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Stochastic boundary conditions to the convection-diffusion equation including chemical
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Simulations of heat and mass transport may require complex nonlinear boundary conditions to describe the
flow of mass and energy across an interface. Although stochastic methods do not suffer from the numerical
diffusion of grid-based methods, they typically lose accuracy in the vicinity of interfacial boundaries. In this
work we introduce ideas and algorithms to account for nfas®nergy transfer at reactive interfaces, with
accuracies comparable to the bulk phase. We show how to introduce patrticles into the system with the correct
distribution near the interface, as well as the correct flux through the interface. The algorithms have been tested
in a channel flow, for which accurate numerical solutions can be independently calculated.
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[. INTRODUCTION time step in the vicinity of an interfadd.1,12. However, in
recent work[12] we developed second-order implementa-
Surface chemical reactions, involving deposition and distions of the zero-flux and constant concentration boundary
solution of molecular species, are controlled by the transportonditions. Although we were not able to solve the
of reactants and products as well as by the intrinsic chemicdloundary-condition problem for a completely general flow
kinetics. The two dominant transport mechanisms, convecfield, we were able to obtain quadratic convergence in two of
tion and diffusion, frequently produce quite different dynam-the most important cases; a local shear flow parallel to the
ics and structures within the system. We will consider syssurface and a uniform flow across the interface. In this paper
tems containing a reactive solid surfa8ewhich might, for ~ we propose generalizations of these ideas to situations where
example, be the surface of a biological cell, the porous mathere are chemical reactions at the interface, which can in-
trix of a specimen of limestone, or a corroding metal surfaceclude spatially varying nonlinear rate laws. Although we
The transport of chemical species in the surrounding fluid i©nly explicitly consider mass transfer in this paper, the same

described by the convection-diffusion equation algorithms can also be applied to stochastic simulations of
heat transfer.
dci+u-Ve;=D;VZc;, (1) The paper is organized as follows. In Sec. Il we briefly

summarize our previous work. In Sec. Ill we introduce the
wherec; is the concentration of specigsD; is its diffusion  different types of boundary condition that are encountered in
coefficient, andu is the fluid velocity field. The essential systems with surface mass transport, and a method to mea-
assumption here is that the chemical concentrations are sugure the concentration in the vicinity of the interface is de-
ficiently small that they do not affect either the diffusion scribed in Sec. Ill B. Stochastic implementations of these
coefficient or the fluid velocity, which is then determined boundary conditions in the presence of a linear shear flow are
solely by the solid geometry and external boundary condiconstructed in Sec. IV. The implementations are tested in

tions on the flow. Sec. V, and conclusions are given in Sec. VI.
Stochastic methods have long been used to solve prob-
lems in heat transpoftl—3] and neutron transpof#], be- Il. REELECTION AND ABSORPTION

cause of the ease with which these methods can be adapted

to complex interfaces. An extensive bibliography of applica- A stochastic processX(t), associated with the
tions is contained in Ref3]. Stochastic methods have also convection-diffusion equatiofEg. (1)] obeys the stochastic
been applied to bulk-phase reaction-diffusion systgss],  differential equation

and to the dispersion of passive tracers in a porous medium

[7-9]. Recently, a stochastic method was used to calculate dX +v(X)dt=2Ddw, )
the flux of reactive tracers between complex fractured sur-

faces[10]. Although stochastic methods can lead to accuratevheredW is the differential of a Wiener process with unit
solutions of the convection-diffusion equation in bulk variance. We use a Heun predictor-corrector method to solve
phases, they typically lose accuracy in the region of interfaEqg. (2);

cial boundaries. For example, the algorithms used in Ref.

[7—10] introduce errors proportional to the square-root of the XP(t+At)=X(t) +V[X(t)JAt+ V2DAW(L),

1
*On leave from Institute of Theoretical Physics, Warsaw Univer- X(t+At)=X(t)+ E{V[X(t)]+v[xp(t+At)]}At
sity, 00-681 Hoa 69, Poland.
"Email address: ladd@che.ufl.edu +2DAW(t), (3)
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where the incrememd W(t)=W(t+At) —W(t) is a Gauss-

ian random variable with variancét, and is the same for

both predictor and corrector steps. The Heun method can be
shown to be weakly second-order converdd®,14], mean- p
ing that, if X., is an exact trajectory, then the error in any
polynomial function ofX is bounded by

[{(glXex(D]=gIX(D])|< 8(AD)?, (4)

where § is a positive constant. T

In a previous papdr 2] we developed and tested stochas- -2
tic algorithms to solve the convection-diffusion equation in X
the vicinity of reflecting and absorbing boundaries:

FIG. 1. The conditional probability distributiop, (X|x,x’,At)
A(r)-ve(r)=0, res, (5) fora traj_ecto_ry beginning at’ =2 e_md ending at=—1 behind the
wall (which is reflected to the point=1) [Eq. (8)].

c(r,)=0, res, ®)  integrating the flow field vy=7yx at eachX, using

LN . X|x,x", At the weight function,
whereA(r) is a unit vector normal to the surface. Although Pr(X ) as the weight functio

we were not able to solve the problem for a general flow o ©
field, we constructed second-order approximations to the sto- Uy= VJO Xpy(X
chastic processes near reflecting and absorbing walls for two

physically relevant flow fields: a linear shear flow, which is although the final expression is quite lengthy. If the source

characteristic of the flow near a solid interface, and a locallyand receiver positions are not too close to the wall the aver-
uniform flow, which occurs near an inflow or outflow bound- age velocity reduces to the mean of the source and receiver
ary. In the latter case we also generalized @Bjto include a  velocities, as in Eq(3). The details of the implementation

X, x",At)d¥, (10

constant nonzero concentration. can be found in Refl12].
Near a solid boundary, an incompressible flow can be ap- A zero-concentratioiabsorbing boundary condition can
proximated by a linear shear flow be implemented by modifying this scheme so that reflected
particles are converted into holes, carrying negative mass in
Uy= X, (7)  the overall concentration balance. A virtual distribution of

particles can be constructed to simulate a constant-
concentration reservoir at an inflow or outflow boundary.
Again the details of the implementation, together with ex-
amples, can be found in RdfL2].

To save computational time, boundary conditions are only
plied to particles close to the interface, the critical dis-
tance,d., being of the order of the rms displacement. We

with a velocity gradienty normal to the surfac&=0. In
order to determine the convective contribution to the tangen
tial (y) displacement, we must integrate over all possible tra
jectories between the initial and finalpositions. The aver-
age tangential displacement can then be computed bé{p
introducing a weighting functiop(X|x,x’,At) [12]

At fully expect that these boundary conditions can be applied to
G(x,X,At—t)G(%,x’,t)dt curved surfaces by dividing them into locally flat regions, for
P(X|x, X', At) = 0 ) example by triangulation. If the distance from the source
o G(x,x",At)At ' point to the nearest face is less théy, the particle is ad-

vected according to Eq.10) with the distancex and x’
where G(x,x’,t) is the one-dimensional diffusion propaga- measured with respect to that face. Since this algorithm ig-
tor. The quantityp(X|x,x’,At)At is the mean time the par- nores the curvature of the interface, it is necessary to ensure
ticle spends at a positick during its move fromx’ to x in  thatd, is smaller than the characteristic length scale of the
the time stepAt. The weight function turns out to be uni- surface features. In the vicinity of a corner a reflected trajec-
form in the region betweex’ to x, but with tails that account tory may encounter more than one surface in a single time
for indirect paths fromx’ to x. A typical distribution of step. In this case we have foufit?] that the algorithm ap-
p(X|x,x",At) is shown in Fig. 5 of Ref[12]; the unit of propriate to each interface can be applied sequentially, at
length in this paper is chosen to be the root-mean-squareach successive encounter with a bounding surface. For ex-
displacement in unit timey/2D, as before. ample, a specular reflection at a reflecting wall followed by

In the vicinity of the wall, a reflection must be applied to reflection plus conversion to holes at an absorbing one. This

the negativeX<0) part of the function so that in this case IS simple to implement in the absence of the flow or when
the proper weight functiop, is (see Fig. 1 the convection is included to the first order &t. Second-

order corrections for the flow are difficult to implement near
pr(X|x,x",At)=p(X|x,x",At)+p(—X|x,x",At), (9) a sharp corner, where the flow field is no longer a simple
shear. However, in this case the first nonvanishing contribu-
and is limited to the regionX(>0). The average convective tion to the flow field is quadratic in the distance from the
velocity vy, during the time stepht, can be calculated by surface and a first-order method is sufficient.
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Ill. MASS-TRANSFER BOUNDARY CONDITIONS where it has been assumed that the concentration at the wall,
Co, IS essentially unchanged during the time stdp At the
same time the particles already in the system are reflected at
e x=0 wall. The total concentration profile is then

In this paper we will investigate more complex boundary
conditions describing mass transfer due to chemical reactio
at the interface:

c(x,t+At)
Ji:fi(cllCZI - )ﬁy (11) :CS(X,t+At)
where J; is the flux of speciesi across the boundary, * , o , ,
c1,Co, ... are theconcentrations of the respective species at * 0 [GOXT, A +G(x, —x, A Je(x’, dX',
the boundary, and(r) denotes a unit normal pointing into
the fluid. Conservation of mass leads to the boundary condi- (19
tion which is the solution of the diffusion equation with an initial

concentration profile c(x,t) and boundary conditions
—D;Vci(r)-A(r)=f(cqy(r),cy(r), ...), reS. (12  ,c(0)=—1(cy)/D andc()=0. The derivative of the con-
centration profile in Eq(15),
The convective contribution to the flux vanishes at a solid
surface and is omitted from E@L2). f: _ f(co) Erfc X
There are two qualitatively different cases contained in X D JADAt
Eq. (12), depending on the sign df . )
(1) fi(c1,Cy,...)>0. Particles are added to the fluid matches the required fluicy) atx=0. It then follows that

) , (16)

(dissolution. a linear profilecy—xf(cy)/D is stationary near the dissolv-
(2) fi(cy,Cy,...)<0. Particles are removed from the ing wall. _ _ _
fluid (deposition. In multidimensional systems, a continuous particle source

Although surface reaction rates may depend on severaﬂgaif‘ generates a mat.ching par_ticle fl_ux and concentration
concentrations, from now on we consider only a single comgradient. For example, in a two-dimensional system bounded
ponent in describing our implementation of the variousPy & dissolving wallx=0, with a spatially varying flux
boundary conditions; the generalization to multicomponenficross the interfac co(y)],
systems'is ;traightforward. In thi_s section we will Considerlimaxc(x,y,HAt)
purely diffusive transport, for which the Green’s functions,_,,
near a planar interface are known analytically. In Sec. IV we

will generalize these results to a linear shear flow. = lim d,c3(x,y,t+At)
Xx—0
A. Dissolution im fm dtfoo g 1 X2+(y,yr)2f[ W
=lim ! e~ abt  f[co(y’

A mass transfer boundary condition specifies the flux of Y0 *Jir=o —o y 47Dt oty
particles, f(cg)f, entering or leaving the systerh;is pre- ) 5 o
scribed by the chemical kinetics at the surface egis the _ f“’ d Jflco(y')] fim aogil - X +(y-y")
concentration at the surfacér € S). The mass flux can be Y 24D 0 4ADAt

generated by distributing an appropriate number of particles
along the interface, but the numerical implementation must % flco(y)]  v-y)? 1 X
—f dy'—=——e "apat Im— ———
” D x-0T X“+(y—y")

lead to the correct concentration profile near the interface as =
well. We first consider one-dimensional diffusion with a dis-

solving interface ax=0, and show that the correct boundary flco(y)]
condition corresponds to a continuo(is time) concentra- - .
tion source of strength D

s(x)=f(cq) 5(x). (13

(17)

In implementing a continuous dissolution process, it is not
sufficient to simply ensure that the correct number of par-

ticles, f(cp)AtdS, are introduced through the surface ele-
In the absence of the flow, such a source produces the CORsentds. For example, introducing the particles at the be-

centration profile ginning of each time step, rather than continuously
throughout the time step, produces a concentration profile

c(x,t+At) with vanishing normal derivative at the wall, as shown in
At Fig. 2. Moreover discrete dissolution of particles even fails

= f(CO)J 2G(x,0t)dt’ to maintain the correct stationary state, as shown in Fig 3.
t'=0 The above analysis suggests the following procedure for

f(co) IDAT X implementing mass transfer boundary conditions, which in-
=/ e X*MDAt_y Erfc( ) 1 (14)  corporates continuous dissolution.
D ™ VADAt (1) Divide the interface into a number of cellsS; .
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system boundaries. We have investigated several possible
methods of measuring the concentration, and the method pre-
sented below is the most accurate scheme we have discov-
ered so far. It is also robust and relatively simple to imple-
ment. First we discretize the system boundaries: for example,
on thex=0 interface, mesh points are of the formy(,

with 0=y,<y;<--- <y, 1<Yy,=L,. This divides the wall
intoncells,C;,C,, ... ,C,, with C; extending fromy; _; to

yi. The location of each element is taken to be the center of
cell C;,

1
== (yityiog). 19
FIG. 2. Discrete(dashed vs continuous(solid) dissolution. In yi Z(y' Yi-1) 19

the discrete case, a particle concentratiox) = 6(x) is placed on a ) ] )
reflecting wall at=0. In the continuous case, particles are releasedn Order to determine the concentration profile>on0, we

uniformly over the time stept=1. The graphs show the concen- Measure the concentration profile in the vicinity of the

tration profilesc(x,1). boundary by taking moments:
(2) Determine the concentrations of the individual species W = i D XMy —y©)n2 (20)
at the center of each cell;, (see Sec. Il B, and calculate "2 hw, 5 e

the fluxesJd(r;) = f[c(r;)]A(r;) according to Eq(11).
(3) Distribute particles in the surface elemex® around ~ Wherew;=y;—y;_; is the width of theith cell and the sum
r, . The exact distribution of particles depends on the order ofs over all particles in the regionOx<h, y;_;<y<Yy;. The
the approximation scheme. It is usually sufficient to includevalue ofh is empirically chosen as a compromise between
only linear variations in concentration along the surface, s@tatistical errors, which are minimized by large valuesof

that and systematic errors, which are minimized by small values
of h.
fle(r)]="flc(rp)]+(r=r)-VYflc(r)], rrieAs, Given a set of momenl\A/'nl'nz, with n;,n,<m, the con-

(18) centration and concentration gradients can be determined.

- o ) The concentration around a celllocated on the boundary
whereV indicates a derivative along the interface. x=0, is expanded in a Taylor series

(4) Advance the source particles with a time step picked
fr_om a uniform randor_n distr_ibution in the ran@G,A_t], to Ci(x,y)zcio+ cixx+ Ciy(y_in)+ . (21)
simulate continuous dissolution. Advance the particles in the
bulk by At, using specular reflection at the solid surfaces. where the concentratiorm‘ozc(o,yic) and derivativesciX
=c,(0yf) and ciy=cy(0,yi°) are determined at the center of
B. Measuring the concentration profile at the interface the cell, (Oyy). In the zeroth approximation the concentra-
tion in celli is assumed to be uniform in thedirection and
hgiven by W o with errors of orderh. Solving the moment
equations to first order gives

In order to determine the interfacial fluxes in Ef1), the
concentration profile of each species is required along t

0.9+ ) ) .
Co=4Wp o~ 6h W, ,, (22)

0.8 cy=12w"*Wp ,, (23)
with errors of ordeh?. More involved expressions can be
derived at second order and beyond, and in general the error
is of orderh™**. Higher order schemes give more precise
results provided that enough particles are used to calculate
the moment$20). However, increasing the number of tracer
particles is computationally expensive and so only first- and
X second-order schemes are used in this work.

FIG. 3. Concentration profiles near a solid wall. A linear con- To mal.(e a comparison qf dlﬁer?m. order measurements,
centration profile (solid line), c(x,0)=co—[f(Co)/D]x, with W€ have inserted 8 10° partlcles,_dlstrlbuted_l_n the region
f(co)=—r(Cco—Cq) and parameters,=1, c,=0.9, andr=0.1 is 0<x<h near the x=0 wall with probability P(x,y)
advected for a single stepAt=1). The concentration profile vye **Y). Figure 4 shows measurements of the concen-
c(x,1) is shown for continuous dissolutigsolid line) and discrete  tration  profile on a uniform mesh y,=n/10,n
dissolution(dashed ling In the latter case the linear profile is un- =0,1,...,10. It can be seen that wherever the profile
steady. changes sufficiently slowly both first- and second-order

0.7+

0.6
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008+ o interface can also be described by a similar rate law. If the
surface kinetics are linear, then it is possible to construct an

0.06 algorithm that does not require a measurement of the surface

A concentrationg,.

0.04 The Green’s function for the one dimensional diffusion
equation with boundary condition

0.02

Jc
sng 33288 o0g —D(g) =—rc (24
0 02 04 06 08" x=0
y has the form

FIG. 4. Concentration profile from first-ordgcircles and 1
second-ordefsquares moment methods. The solid symbols indi- Gg(X,X',At)= ———
cate the normalized difference between the measured concentration vamDAt
at the center of théth cell, ¢/, and the analytic solutioniex: A

(e—(x—x’)szAtJr e—(x+x’)2/4DAt)

. . B !
=(c'—cy)/cy,. There is a substantial increase in the error near _ Ler(rAterer')/DErfC X+Xx'+2rat
=0 where the derivative is singular. D JADAt '

methods give accurate results. Howeveryas0, where the (25

distribution has a singular derivative, it is difficult to obtain

i . . where Erfc is the complementary error function. The bound-
an accurate profile from the first-order technique.

ary condition in Eq(24) implies that the total mass of tracer
particles decreases, so that
C. Deposition

o

In a chemically reacting system, particles can also be de- Mo(X',t):f Gy(x,x',t)dx<1. (26)
posited at an adsorbing wall, often in combination with the 0

dissolution of other species. The deposition boundary condi-

tion, f(c,) <O in Eq.(12), can be implemented in an exactly The mass of each reflected particle must therefore be res-
analogous fashion to the dissolving interface by introducingt@led by the factoMy(x’,At), to account for deposition of
“holes,” or particles of negative mass. The addition of holesmaterial at the boundary. The new location of a particle al-
has the same effect on the concentration field in the bulkeady atx’ is sampled from the probability distribution
region) as removal of particles from the same locations, buGd(X,X",At)/Mg(x’,t). A constant flux of particles;cs is

it is simpler to construct the correct distribution near an in-added to the interface to account for the dissolution flux. The
terface by the addition of holes than by the removal of parkey advantage is that no concentration measurements are re-
ticles. It can be shown that this algorithm has the same propauired, and this algorithm is therefore as accurate as the
erties as the dissolution algorithm described in Sec. Ill A. Itother reflection algorithmgfor zero flux and zero concentra-
produces the correct mass flux across the interface and tn). However, it can only be implemented with a linear
linear distribution with the appropriate slope is again stationfunctional form forf(c,) and cannot account for more gen-

ary. eral surface kinetics.
The trajectories of particles and holes are constructed
from the same increment distributions and the concentration E. Finite-range increments

field is then determined by the difference between the par-

ticle and hole concentrations. Particles and holes can be can-rdIt r'?[ noéteilssvm'?(l thiﬁ\/\r/ br? a Earus)s(lar?] IPcr:rTeP;nlél m
celled in the bulk phase to reduce statistical fluctuat[d/2$. order 1o obtain weak convergence. For example, any 0
In Sec. IV we will show how the dissolution and deposition variable with the correct second moment guaraniees weak

boundary conditions can be modified, along the lines devel‘i'rSt'Order convergence of the approximation schei.

oped in Ref[12], to take account of a linearly varying flow En|te—rr(e1ng(iarn|n|(:rrem§(rj\tsf a;erfr&qlrj]ergly u$i&(:17,9] rt;eciagsi?] ;
field. In the remainder of this section we will discuss alter-"'¢Y @€ Simpler a aste a aussian-sampie cre-

native approaches, which have more limited applicabiIity,mgmsr'eg&\;\gvfr:’en;zrefgf'?;ﬁgﬁgg%vgn'e?]ilejstso'ﬁlnnz';ge'
but which may be useful in some circumstances. 9 '

and does not guarantee global convergence even i\the
—0 limit. As a result, the dissolution algorithm with non-
Gaussian increments does not lead to the correct steady state,
The simplest model for the dissolution of a solid speciesas can be seen in Fig. 5. This contrasts with the case of
has a linear kinetic lawf(cy)=r(cs—cq), wWherecs is the  reflecting and absorbing boundaries, where non-Gaussian in-
saturation concentration amds a positive rate constant. Ma- crements immediately impose the correct boundary condition
terial dissolves or deposits depending on whether the corj12].
centration in the solution next to the interface is less than or Nevertheless, it is possible to construct an algorithm that
greater than the saturation concentration. Heat transfer at deads to the correct stationary distribution, even with non-

D. Linear kinetic laws
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0.9

0.8+

0.7+

0.6

X

FIG. 5. Concentration profiles near a solid wall. A linear con-
centration profile (solid line), c(x,0)=cy—[f(co)/D]x, with
f(cg)=r(cs—cp) and parameters,=1, ¢,=0.9, andr=0.1 is ad-
vected for a single stepA¢=1). The concentration profile(x,1)
is shown for continuous dissolution with Gaussian incremésthd
line) and with increments distributed uniformly if—+/3,v3]
(dashed ling In the latter case the linear profile turns out to be
unsteady.

Gaussian increments. Let us again consider one-dimensional

diffusion with a reacting interface at=0. Instead of a con-
tinuous source placed on the interface, we construct a virtu
distribution of instantaneous sourcegx) in a region be-
hind the wall,x<0. The gradient irt, is chosen to generate

the desired particle flux across the interface. When thes
“virtual” particles are propagated using an infinite space

Green'’s functionG(x—x',At), their concentration profile at
t+Atis

cv(x,tJrAt)=f0 dx'G(x—x",At)c,(x",t). (27

After propagation, particles moving into the regidh (x
>0) are retained whereas those outsidéx<0) are re-
moved from further consideration. Note that virtual particle
need only be placed in a small regipst X,.5,0] behind the
wall, wherex,,y is the maximum increment.

The distributionc,(x) is constructed so that, on average,
f(cg)At virtual particles cross the wall into the regidhin
one time step,

0.1

0.05+

T T
0.5 0.75

X

025

PHYSICAL REVIEW E69, 036704 (2004

f(co)
D *

c,(x,t)=—2 x<0. (28)

A linear concentration profiley— f(co)x/D is then station-
ary; after one time step,

c(X,t+At)= jw[G(x,x’ AN+ G(x,—x',AL) ]
0

f(c
X|Co— (DO)X’ dx’
0 f(c
—f G(x,x’,At)Z(TO)x’dx’
o f(c f(c
=CO—J G(x,x’,At) (DO)X’=CO— (DO)X,
(29)

%here it hasonly been assumed that the propagator is trans-

lationally invariant and satisfies the first moment condition
gfmG(x,x’,At)(x—x’)dx’zo.

For Gaussian increments, the distribution of virtual par-
ticles c,(x,t+At) [Eq. (27)] is exactly the same as the in-
cremental concentration profile for continuous dissolution
(Sec. Il A). The key advantage of the virtual particle method
is that the correct stationary state can be obtained by any
translationally invariant propagator. The method can be gen-
eralized to more than one spatial dimension by including
gradients along the interface into the virtual particle distribu-
tion (28) [cf. Eq. (18)]. However, we have not been able to

Sgeneralize this method to include a fluid flow field, at least at

this point in time. Therefore, in the remainder of the paper
we will consider continuous dissolution only, with particles
placed on the interface itself and Gaussian increments used
to move them.

0.15,
0.1+

0.05

FIG. 7. Continuous dissolution from a point source in a linear

FIG. 6. Continuous dissolution from a point source in a linearshear flow[Eq. (7)] with a Peclet number RPel0. The source is

shear flow[Eq. (7)] with a Peclet number Pel0. The source is
located atx=y=0 on a reflecting wallx=0. The concentration
profilesc(x, 0,t=1) for At=1 (dash dottej At=0.5(dotted and
At=0.1 (dashed are compared with the exact soluti¢solid).

located atx=y=0 on a reflecting wallx=0. The concentration
profiles c(x, 0,t=1) obtained with use of a simplified predictor-
corrector scheme foAt=1 (dash dottej At=0.5 (dotted, and
At=0.1 (dashed are compared with the exact soluti¢solid).
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0.154
¢ 017 c
0.051
0 T T T T
0.25 0.5 0.75 1
X X

FIG. 8. Continuous dissolution from a point source in a linear  FIG. 10. The concentration profile on a dissolving wall at Peclet
shear flow[Eq. (7)] with a Peclet number Rel0. The source is number Pe0.1, as a function of the position along the channel.
located atx=y=0 on a reflecting wallx=0. The concentration Random walk simulation@pen circleswith a time stepAt=1 are
profilesc(x, 0, t=1) obtained with use of a 1st order Euler method compared with finite-difference resul¢solid line).
for At=1 (dash dotteg At=0.5(dotted, andAt=0.1(dashegare

compared with the exact solutigeolid). centration profile is indistinguishable from the exact one on
the scale of the figure.
IV. MASS TRANSFER IN THE PRESENCE OF FLOW Simpler algorithms are much less accurate and converge

) ) _.only linearly with the time step. Figures 7 and 8 show con-

The implementation of mass-transfer boundary conditiongentration profiles for the same system, using a simplified
presented in Sec. Il can be generalized to the case of a locglegictor corrector method and a first-order Euler scheme
shear flow by using the predictor-corrector scheme develggpectively. The predictor-corrector method uses the mean
oped in Ref[12], which is summarized in Sec. Il. The dis- ye|ocity at the beginning and end of the time step to estimate

solution and deposition fluxes are set up by placing an addine convective displacement. The methods are both linearly
tional distribution of particles on the interface, as descr'be%onvergent inAt. but the errors in the Euler scheme are

in Sec. lll. The convective contribution to the tangential dis-,,ch larger and extend deeper into the bulk.
placement of the source particles is determined by their nor- 14 avoid complications associated with the infinite range
mal displacements from the wall at the end of the time stepys Gaussian propagators, it may prove advantageous to
and by the local shear raf€&q. (10]. sample diffusive increments of the particles from truncated
Figure 6 shows a concentration profigx, 0,t=1) pro-  Gayssian distributions instead. The truncated Gaussian dis-
duced by a point source located on the wal=0) in pres-  tripytion is multiplied by a polynomial ix? so as to recover
ence of a shear floyEq. (7)]. The method is quadratically the first two non-zero momenfd2]. Figure 9 shows the
convergent inAt, and reasonable results can be obtainedoncentration profile for different truncation distances; for

even forAt=0.5 while for the time step\t=0.1 the con-  yncations larger than &, the dynamics of the random
walk are not noticeably affected.

0.154
V. CONVECTION-DIFFUSION
0 1_'-».‘_ IN A RECTANGULAR CHANNEL
In this paper we have constructed a consistent set of al-
0.05 gorithms that impose a wide range of mass transfer boundary
600
0 T T = T T
0.25 0.5 0.75 1
X ¢ 400

FIG. 9. Continuous dissolution from a point source in a linear
shear flow[Eq. (7)] with a Peclet number Rel0. The source is
located atx=y=0 on a reflecting wallx=0. The concentration
profilesc(x, 0,t=1) were calculated using Gaussian propagators
truncated at 2/At (dot dashey 2.5/At (dotted and 3JAt 0
(dashed The predictor-corrector method with specular reflection is
used to integrate the stochastic differential equations Witk 1.

The concentration profiles(x, 0, 1) are compared with the exact FIG. 11. The concentration profile on a dissolving wall at Peclet
solution (solid). The results for truncation distances larger thannumber Pe-10, as a function of the position along the channel.
3\/At are indistinguishable on the scale of the figure from thoseRandom walk simulation@pen circleswith a time stepAt=1 are
obtained with a Gaussian distribution. compared with finite-difference resultsolid line).

200

X
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FIG. 12. The concentration profile on a dissolving wall at Peclet  FIG. 14. The concentration profile on a dissolving wall at Peclet
number Pe=-1000, as a function of the position along the channel.number Pe10 and Damkhler number Da0.2, as a function of
Random walk simulationgopen circleg with a time stepAt=0.1  the position along the channel. Random walk simulatiémsen
are compared with finite-difference resulsolid line). circles with a time stepAt=1 are compared with finite-difference

results(solid line).

conditions. Here the algorithms are tested on two-

dimensional convection-diffusion problems whose Solutionpeclet number FLelO, the simulations were run at additional
can be found independently. We take a channel of width  pamkdler numbers Da 0.2 (Fig. 14 and Da= 20 (Fig. 15.
=10 and lengti.,, with a zero concentration inlet and out- we have compared the concentration flux at the absorbing
let, c(0y,t)=c(Ly,y,t)=0. The solid wall aty=0 is dis-  wall with a multi-grid finite-difference code from the NAG
solving with kinetics described by the functidiicy) =r(cs library [15].
—Cp), While the wall aty=L, is absorbing with kinetics The results in Figs. 10—15 show that the stochastic simu-
described byf(co) = —rco. Herer is the reaction rate while |ations are in essentially exact agreement with the finite-
Cs is the saturation concentrationy<c;). We note that dis-  difference results over most of the channel, regardless of the
solution and deposition kinetics possess the important progPeclet or Damkbler numbers. However, there is a singular-
erty of negative feedback. An increase in concentration nedfty in the concentration field in the cornex£0, y=0),
a dissolving wall leads to a decrease in the dissolution ratyhere the boundary conditions=1 (along x=0) and ¢
and vice versa, while on an adsorbing wall, an increase ir=0 (alongy=0) meet. The errors are largest at the highest
concentration increases the deposition rate. Negative feegbeclet number, as shown in Fig. 13. Here the time step must
back at reactive boundaries is an important stabilizing feape reduced by a factor of 3 to obtain accurate results in the
ture, which improves the accuracy of the numerical solutionssicinity of the corner. The time step must also be reduced at
because the errors in concentration measurement do nfigh Damkdler number(Da>10, Fig 15, but this is for
grow with time. stability rather than accuracy. If the system is far from equi-
The tests were run from the diffusion-dominated limit Pe|ibrium then there are rapid changes in surface concentration
=0.1, to the convection dominated limit P&000. The at the beginning of the calculation, while our dissolution-
channel length was increased at higher Peclet numbers, $Rposition algorithms assume that the change in concentra-
that the time step can remain Iarge without particles enteringon over a Sing|e time step is small. At B&20 we had to
and leaving within a single step. The Peclet number Pgeduce the time step by an order of magnitude to obtain a
=VL,/D is defined in terms of the velocity at the center of stable solution, but it should be possible to use adaptive
the channel. The rate constantwas taken to be =0.1,
which gives a Damkaler number DarL,/D=2. For the

o ©
o o ©
o o
C 100
o
0 T T T T
10 20 30 40
T T X
0 5 10
X FIG. 15. The concentration profile on a dissolving wall at Peclet

number Pe-10 and Damkhler number D& 20, as a function of the
FIG. 13. The concentration profile on a dissolving wall at Pecletposition along the channel. Random walk simulati@ogen circles
number Pe=1000 at the inlet of the channel for time stefs=1 with a time stepAt=0.1 are compared with finite-difference results
(circles, At=1/3 (triangles, andAt=1/10 (squares (solid line).
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methods to increase the time step as the concentration at tigat these algorithms are much more accurate than those gen-
interface builds up toward its steady-state value. We note tharally in use today.
Da>10 is close to a constant concentration boundary condi- We have tested a multidimensional implementation of the

tion, except near the inlet and outlet. method, using a reactive flow in a rectangular channel, for
which precise numerical solutions can be independently cal-
VI. CONCLUSIONS culated. The stochastic simulations are in general indistin-

. ) uishable from the finite-difference results, except in the vi-
In this paper we have developed and tested stochastic &injty of corners where the concentration gradient is very
gorithms to simulate boundary conditions involving MasShigh. Even under the most extreme conditions, good agree-

transfer. Our aim was to develop algorithms that are robusinent could be obtained by reducing the time step by a factor
simple to implement, and flexible with regard to possiblegf 3_10.

chemical kinetics. The key ideas are the introduction of par-

ticles with negative masgholeg to account for deposition

klneths and_the sampll_ng Qf the time step to model continu- ACKNOWLEDGMENTS
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