . PHYSICAL REVIEW E 69, 036704 ~2004!
methods to increase the time step as the concentration a
interface builds up toward its steady-state value. We note
Da.10 is close to a constant concentration boundary co
tion, except near the inlet and outlet.

VI. CONCLUSIONS

In this paper we have developed and tested stochasti
gorithms to simulate boundary conditions involving ma
transfer. Our aim was to develop algorithms that are rob
simple to implement, and flexible with regard to possib
chemical kinetics. The key ideas are the introduction of p
ticles with negative mass~holes! to account for deposition
kinetics and the sampling of the time step to model conti
ous dissolution. Combinations of these ideas enable the
clusion of surface chemistry with comparable accuracy to
bulk. Convective transfer near the interface can be inclu
up to second order inDt, using a sampling of particle path
to calculate the mean convective velocity. We have sho
sf

,

nd

ul
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that these algorithms are much more accurate than those
erally in use today.

We have tested a multidimensional implementation of
method, using a reactive flow in a rectangular channel,
which precise numerical solutions can be independently
culated. The stochastic simulations are in general indis
guishable from the finite-difference results, except in the
cinity of corners where the concentration gradient is ve
high. Even under the most extreme conditions, good ag
ment could be obtained by reducing the time step by a fa
of 3–10.
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