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The analytic and numerical methods introduced previously to study the phase behavior of hard sphere
fluids starting from the Yvon-Born-Green (YBG) equation under the Kirkwood superposition ap-
proximation (KSA) are adapted to the square-well fluid. We are able to show conclusively that the
YBG equation under the KSA closure when applied to the square-well fluid: (i) predicts the exis-
tence of an absolute stability limit corresponding to freezing where undamped oscillations appear in
the long-distance behavior of correlations, (ii) in accordance with earlier studies reveals the exis-
tence of a liquid-vapor transition by the appearance of a “near-critical region” where monotonically
decaying correlations acquire very long range, although the system never loses stability. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4801329]

I. INTRODUCTION

This contribution returns to a conceptual question that
was addressed thirty years ago:1

Does the Yvon-Born-Green (YBG) equation under the
Kirkwood superposition approximation (KSA) exhibit a true
critical point?

Extensive analytical2 and numerical3 studies were car-
ried out, and the conclusion reached was that there is no true
critical point for d = 3 but rather a region of “near critical
behavior.” In this “near” critical region, however, earlier nu-
merical studies of the square-well fluid based on the YBG
equation under the KSA had shown convincingly that the crit-
ical exponents [β, γ , δ, α] extracted from the numerical solu-
tions had values in substantial agreement with the accepted
experimental values and, further, they satisfied two of the
(Griffiths) inequalities that involve all four exponents.4–7 An-
ticipating a later discussion, it was also shown8 that if one
used the virial equation for the pressure, the value obtained
for the critical compressibility factor zc for a well-width
λ = 1.85 was in agreement with the one reported previously
by Young and Rice9 for λ = 1.5, viz. zc = 0.48 ± 0.02, es-
sentially the mean field value, zc = 0.5. But if one used the
compressibility equation for the pressure, the estimated value
of the critical compressibility factor zc = 0.2914 ± 0.0087
was in accord with experimental data on inert gases.8

While the analytic techniques implemented in Refs. 1–3
were powerful, the theoretical question left unresolved was
whether the conclusions reached regarding the critical behav-
ior of the YBG equation remain unchanged if these techniques
were extended or new techniques developed to deal with the
full YBG equation. The rationale underlying the present study
is that the numerical evidence on critical exponents, cited
above, is sufficiently suggestive that, rather than abandon the

a)Electronic mail: Piotr.Szymczak@fuw.edu.pl

YBG equation, perhaps a fresh approach may lead to new
insights.

Recently, the authors of the present study have developed
an analytic criterion to study the asymptotic decay of correla-
tions in hard disk and hard sphere fluids10 and in hypersphere
fluids.11 The results obtained in Ref. 10 are immediately rel-
evant to the present study. From our analysis and comple-
mentary numerical studies, we found for hard discs that expo-
nentially damped oscillations can occur only up to a packing
fraction φ* ∼ 0.718, a value which is in agreement with the
packing fraction φ ∼ 0.723 believed to characterize the tran-
sition from the ordered solid phase to a dense fluid phase,
as inferred from Mak’s Monte Carlo simulations.12 For hard
spheres, the same method of analysis predicted that the ex-
ponential damping of oscillations in d = 3 becomes impossi-
ble when λ0 = 4nπσ 3[1 + H(1)] = 34.81, where H(1) is the
contact value of the correlation function, n is the number den-
sity, and σ is the sphere diameter, in exact agreement with the
condition λ0 ≥ 34.8 first reported in a numerical study of the
Kirkwood equation by Kirkwood, Maum, and Alder.13 The
method also confirmed, correctly, the absence of any struc-
tural transition in hard rods for the entire range of densities
below closest packing.

Building on the studies reported in Refs. 10 and 11 here
a square-well fluid will be analyzed using the same approach.
We derive from the second YBG hierarchy equation a nonlin-
ear closed equation for the radial distribution function using
the Kirkwood superposition approximation. We then trans-
form the resulting integro-differential equation into a purely
integral equation under the assumption of asymptotic vanish-
ing of correlations at large distances. The resulting integral
equation is the basis of the whole subsequent analysis.

We study the physical implications of the derived inte-
gral equation both analytically and numerically. Our aim is
to derive an analytic criterion for the limits of stability of
the three possible phases of the system, i.e., vapor, liquid,
and solid. In particular we formulate an analytic criterion
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permitting us to localize, in principle, the vapor-liquid criti-
cal point. An essential role in our approach is played by the
derivation of a condition determining the complex frequen-
cies governing the large distance decay of correlations. The
structure of the asymptotic exponential modes depends on the
thermodynamic state of the system, and permits us to localize
the limits of stability of various phases of the system. Our an-
alytic approach is closely related to the general program pro-
posed in an inspiring, but largely unknown book by Fisher.14

However, our interpretation and conclusions deviate in a num-
ber of points from those presented therein.

In order to benefit from the analytic predictions and ar-
rive at quantitative results, we need to know the radial dis-
tribution as a function of distance, density, and temperature.
We determine and report here the contact values at distances
corresponding to the hard-core diameter and the range λ of
the attractive square well, solving the integral equation by it-
erative methods. The methods used in obtaining the relevant
numerical results and their reliability are an essential part of
the present work.

II. YVON-BORN-GREEN EQUATION FOR
A SQUARE-WELL FLUID

We consider a fluid composed of spherical particles
with hard core diameter σ and an attractive square-well pair
potential

U (r) = −ε θ (λσ − r). (1)

Here ε > 0, λ > 1, and θ is a unit Heaviside step function.
The hard core excludes overlapping configurations. So,

the Boltzmann factor corresponding to the assumed interac-
tion vanishes for r < σ and reads

χB(r) = θ (r − σ ) exp[−βU (r)]

= θ (r − λσ ) + Bθ (r − σ )θ (λσ − r), (2)

where

B = exp(βε), (3)

and β = 1/kBT denotes the inverse temperature.
The two- and three-particle reduced densities are conve-

niently written in the form

n2(r12) = n2χB(r12)y2(r12), (4)

n3(r12, r13, r23) = n3χB(r12)χB(r13)χB(r23)y3(r12, r13, r23).
(5)

Here n denotes the mean number density of the homogeneous
fluid, and rij = |ri − rj| are distances between points ri and rj.

The functions y2(r12) and y3(r12, r13, r23) are supposed
to be continuous and differentiable. They are related by the
second YBG hierarchy equation,

χB(r12)
∂

∂r1
y2(r12)

= χB(r12)n
∫

dr3

[
∂

∂r1
χB(r13)

]
χB(r23)y3(r12, r13, r23).

(6)

Putting r12 = r = r r̂ , |r̂| = 1, and introducing the integration
variable r13 = sσ̂ , |σ̂ | = 1, we rewrite (6) as

d

dr
y2(r) = n

∫
dσ̂ (σ̂ · r̂)

∫ ∞

0
ds s2

[
d

ds
χB(s)

]

×χB(|sσ̂ − r|)y3(r, s, |sσ̂ − r|), (7)

where
∫

dσ̂ denotes the integration over three-dimensional
solid angle.

Inserting into (7) the relation

d

ds
χB(s) = δ(s − σ )B − δ(s − λσ )(B − 1), (8)

we find

d

dr
y2(r)=n

∫
dσ̂ (σ̂ · r̂) σ 2[χB(|σ σ̂ −r|)y3(r, σ, |σ σ̂ −r|)B

+ λ2χB(|λσ σ̂ − r|)y3(r, λσ, |λσ σ̂ − r|)(1 − B)].

(9)

The Kirkwood superposition approximation,

y3(r, s, t) = y2(r)y2(s)y2(t), (10)

leads then to a closed nonlinear equation for the radial dis-
tribution y2(r). Putting r = σx we write this equation for the
dimensionless function Y(x) = y2(σx):

d

dx
ln Y (x) = nσ 3

∫
dσ̂ (σ̂ · x̂) [χB(|x−σ̂ |)Y (1)Y (|x−σ̂ |)B

+ λ2 χB(|x − λσ̂ |)Y (λ)Y (|x − λσ̂ |)(1 − B)],

(11)

where (see Eq. (2))

χB(x) = θ (x − 1) [1 + θ (λ − x)(B − 1)] . (12)

III. INTEGRAL EQUATION

We define the correlation function

H (x) = Y (x) − 1, (13)

and assume that

lim
x→∞ H (x) = 0. (14)

The next step of our analysis consists in deriving from
Eq. (11) a purely integral equation with the essential use
of the boundary condition (14). We rewrite Eq. (11) putting
μ = (σ̂ · x̂), and denoting by φ the volume fraction φ

= πnσ 3/6. The equation takes the form

d

dx
ln Y (x) = 12φ

∫ 1

0
dμμ{Y (1)B[f (

√
x2 − 2xμ + 1)

−f (
√

x2 + 2xμ + 1)]

− λ2Y (λ)(B − 1)[f (
√

x2 − 2xμλ + λ2)

−f (
√

x2 + 2xμλ + λ2)]}, (15)

where for convenience we used the notation f(x) = χB(x) Y(x).
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Integrating both sides of Eq. (15) over the interval (x, ∞)
and denoting the integration variable by y we find

ln Y (x) = 2πnσ 3[−Y (1)B I1(x) + λ2Y (λ)(B − 1) Iλ(x)],
(16)

where

I1(x) =
∫ ∞

x

dy

∫ 1

0
dμμ{[f (

√
y2 − 2yμ + 1) − 1]

− [f (
√

y2 + 2yμ + 1) − 1]}

=
∫ 1

0
dμμ

∫ x+μ

x−μ

dy [f (
√

y2 + 1 − μ2) − 1], (17)

and

Iλ(x) =
∫ ∞

x

dy

∫ 1

0
dμμ{[f (

√
y2 − 2yμλ + λ2) − 1]

− [f (
√

y2 + 2yμλ + λ2) − 1]}

=
∫ 1

0
dμμ

∫ x+μλ

x−μλ

dy [f (
√

y2 + λ2(1 − μ2)) − 1].

(18)

In the process of evaluation of the integrals I1(x) and Iλ(x)
we use the fact that in accordance with assumption (14) the
difference [ f(s) − 1] approaches 0 when s → ∞. The detailed
derivation of the final results can be found in the supplemen-
tary material.26 It is quite remarkable that one integration in
the double integral (18) can be performed analytically.

For I1(x) we get

I1(x) = 1

2x

∫ x+1

x−1
ds sf (s)[1 − (s − x)2] − 2

3
. (19)

The evaluation of the integral Iλ(x) requires separate con-
sideration of the intervals x > λ, and 1 < x < λ.

When x > λ, we find

Iλ(x) = 1

2xλ2

∫ x+λ

x−λ

ds sf (s)[λ2 − (s − x)2] − 2

3
λ. (20)

When 1 < x < λ, straightforward but rather lengthy cal-
culations (see the supplementary material26) yield the formula

Iλ(x) = 1

2xλ2

∫ x+λ

λ−x

ds sf (s)[λ2 − (s − x)2]

+ θ (λ − x)
2

λ2

∫ λ−x

0
ds s2f (s) − 2

3
λ. (21)

We are now ready to write down the nonlinear integral equa-
tion satisfied by the two-particle density Y(x). By combining
Eqs. (16), (19), (20), and (21) we get

ln Y (x) = R1(x) + R2(x), (22)

where

R1(x) = 12φ

{
−Y (1)B

[
1

2x

∫ x+1

x−1
ds sf (s)[1−(x − s)2]− 2

3

]

+Y (λ)(B − 1)

[
1

2x

∫ x+λ

|x−λ|
ds sf (s)[λ2

−(s − x)2] − 2

3
λ3

]}
, (23)

R2(x) = 24φ θ (λ − x) Y (λ)(B − 1)
∫ λ−x

0
ds s2f (s),

(24)

and

f (s) = χB(s) Y (s) = [θ (s − λ) + θ (λ − s)θ (s − 1) B] Y (s).
(25)

The factor χB(s) present in the defining equation (25) im-
poses the condition s > 1. It follows that in the physically rel-
evant region x > 1, the term R2(x) vanishes when λ < 2. On
the other hand for λ > 2 both R1(x) and R2(x) contribute. The
above analysis shows that the structure of the integral equa-
tion changes when the range of the attractive well exceeds the
threshold value λ* = 2. We find

(1) ln Y(x) = R1(x), if 1 < λ < 2

(2) ln Y(x) = R1(x) + R2(x), if λ > 2

In the cases of λ = 1.4 and λ = 1.85 studied here
the equality (1) applies, which requires solving the integral
equation,

ln Y (x) = 12φ

{
−Y (1)B

[
1

2x

∫ x+1

x−1
ds s χB(s)

× Y (s)[1 − (x − s)2] − 2

3

]

+Y (λ)(B − 1)

[
1

2x

∫ x+λ

|x−λ|
ds s χB(s) Y (s)

× [λ2 − (s − x)2] − 2

3
λ3

]}
. (26)

IV. ASYMPTOTIC DECAY OF CORRELATIONS:
EXPONENTIAL MODES

Let us consider Eq. (26) in the region of x � 1. Using the
fundamental assumption (14) about vanishing of correlations
when x → ∞ we replace on the left-hand side of (26) the
function ln Y(x) = ln [H(x) + 1] by H(x). On the right-hand
side we use the fact that in the region s > λ the function χB(s)
≡ 1. The resulting integral equation which holds when x � 1
reads

xH (x) = 6φ

{
−Y (1)B

∫ x+1

x−1
ds sH (s)[1 − (s − x)2]

+Y (λ)(B − 1)
∫ x+λ

x−λ

ds sH (s)[λ2 − (s − x)2]

}
.

(27)
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Equation (27) is an exact consequence of the superposition
approximation valid asymptotically at large distances pro-
vided the correlation function is integrable. No additional ap-
proximations have been introduced which makes the present
approach appropriate to study predictions of the Kirkwood
superposition approximation.

In this respect, our approach is different from that de-
veloped in Ref. 2. In the regime of large compressibility,
Fisher and Fishman2 proceed by inserting into the YBG
equation (11) a large-distance expansion, and retain a few
lowest order terms. Thus an additional approximation is intro-
duced in their analysis. As a consequence, the equation stud-
ied in Ref. 2 is not the integral equation (27), but a second-
order nonlinear differential equation which results from
combining (11) with the constructed moment expansion, ter-
minated at the second-order term.

In order to pursue our study of the asymptotic decay of
the correlation function H(x) we insert into Eq. (27) the expo-
nential mode

xH (x; κ) = exp(κx), (28)

where κ is a complex number. H(x; κ) is a solution of Eq. (27)
provided the parameter κ satisfies the condition

1 = 24φ [ λ3Y (λ)(B − 1)F (λκ) − Y (1)BF (κ) ], (29)

where the function F is defined by

F (κ) = [κ cosh κ − sinh κ]

κ3
. (30)

The series representation of F(κ) = F(−κ) reads

F (κ) =
∞∑

n=0

κ2n

(2n + 3)(2n + 1)!
= 1

3

[
1 + κ2

10
+ κ4

280
+ ...

]
.

(31)
On real axis F(κ) attains its absolute minimum at κ = 0,
where F(0) = 1/3.

In order to determine the actual asymptotic decay law of
the correlation function H(x) we have to find the exponential
mode (28) whose frequency κ = −a + ib has the smallest
value of a > 0, and represents thus exponential damping with
the longest range a−1.

Clearly, the value of κ depends on the volume fraction φ,
and on the temperature (we recall that B = exp (ε/kBT)). So,
let us fix the temperature, and consider solutions of Eq. (29)
when the state of the system is changing along an isotherm B
= exp (ε/kBT) = const. Our aim is to study the possibility of
a loss of stability of a given phase of the system reflected by
asymptotic vanishing of the real part a of the slowest decaying
mode. Here two cases can occur. It may happen that when
the volume fraction approaches some value φ0 both real and
imaginary parts of κ tend to zero. Another possibility is that
only the real part vanishes but the imaginary part b remains
different from zero. The latter case has been already discussed
in our studies of hard sphere systems.10, 11

Consider the case of vanishing of κ = a + ib. Taking the
limit κ → 0 on both sides of Eq. (29) we find the relation

1 + 8φ Y (1)B = 8φ λ3Y (λ)(B − 1). (32)

In fact, relation (32) follows directly if we assume the ab-
sence of exponential damping inserting into Eq. (27) correla-
tion function of the form

H (x) = const

x
. (33)

Equation (32) shows the relevance of the quantity

� = 1 + 8φ[ Y (1)B − λ3Y (λ)(B − 1)]. (34)

For real κ � 1, relation (29) takes the asymptotic form (see
the expansion (31)),

� = 4

5
φ [λ5Y (λ)(B − 1) − BY (1)] κ2, (35)

which shows that the range of the correlation function grows
as 1/

√
� when � approaches zero. The vanishing of � defines

an absolute instability line in the plane (φ, T), corresponding
to some implicit function T(φ).

The curve φ → T(φ) must have a finite absolute maxi-
mum. Indeed, when the temperature increases the parameter
B approaches 1, so that the right-hand side of (32) tends to
zero, whereas the left-hand side remains strictly positive. It
is thus clear that isotherms corresponding to sufficiently high
temperatures pass above the curve representing function T(φ).

The numerical evidence shows that

Y (λ) < Y (1). (36)

If Eq. (32) is satisfied, and (36) holds, then

λ3Y (λ)[B − 1] >
1

8φ
+ Y (λ)B,

or

Y (λ)[λ3[B − 1] − B] >
1

8φ
,

which is possible only if

λ3

[
1 − 1

B

]
= λ3[1 − exp(−ε/kBT )] > 1. (37)

In accordance with the previous remark, (37) represents an
upper bound on temperatures for which equation � = 0 can
be satisfied.

We can thus in principle expect the existence of a criti-
cal temperature with the corresponding isotherm touching the
curve defined by � = 0 at a single (critical) point. The cor-
responding condition can be obtained by differentiating both
sides of (32) with respect to φ, and imposing the necessary
condition for a maximum. The resulting equation reads

− 1

8φ2
+ B

∂Y (1)

∂φ
= λ3[B − 1]

∂Y (λ)

∂φ
. (38)

Equations (32) and (38) taken together define the critical tem-
perature and the critical volume fraction of the vapor-liquid
phase transition.

Clearly, to check whether the derived equations (34) and
(38) can be asymptotically satisfied by solutions of the in-
tegral equation (26), and obtain quantitative predictions, we
need to know the contact values Y(1) and Y(λ) as functions of
the volume fraction and temperature. This is the hardest part
of our numerical study as it requires solving the full nonlinear
integral equation (26).
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Before discussing this point let us first present an analytic
analysis concerning the behavior of the exponential mode (28)
at the approach to the threshold value κ = a + ib = 0. We fol-
low here closely the method developed in Ref. 14 supposing
that on an isotherm at some volume fraction φ0 the exponen-
tial damping vanishes, so that a(φ0) = b(φ0) = 0. Therefore,
when φ approaches φ0 we write

φ = φ0 + δφ, κ = δa + iδb,

where δφ � 1, δa � 1, and δb � 1.
Equation (29) takes the form

1 = 24(φ0 + δφ) [ λ3Y (λ; φ0 + δφ)(B − 1)F (λ(δa + iδb))

−Y (1; φ0 + δφ)BF (δa + iδb)]. (39)

Using the series expansion (31), and, keeping asymptoti-
cally terms up to the second order in deviations δa and δb we
obtain two conditions by considering the real and the imagi-
nary part of Eq. (39). The conditions read,

B

(
φ0

∂Y (1; φ0)

∂φ0
+ Y (1; φ0)

)
δφ

+ B

10
φ0Y (1; φ0)[(δa)2 − (δb)2]

= (B − 1)λ3

(
φ0

∂Y (λ; φ0)

∂φ0
+ Y (λ; φ0)

)
δφ

+ (B − 1)

10
φ0λ

5Y (λ; φ0)[(δa)2 − (δb)2], (40)

BY (1; φ0)δaδb = λ3(B − 1)Y (λ; φ0)δaδb. (41)

They have to be considered together with the threshold line
equation (32),

1

8φ
+ Y (1; φ0)B = λ3Y (λ; φ0)[B − 1].

As δa 
= 0, Eqs. (32) and (41) are compatible only if
δb = 0. We thus arrive at an interesting conclusion that
the asymptotic approach to the κ = 0 instability can occur
only along the real axis. In particular, the theory predicts
monotonous decay of correlations in the immediate vicinity
of the critical point. This fact supports the interpretation of
the threshold line (32) as representing the absolute stability
limit for the fluid (liquid or vapor) phases.

Inserting δb = 0 into (40) and using Eq. (32) we derive
an asymptotic relation between δa and δφ of the form,[

φ0(B − 1)λ3(λ2 − 1)Y (λ; φ0) + 1

8

]
(δa)2

= 10φ0

[
B

∂Y (1; φ0)

∂φ0
− (B − 1)λ3 ∂Y (λ; φ0)

∂φ0
− 1

8φ2
0

]
δφ.

(42)

We note that on the right-hand side there appears the
expression,

�(φ) = B
∂Y (1; φ)

∂φ
− λ3[B − 1]

∂Y (λ; φ)

∂φ
− 1

8φ2
, (43)

which vanishes at the critical point (see Eq. (38)). This
fact has important consequences. Indeed, when �(φ) 
= 0,
Eq. (42) can be satisfied only if δφ has the same sign as �(φ).
This means that on the corresponding isotherm the point φ0

separates stable states from unstable states. But when �(φ0)
= 0, the relation between δa and δφ changes its nature be-
cause then the lowest order term in the expansion in δφ is
proportional to (δφ)2. So, if a solution with δφ > 0 exists
there is also a solution with δφ < 0. A principal conclusion
of this study is that if �(φ0) = 0, the neighborhood of φ0 on
the isotherm is composed of stable states with exponentially
decaying correlations reflecting the fact that the critical point
at φ0 is an isolated instability point.

V. CONSISTENCY QUESTIONS

If the system attains the instability line (32) the correla-
tion function decays as 1/x so that the integral in the com-
pressibility equation,

nσ 3
∫

dx [χB(x)Y (x) − 1]

= nσ 3
∫

dx {[θ (x − λ) + Bθ (x − 1)θ (λ − x)]Y (x) − 1}

= kBT
∂n

∂p
− 1 = kBT nκT − 1 (44)

diverges. The appearance of an infinite compressibility κT is
a consequence of the vanishing of exponential damping. The
compressibility equation (44) would be thus consistent with
the superposition approximation if it could drive the system
to the loss of stability.

However, the consistency disappears when we turn to the
virial equation of state,

βp

n
= 1 + 2

3
nπσ 3[ BY (1) − λ3(B − 1)Y (λ)]. (45)

Indeed, from (45) we find

β
∂p

∂n
= 1 + 4

3
nπσ 3[BY (1) − λ3(B − 1)Y (λ)]

+ 2

3
n2πσ 3

[
B

∂Y (1)

∂n
− λ3(B − 1)

∂Y (λ)

∂n

]
. (46)

Recalling the definition of the volume fraction 6φ = πnσ 3 we
find that on the instability line (32),

1 + 4

3
nπσ 3[BY (1) − λ3(B − 1)Y (λ)]

= 1 + 8φ[BY (1) − λ3(B − 1)Y (λ)] = � = 0, (47)

so that Eq. (46) takes the form

β
∂p

∂n
= 2

3
n2πσ 3

[
B

∂Y (1)

∂n
− λ3(B − 1)

∂Y (λ)

∂n

]
. (48)

The right-hand side of (48) does not vanish. For instance, the
condition (38) localizing the critical point implies that at such
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a point the equality,

2

3
n2πσ 3

[
B

∂Y (1)

∂n
− λ3(B − 1)

∂Y (λ)

∂n

]

= 4φ

[
B

∂Y (1)

∂φ
− λ3(B − 1)

∂Y (λ)

∂φ

]
= 1

2φ
> 0 (49)

must hold. According to the virial equation of state the
compressibility would remain thus finite on the instability
line (and, in particular, at the critical point) which shows that
this equation is inconsistent with the superposition approxi-
mation. It follows that the equation of state compatible with
the superposition approximation should be derived from the
compressibility relation (44). A similar suggestion can be
found in Ref. 2.

The above remarks are important because they show the
inadequacy of the virial equation to predict physical prop-
erties of fluids whose states are described within the super-
position approximation. There exists some confusion in the
literature on this point. For instance, I. Z. Fisher assumes the
vanishing of the right-hand side of (48); see Ref. 14. As this
does not follow from the basic integral equation (22) he has
to go beyond the superposition approximation and invoke the
mean field theory, all this to force consistency of the virial
equation with the divergence of compressibility. Such a rea-
soning led Fisher to conclude that the instability line (32)
cannot contain a critical point, a statement with which we
disagree.

Moreover, we wish to stress that on the instability line
(32), and in particular at the critical point, the relation

p

nkBT
= 1

2
(50)

invoked by some authors (see, e.g., Refs. 14 and 15) can-
not be justified because it is obtained by combining the virial
equation (45) with the relation � = 1 + 8φ[ Y(1)B − λ3Y(λ)
(B − 1) ] = 0 which results from the superposition approx-
imation. Such a combination is not allowed because of the
described above inconsistency. Equation (50) does not follow
from the superposition approximation which is also illustrated
by the fact, already mentioned in the Introduction, that the

critical compressibility factor calculated numerically on the
basis of YBG equation does not exceed 0.35.

VI. ITERATIVE SOLUTION OF THE
INTEGRAL EQUATION

Similarly to the previous work,10, 11 we solve the integral
equation for H(x) resulting from (26),

H (x) = −1 + exp

{
12φ

(
−Y (1)B

[
1

2x

∫ x+1

x−1
ds s χB(s) Y (s)

× [1 − (x − s)2] − 2

3

]

+Y (λ)(B − 1)

[
1

2x

∫ x+λ

|x−λ|
ds s χB(s) Y (s)

× [λ2 − (s − x)2] − 2

3
λ3

])}
, (51)

where Y(x) = H(x) + 1, by a standard Neumann method with
successive over-relaxation.20 The iterative solutions are then
given by

Hn = (1 − α)Hn−1 + αL(Hn−1), (52)

where L is the operator appearing in the RHS of Eq. (51).
Due to the slow convergence of the iterations, it was neces-
sary to use a relatively small value of the relaxation parameter
α = 0.05. The convergence was particularly slow at low tem-
peratures and moderate to large volume fractions. We have
studied two values of the square-well potential range, λ = 1.4
and λ = 1.85, and found the results in these two cases to be
significantly different.

Let us begin our analysis by considering a square well of
a width λ = 1.85, the system previously considered, e.g., in
Refs. 3–5, and 8. Several important conclusions can be drawn
from the analysis of the shapes of the correlation functions,
as presented in Figs. 1 and 2 as well as in Table I. First, at
high temperatures B ≤ 1.4, the situation is reminiscent of that
for a hard-sphere system:11 with increasing volume fraction
the decay of correlations becomes slower, and a pronounced
peak structure appears. Examples of correlation functions in
this parameter range (B = 1.2, λ = 1.85) are presented in

5
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H�x�

5
x

1

2

g�x�

FIG. 1. Left panel: correlation function H(x) for λ = 1.85, B = 1.2, and φ = 0.2 (solid) and φ = 0.5 (dashed). Right panel: the corresponding pair distribution
functions g(x) = χ (x)(1 + H(x)).
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FIG. 2. Upper panel: correlation function H(x) for λ = 1.85, B = 1.5 (solid), and B = 1.8 (dashed) for φ = 0.1 (left), φ = 0.25 (center), and φ = 0.45 (right).
Lower panel: the corresponding pair distribution functions g(x) = χ (x)(1 + H(x)).

Fig. 1. Besides H(x), we also plot the pair distribution g(x)
= χB(x)[1 + H(x)]. Note that the latter has a discontinuity
at the boundary of the potential well, i.e., at x = λ. As it is
observed, both functions attain a slowly decaying oscillatory
tail as the volume fraction is increased. The oscillatory char-
acter of the decay is confirmed by the mode analysis, in which
one represents x H(x) as a linear combination of exponential
modes exp (κx) where κ is a complex number, a solution of
Eq. (29). In the high temperature range the slowest decay-
ing mode (κ0) has a nonzero imaginary part, except in the
region of small volume fractions (cf. the left panel of Fig. 3).
The dominant oscillatory mode manifests itself in the oscil-
latory behavior of the correlation functions. As the density is
increased the real part of this mode approaches zero, whereas
the imaginary part changes by a relatively small amount: for
the case presented in Fig. 3 the frequencies change from κ0

= −2.48978 ± 4.61493I at φ = 0.05 to κ0 = −0.221575
± 5.59814I at φ = 0.5. Finally, at φ ≈ 0.52 the real part of κ0

vanishes, which announces the change in the nature of corre-
lations and thus implies a structural change in the fluid. The

similarities between the present case and the hard-sphere sys-
tem analyzed in Ref. 11 imply that the transition can be inter-
preted as freezing of the fluid into the crystalline structure. In-
deed, it is known that the steric repulsion plays a determining
role in the freezing process, hence one expects that a square
well fluid and hard-sphere fluid will behave in an analogous
manner in this transition.

At a smaller temperature, corresponding to B = 1.5 (solid
lines in Fig. 2), the decay of the correlation functions be-
comes much slower, and is non-oscillatory in character up to
φ ≈ 0.37. The magnitude of Re(κ0) quickly decreases with
increasing φ: from κ0 = −1.02 at φ = 0.05 to κ = −0.075 at
φ = 0.25. Notably, as observed in Fig. 3 in the range 0.1 ≤ φ

≤ 0.3 the value of κ0 changes only slightly, staying at a level
of 0.05−0.2, even though the shape of H(x) dependence for
small x does change significantly over this density range. For
larger volume fractions the magnitude of Re(κ0) begins to in-
crease again, the oscillatory mode becomes dominant (cf. the
right panels of Fig. 2) and finally, at φ ≈ 0.52, there is a freez-
ing transition, similar to the one observed at B = 1.75. As the

TABLE I. Contact values of the correlation functions at λ = 1.85.

B = 1.45 B = 1.6 B = 1.8

H(1) H(λ) H(1) H(λ) H(1) H(λ)

φ = 0.05 0.0648572 − 0.0389442 0.209986 0.0303177 2.35631 0.604497
φ = 0.10 0.129762 − 0.0745082 1.20609 0.231001 1.75796 0.199533
φ = 0.15 0.19894 − 0.108402 0.998016 0.0483199 1.3445 − 0.0152117
φ = 0.20 0.234583 − 0.155135 0.815456 − 0.0771737 1.06157 − 0.150923
φ = 0.25 0.257577 − 0.202365 0.669675 − 0.168302 0.854621 − 0.246122
φ = 0.30 0.336735 − 0.237536 0.551809 − 0.237994 0.695745 − 0.317308
φ = 0.35 0.458241 − 0.271999 0.454293 − 0.293386 0.569615 − 0.372817
φ = 0.40 0.593454 − 0.312394 0.425349 − 0.338726 0.46711 − 0.417458
φ = 0.45 0.704467 − 0.362874 0.49653 − 0.387397 0.38211 − 0.456379
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FIG. 3. The magnitude of the purely real root (dashed) and the smallest (in terms of Re(κ)) root with nonzero imaginary part (solid) for λ = 1.85 and B = 1.2
(left), B = 1.5 (center), and B = 1.8 (right).

temperature is further decreased, at B = 1.8 (dashed lines in
Fig. 2), the value of volume fraction at which the oscillatory
mode begins to dominate shifts towards even larger densities.

A good test of self-consistency of the theory is to com-
pare the frequencies calculated using Eq. (29) with the actual
asymptotic behaviour of H(x). To this end, one can analyze
the function κeff(x), as proposed by Jones et al.3 (note, how-
ever the typo in sign of 1/x term in the original definition),

κeff (x) = 1

H (x)

dH (x)

dx
+ 1

x
. (53)

For H(x) asymptotically of the form eκx/x (with κ real)
one gets κ(x) → κ as x → ∞. A typical form of κeff(x)
dependence is shown in the left panel of Fig. 4, as observed,
after initial oscillations κeff(x) relatively quickly attains the
asymptotic value.

Figure 5 compares the values of κ obtained from the so-
lution of Eq. (29) and those from the asymptotic analysis. As
observed, there is a reasonable agreement between the two;
with the systematic difference of about 5%–10%.

A further insight into the character of “critical” regions
can be obtained by analysis of the parameter � defined in
Eq. (34). For relatively large temperatures (e.g., B = 1.2
in Fig. 6) the dependence �(φ) is a monotonically increas-
ing function. However, as the temperature is decreased, a
minimum appears in �(φ) dependence, the depth of which
increases with a decreasing temperature. Finally, at about
B = 1.455, � comes closely to the zero line, with �(φmin

= 0.19) ≈ 0.0065. At even smaller temperatures the mini-
mum widens but, notably, the curve never touches nor crosses
the � = 0 axis. With a further decrease of temperature, the

10 15 20
x

−1

−0.5

0

0.5

1
Κeff �x�

FIG. 4. The function κeff(x) for λ = 1.85, φ = 0.25, and B = 1.8.

minimum continues to widen, but at the same time its bottom
rises slightly in the small density region. This results in φmin

shifting to the right; however the minimal value continues to
be very close to zero (for B = 1.6 we get �min ≈ 0.001 at φmin

≈ 0.35 whereas at B = 1.8 we get �min ≈ 0.008 at
φmin ≈ 0.4).

Let us now turn to the case of λ = 1.4 (Figs. 7–9).
The potential well is now more narrow thus one needs to
go to significantly lower temperatures than at λ = 1.85 to
reach the regions of small � values. At B = 2.15, the plateau
again appears on �(φ) curve, extending between φ = 0.2 and
φ = 0.35 with the corresponding value of �min ≈ 0.03
(Fig. 9). Unexpectedly however, and in contrast to the behav-
ior at λ = 1.85, at even smaller temperatures the minimum
of �(φ) dependence rises again above � = 0 line, reaching,
e.g., �min ≈ 0.09 for B = 2.5. As a result, the region around
φ = 0.25, B = 2.15 seems to constitute a global minimum of
�(φ, B). Further differences between λ = 1.8 and λ = 1.45
case are observed in analysis of mode frequencies (cf.
Figs. 3 and 8). Whereas for λ = 1.85, the region of non-
oscillatory decay progressively shifts towards larger φ as the
temperature decreases (at least in the temperature range stud-
ied); the situation at λ = 1.4 is more complex, with the non-
oscillatory region first increasing but then decreasing as the
temperature is lowered. In other words, as the temperature is
decreased below the “near-critical” region, the ordering of the
fluid becomes progressively more solid-like, with the oscilla-
tory correlation function.
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0
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0.4

Κ

FIG. 5. The magnitude of the purely real root κ calculated from the solution
of Eq. (29) (solid) and from the asymptotic values of κeff(x) (dashed) for λ

= 1.85 and B = 1.8.
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FIG. 6. The parameter � as a function of volume fraction for λ = 1.85 for
different temperatures corresponding to B = 1.2 (dotted-dashed), B = 1.45
(solid), B = 1.5 (dotted), and B = 1.8 (dashed).

One way to understand some aspects of this behavior is to
relate it to the results of Liu et al.21 The authors of this study
found that short-range square well fluids behave in a funda-
mentally different way from the long-ranged ones. In particu-
lar, liquid-vapor transition in short-range fluids was found to
overlap with the freezing transition, with the vapor-liquid co-
existence curve enclosed within the vapor-solid coexistence
curve, and no triple point present.

Most importantly, for all studied values of B and φ the
iteration procedure is convergent and the resulting � is posi-
tive. In the small � range, the results show the dependence on
the integration interval, but increasing the interval leads in-
variably to the slight increase of both � and the magnitude of
the frequency of the dominating mode; thus it seems unlikely
that a further increase of the integration interval will bring the
system into the instability region. The results thus seem to be
consistent with the findings of Jones et al.,3 who reported the
existence of the “nearly-critical” region in the (T, φ) diagram,
in which the mode frequencies remain negative, albeit very
small in the magnitude.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we continue our study of the consequences
of introducing the Kirkwood superposition approximation as
a closure in the Yvon-Born-Green equation. Whereas our pre-
vious studies10, 11 have focused on particles interacting via
purely repulsive forces, here we consider in addition the role
of attractions. Our analytic methods can be adapted most
straightforwardly to the case of the square-well fluid, a model
for which there exists an extensive literature.16 Of particular
relevance for the present work are the treatises of Rice and
Gray17 and Cole,18 the reviews of Barker and Henderson19

and Caccamo,22 and the more recent contributions of Yuste
and co-workers.23–25

The fundamental question raised in the paper is that of the
limits of stability of various phases of a square-well fluid as
predicted by the Yvon-Born-Green equation under the Kirk-
wood superposition approximation. Our analytic approach
consisted in studying changes in the long distance decay of
correlations occurring when the volume fraction is increased
at fixed temperature. The basis of the analysis was the integral
equation (26) derived under the assumption of integrability of
the correlation function H(x). It implied the asymptotic decay
of the form

H (x) ∼ exp(−ax)

x
cos b, a > 0, (54)

and was corroborated numerically in our study. When a van-
ishes, the correlation function ceases to be integrable, the
phase looses completely its mechanical stability, and a struc-
tural phase transition follows.

There are two possibilities for the arrival at the absolute
stability limit. The first, already known from the study of hard
sphere systems, consists in vanishing of the damping factor a
with however b 
= 0. In this case we observe the approach to
long-distance undamped oscillations, which we interpret as
the occurrence of a freezing transition. In the study of square-
well systems we anticipated this behavior when increasing the
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FIG. 7. Upper panel: correlation function H(x) for λ = 1.4, B = 2.15 (solid), and B = 2.35 (dashed) for φ = 0.1 (left), φ = 0.25 (center), and φ = 0.4 (right).
Lower panel: the corresponding pair distribution functions g(x) = χ (x)(1 + H(x)).
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FIG. 8. The magnitude of the purely real root (dashed) and the smallest (in terms of Re(κ)) root with nonzero imaginary part (solid) for λ = 1.4 and B = 1.75
(left), B = 2.15 (center), and B = 2.35 (right).

volume fraction along relatively high temperature isotherms.
And indeed, the numerical solution of the integral equation
confirmed the existence of a freezing transition, reminiscent
of the behavior of hard sphere fluids. It has been clearly il-
lustrated for a square well of range λ = 1.85 on the isotherm
B = exp (βε) = 1.2 (see Fig. 1): the damping of oscillations
becomes weaker and weaker with increasing volume fraction
φ to disappear at the threshold value φ0 ∼ 0.52. We thus
conclude that the superposition approximation predicts for
square-well fluids the existence of an absolute stability limit
corresponding to freezing.

While the freezing transition is also expected to occur at
lower temperatures, we find that, before arriving at freezing,
there appears a new phenomenon which can be looked upon
as a manifestation of the existence of liquid-vapor stability
limit.

This new phenomenon is related to the second possibility
of loosing mechanical stability: the asymptotic decay of the
correlation function H(x) becomes purely monotonic, without
oscillations. This is the case where moving along an isotherm
we find that the parameter κ = a + ib (see (28)) approaches
zero. Using the type of analysis elaborated in Ref. 14 we
could show analytically that the approach of κ to zero is pos-
sible only along the real axis, i.e., with b = 0. The numeri-
cal evidence confirms this result. As illustrated in Fig. 3 for
λ = 1.85, the purely real root κ governs the decay of
correlations at temperature B = exp (βε) = 1.6 up to
φ ∼ 0.35, contrary to what was the case at a higher tempera-

0 0.1 0.2 0.3 0.4
0

0.5

1

FIG. 9. The parameter � as a function of volume fraction and temperature
for λ = 1.4 and B = 2.05 (dashed), B = 2.15 (solid), and B = 2.5 (dotted-
dashed).

ture (B = 1.2), where the oscillatory decay takes over already
at φ ≈ 0.15.

The fundamental question in our study of the square-well
fluid is whether one can actually reach the absolute stability
limit where κ = 0, implying asymptotically a non-integrable
power law decay H(x) ∼ 1/x . As shown in Sec. IV, this ques-
tion includes in particular the problem of existence of a criti-
cal isotherm containing the critical point.

In our analytic considerations based on the integral equa-
tion (26) there appears the quantity � = 1 + 8φ[ Y(1)B
− λ3Y(λ)(B − 1)], the vanishing of which was shown to
be equivalent to reaching the absolute stability limit with
κ = 0. We thus directed the numerical analysis to a systematic
study of � as a function of temperature and volume fraction
for square wells of ranges λ = 1.85 and λ = 1.4. From its def-
inition �(φ = 0, B) = 1. The behavior for increasing volume
fraction turned out to be sensitive to the temperature.

Along high temperature isotherms � increases with φ,
staying away from zero (see, e.g., the case of λ = 1.85,
B = 1.2 presented in Fig. 6). However, at lower temperatures
there occurs an important qualitative change: along isotherms
B = 1.45, B = 1.5, and B = 1.8 (still at λ = 1.85), the function
�(φ, B) decreases, with the initial slope becoming steeper at
lower temperatures. This marks the beginning of an approach
towards the loss of stability. The approach to zero occurs al-
ready along the isotherm B = 1.455 on which the minimum
attained by � equals 0.0065. The minimum then widens and
also becomes deeper. It has been established that the curve φ

→ �(φ, 1.6) decreases to a value of the order 10−3. At the
same time, for B > 1.45 a plateau appears where � stays very
close to zero over intervals whose length grows with decreas-
ing temperature.

We interpret the appearance of such a widening plateau
where �, although positive, stays very close to zero as the way
in which the YBG equation under the KSA reveals the exis-
tence of the liquid-vapor transition. The “critical isotherm”
which marks the appearance of the plateau for lower temper-
atures would correspond thus for λ = 1.85 to B = 1.455,
and the “critical volume fraction” where the minimum of
� is attained was found numerically to be φ0 = 0.19. The
plateau itself, although corresponding to stable uniform states,
may well signal the existence of two-phase states. Conse-
quently, increasing the volume fraction beyond the plateau
region should mark the entrance into a pure liquid phase.
This is consistently reflected by the increase of � driving
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the system away from the absolute stability line (32). Fur-
ther increase of the volume fraction leads to freezing sig-
naled by the approach to undamped oscillatory behavior of
correlations.

The behavior of the system at λ = 1.4 is intriguing. Ap-
parently, the region of small � values in the (φ, T) phase space
is limited, with a global minimum at φ = 0.25, B = 2.15.
Again, however, the values of � found from the numerical
analysis are always positive.

The overall picture emerging from the numerical analysis
suggests the conclusion that the absolute stability line � = 0,
and in particular the conditions for the critical point, cannot be
exactly satisfied by the solutions of the integral equation (26).
However, within the adopted interpretation of the numerical
results, the position of the “absolute stability line,” and of the
“critical isotherm” can be approximately localized.

It should be said at this point that the analysis of the criti-
cal behavior presented in Ref. 2 (see also Ref. 3) led to a sim-
ilar conclusion: in three dimensions the YBG equation cannot
predict a “true criticality.” However, the basis for this conclu-
sion was the nonlinear differential equation whose derivation
required an additional approximation superposed on the KSA.

Here we studied the consequences of the integral equa-
tion (26) representing exactly the KSA, without additional ap-
proximations. Whereas our study does not rule out decisively
the possibility of reaching the absolute stability line � = 0,
the analytic and numerical results presented here suggest that
solutions of (26) will always be stable, and thus lie outside
this line. However, a rigorous analytic argument supporting
this suggestion has not been found up to now.

ACKNOWLEDGMENTS

The authors have benefited from conversations with
Michael E. Fisher and Stuart A. Rice. J.P. acknowledges the
hospitality at the DePaul University. P.S. acknowledges the
support of the Foundation for Polish Science (FNP) through
the TEAM/2010-6/2 project cofinanced by the EU European

Regional Development Fund as well as the hospitality and
support of the Isaac Newton Institute for Mathematical Sci-
ences (Cambridge, UK), where some of this research was
conducted.

1G. L. Jones, J. J. Kozak, E. K. Lee, S. Fishman, and M. E. Fisher, Phys.
Rev. Lett. 46, 795 (1981).

2M. E. Fisher and S. Fishman, Phys. Rev. Lett. 47, 421 (1981); J. Chem.
Phys. 78, 4227 (1983).

3G. L. Jones, E. K. Lee, and J. J. Kozak, J. Chem. Phys. 79, 459 (1983).
4K. A. Green, K. D. Luks, and J. J. Kozak, Phys. Rev. Lett. 42, 985
(1979).

5K. A. Green, K. D. Luks, E. Lee, and J. J. Kozak, Phys. Rev. A 21, 356
(1980).

6K. A. Green, K. D. Luks, and J. J. Kozak, Phys. Rev. A 24, 2093 (1981).
7K. A. Green, K. D. Luks, G. L. Jones, E. Lee, and J. J. Kozak, Phys. Rev.
A 25, 1060 (1982).

8K. U. Co, J. J. Kozak, and K. D. Luks, J. Chem. Phys. 64, 2197 (1976).
9D. A. Young and S. A. Rice, J. Chem. Phys. 47, 4228 (1967).

10J. Piasecki, P. Szymczak, and J. J. Kozak, J. Chem. Phys. 133, 164507
(2010).

11J. Piasecki, P. Szymczak, and J. J. Kozak, J. Chem. Phys. 135, 084509
(2011).

12C. H. Mak, Phys. Rev. E 73, 065104 (2006).
13J. G. Kirkwood, E. K. Maum, and B. J. Alder, J. Chem. Phys. 18, 1040

(1950).
14I. Z. Fisher, Statistical Theory of Liquids (University of Chicago Press,

Chicago, 1964).
15N. Kumar, N. H. March, and A. Wasserman, Phys. Chem. Liq. 11, 271

(1982).
16K. D. Luks and J. J. Kozak, Adv. Chem. Phys. 37, 139 (1978).
17S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids (John

Wiley and Sons, New York, 1965).
18G. H. A. Cole, An Introduction to the Statistical Theory of Classical Simple

Dense Fluids (Pergamon Press, Oxford, 1967); see also G. H. A. Cole, Rep.
Prog. Phys. 31, 419 (1968).

19J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).
20R. R. Kleinman and P. M. van den Berg, Progress in Electromagnetics Re-

search (1991), Vol. 5, pp. 67–102.
21H. Liu, S. Garde, and S. Kumar, J. Chem. Phys. 123, 174505 (2005).
22C. Caccamo, Phys. Rep. 274, 1 (1996).
23S. B. Yuste and S. Santos, J. Chem. Phys. 101, 2355 (1994).
24L. Acedo and A. Santos, J. Chem. Phys. 115, 2805 (2001).
25L. Largo, J. R. Solana, S. B. Yuste, and S. Santos, J. Chem. Phys. 122,

084510 (2005).
26See supplementary material at http://dx.doi.org/10.1063/1.4801329 for the

detailed derivation of the final results of integrals.

Downloaded 29 Apr 2013 to 193.0.83.175. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevLett.46.795
http://dx.doi.org/10.1103/PhysRevLett.46.795
http://dx.doi.org/10.1103/PhysRevLett.47.421
http://dx.doi.org/10.1063/1.445100
http://dx.doi.org/10.1063/1.445100
http://dx.doi.org/10.1063/1.445544
http://dx.doi.org/10.1103/PhysRevLett.42.985
http://dx.doi.org/10.1103/PhysRevA.21.356
http://dx.doi.org/10.1103/PhysRevA.24.2093
http://dx.doi.org/10.1103/PhysRevA.25.1060
http://dx.doi.org/10.1103/PhysRevA.25.1060
http://dx.doi.org/10.1063/1.432444
http://dx.doi.org/10.1063/1.1701604
http://dx.doi.org/10.1063/1.3491039
http://dx.doi.org/10.1063/1.3622597
http://dx.doi.org/10.1103/PhysRevE.73.065104
http://dx.doi.org/10.1063/1.1747854
http://dx.doi.org/10.1080/00319108208080749
http://dx.doi.org/10.1002/9780470142561.ch4
http://dx.doi.org/10.1088/0034-4885/31/2/301
http://dx.doi.org/10.1088/0034-4885/31/2/301
http://dx.doi.org/10.1103/RevModPhys.48.587
http://dx.doi.org/10.1063/1.2085051
http://dx.doi.org/10.1016/0370-1573(96)00011-7
http://dx.doi.org/10.1063/1.467676
http://dx.doi.org/10.1063/1.1384419
http://dx.doi.org/10.1063/1.1855312
http://dx.doi.org/10.1063/1.4801329

