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Stokesian dynamics simulations of close particles are reported, taking into account lubrication
forces and many-body hydrodynamic interactions between spheres. A periodic trajectory of three
particles maintaining a permanent proximity to each other has been found and analyzed. This
solution is used as a benchmark to study the accuracy and stability of various numerical integration
schemes. In particular, different methods of preventing unphysical overlaps of the particles are
considered and potential artifacts discussed. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2930881�

I. INTRODUCTION

The paper is focused on hydrodynamic interactions be-
tween very close solid spheres moving in a viscous fluid at
the low Reynolds number.1,2 Hydrodynamic interactions in-
fluence significantly statistical properties of suspensions and,
therefore, a lot of work has been done to analyze them
theoretically1 and to construct numerical codes suited for ef-
ficient and accurate computations, such as lattice Boltzmann3

and Stokesian dynamics.4,5 For dense systems, interaction
between very close particle surfaces is essential. As the
spheres approach each other at a very small distance, it be-
comes increasingly difficult to squeeze out the thin lubrica-
tion layer of fluid from in between them. The hydrodynamic
lubrication forces associated with this motion6 prevent the
particles from touching each other. Lubrication of very close
solid surfaces is hard to tackle numerically. In particular, due
to the numerical errors in the finite-difference schemes, there
is often a possibility of an unphysical overlap of the par-
ticles, which needs to be carefully avoided in the simula-
tions. Several methods for assisting with this problem have
been devised.7–12 However, they introduce numerical arti-
facts, which may significantly influence the dynamics of the
particles at short distances.10,12,13 In this paper, we investi-
gate these effects.

In a number of systems, motion of several spheres was
detected experimentally or evaluated by the Stokesian dy-
namics, and some very close configurations of the spheres
were observed, with the distance between the sphere surfaces
smaller than 1% of the radius.14–17 Many examples of “scat-
tering processes” are known, during which very small gaps
between the particle surfaces are reached and then particles
separate again, for example, a sphere falls under gravity onto
the other one held fixed or moving slower below.14,15 The
question arises if there exist stable systems of a different
nature—with at least three spheres staying very close to each
other for a long time, thus forming a “cluster” instead of
moving quickly far away from each other.

In this paper, the Stokesian dynamics algorithm HYDRO-

MULTIPOLE, based on irreducible multipole representation,5,18

is used to find and investigate a family of such “benchmark
clusters,” made of a small number of close particles, which
settle under gravity. We study a periodic trajectory of three
spheres, during which all of them remain in a close proxim-
ity of each other. Such a trajectory is ideally suited for test-
ing various numerical schemes since—as it turns out—even
small numerical errors or artifacts may result in significant
changes of the observed period of the motion. Moreover, the
oscillations of very close sedimenting triplets are also of fun-
damental physical importance.

In Sec. II, theoretical foundations of the Stokesian
dynamics5 and the numerical procedure18 are outlined. Sec-
tion III contains a brief review of methods used to integrate
numerically the dynamics of very close spheres. In Sec. IV,
the periodic motion of three very close spheres is analyzed.
In Sec. V, this system is used to test selected numerical pro-
cedures, with the conclusions presented in Sec. VI.

II. DYNAMICS

Consider a system made of identical solid spheres of
diameters d, which settle under gravitational forces f in a
fluid of viscosity �. The spheres are close to each other, but
their surfaces do not touch. The Reynolds number of the
generated flow is much smaller than unity; therefore, the
fluid velocity u and pressure p satisfy the Stokes equations,

��2u − �p = 0 , �1�

� · u = 0. �2�

The no-slip boundary conditions are satisfied at the sphere
surfaces. Positions of the sphere centers ri evolve according
to the following Stokesian dynamics equations:

dri

dt
= vi�r1,r2, . . . ,rN�, i = 1,2, . . . ,N , �3�
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vi = ��
k=1

N

�ik� · f , �4�

where �ik�r1 ,r2 , . . . ,rN� are the N-particle translational-
translational mobility matrices,1,19 evaluated numerically by
the multipole expansion of the Stokes equations. The algo-
rithm from Ref. 5 and its precise numerical FORTRAN imple-
mentation HYDROMULTIPOLE described in Ref. 18 have been
used with the multipole order L=4. To describe accurately
dynamics of close spheres, lubrication correction has been
applied according to the procedure taken from Ref. 18. For
rigid-body motions, the relative accuracy of the mobility ma-
trix is typically of the order of 0.01% for L=4 �see Ref. 5�.

It is convenient to use 3N-dimensional vectors of the
particle positions and velocities and the forces exerted by
them on the fluid, X= �r1 ,r2 , . . . ,rN�, V= �v1 ,v2 , . . . ,vN�, and
F= �f , f , . . . , f�, respectively. In this notation, the system of
Eqs. �3� and �4� reads

dX

dt
= V�X� , �5�

V = � · F . �6�

The dimensionless variables are obtained by dividing
positions by the sphere diameter d and time by twice the
Stokes time,

�s = 3��d2/f , �7�

with f = �f�. Therefore, velocities are normalized by the
Stokes velocity vs= f / �3��d�. From now on, ri, vi, and t will
denote the dimensionless quantities.

III. NUMERICAL INTEGRATION

In general, due to lubrication forces, the normal relative
motion of the particle pair ij is strongly hindered as the di-
mensionless gap between them, �r j −ri �−1, goes to zero. This
effect prevents the particle contact during the evolution.
However, when a finite time step is used in the numerical
integration of the equations of motion, the particles may
overlap. It is important to realize that it is a pure numerical
artifact of the integrating routine. This problem was already
noted in the literature and was dealt with in a variety of
ways. One of the possibilities is to introduce a short-ranged
repulsive potential to prevent the overlaps �see, e.g., Refs. 7,
9, and 11–13�. A number of different potentials have been
considered �e.g., inverse Hookean springs, power law, etc.�.
Interestingly, in some cases, the form and magnitude of the
potential was found to significantly influence both the trans-
port properties and the particle distribution function in the
system.12,13,17,20 Alternatively, in Refs. 17 and 21, the par-
ticles were allowed to overlap for a short period of time.
However, the mobility matrix � is not defined for overlap-
ping particles. To circumvent that difficulty, when the over-
lap is detected, the radii of the spheres are renormalized so
that the smallest gap between the particles is equal to 10−8.

Yet, another method was used by Ladd:8 Reflect the par-
ticles elastically each time they are going to overlap. To be
more precise, after calculating the particle velocities accord-

ing to Eq. �4�, the hard-sphere dynamics is implemented over
one time step: The possible collisions between the particles
are located and then carried out, as described by Alder and
Wainwright.22 After the completion of the time step dt, the
hydrodynamic mobility matrix � is calculated again, for the
new particle positions �X�t+dt��, and then the procedure is
repeated.

The overlap problem may be avoided by decreasing the
time step as the spheres approach each other. One of such
schemes was proposed by Ball and Melrose:10 Given the set
of velocities calculated from Eq. �4�, they detected the po-
tential overlaps and decreased the time step in such a way as
to prevent them. However, if a method of this kind is used,
there is a price to pay: Although the particles no longer over-
lap, the close encounters of the particles may involve very
small time steps and, hence, a considerable amount of com-
puter time. This is undesirable when simulating many-
particle systems, such as concentrated colloidal suspensions
in which close encounters of the particles occur frequently.
In this context, it is worth exploring in more detail alterna-
tive ways of preventing particle overlaps in order to find a
method that would be both acceptably fast and accurate. To
assess the accuracy and effectiveness of the methods, there is
a need for benchmark test system. Below, we propose such a
benchmark trajectory, which involves three particles that re-
main constantly in close contact. A precise determination of
the particle evolution along this trajectory constitutes a strin-
gent test for the numerical methods since the potential arti-
facts introduced by numerical treatment of overlaps in this
case will become amplified in the course of time.

IV. PERIODIC MOTIONS OF VERY CLOSE SPHERES

In a number of systems, gravitational settling of a group
of spheres has been detected experimentally23 or evaluated
by the Stokesian dynamics,24,25 and a generic “scattering”
pattern of evolution has been found: Initially, well-separated
particles approach each other, interact for some time, and
separate again. The evolution can be very sensitive to a small
change of the initial conditions.25 Such a scenario sometimes
involves very close configurations of the spheres, with the
distance between the sphere surfaces smaller than 10−2 radii,
for example, when a sphere falls under gravity onto the other
one held fixed or moving slower almost exactly below.14,15

The particles stay close to each other, but for a short time
only, and later on the interparticle distances grow indefi-
nitely.

To test Stokesian dynamics at small separations between
the particle surfaces, solutions of a different nature are
needed: With a small number of nontouching spheres, which
would move with respect to each other but stay very close
for a long time. �Two identical spheres settle under gravity
with no change of the relative configuration: Therefore, the
simplest benchmark consists of three identical spheres.�
Moreover, the particles should not change significantly their
evolution under a small perturbation of the configuration.
Therefore, an ideal benchmark would be a periodic trajectory
of close spheres.
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Periodic oscillations of three settling particles are known
from the literature, but for well-separated surfaces. The first
experimental evidence23 and theoretical derivation within the
point-particle approximation24 were followed by extended
mathematical analysis of periodic solutions for points26 and
by investigation of periodic solutions for spherical
particles.27

In this work, we have found and analyzed periodic mo-
tion of three identical spheres settling under gravitational
forces f, with at least two very small gaps between their
surfaces at a time. Actually, we have found a class of quasi-
periodic solutions with two incommensurate frequencies of
oscillations. They surround a single-frequency solution,
which will now be presented.

The z axis is chosen antiparallel to the gravitational force
f= �0,0 ,−f�, with f �0. The motion takes place in a vertical
plane y=0. Positions of the sphere centers are denoted as
ri= �xi ,0 ,zi�, i=1,2 ,3, and positions and velocities of the
center of mass as rCM= �xCM,0 ,zCM� and vCM

= �vx,CM,0 ,vz,CM�, respectively.
The initial positions of the sphere centers, corresponding

to the single-frequency solution, are

x1 = − x3 	 0.626 266,

z1 = − z3 	 − 0.779 612, �8�

x2 = z2 = 0.

Therefore, initially, the sphere centers are aligned, with two
equal interparticle distances, �r1−r2�
r12=r23, correspond-
ing to narrow gaps r12−1	2�10−6 between the sphere sur-
faces. This configuration is shown in the first frame of Fig. 1.

Equations �3�, �4�, and �8� have been integrated with the
adaptive Runge–Kutta �ARK� method with the required error
density per unit time, �=10−10 �for the definition of �, see
Appendix A�. With such a small error density, no overlaps
have been observed. Accuracy of the numerical integration
was estimated by comparing the trajectories with those
evaluated by a more precise ARK routine with �=10−13. Af-
ter one period, the difference between values of r12 computed
by these two procedures was of the order of 1�10−8 only.

The solution of the dynamics given by Eqs. �3�, �4�, and
�8� is a superposition of a periodic motion with the period
T	170, and the gravitational settling with the time-averaged
velocity,

V =
1

T
�

0

T

vCMdt 	 − 1.85ez. �9�

Evolution of the system is illustrated in Fig. 1, as seen
by an observer moving vertically with the time-averaged ve-

locity V and taking snapshots at the subsequent time instants
separated by T /36. Two characteristic symmetric configura-
tions of the spheres are observed. In the first one, seen at t
=0 and then every T /6, the centers are aligned at the angle
�	39° with respect to gravity, with the equal sizes of both
gaps between the particle surfaces. In the second configura-
tion, which appears at t=T /12 and later after each T /6, the
sphere centers form an isosceles triangle with a vertical base,
not much different from the equilateral one. The generic pat-
tern of the evolution during T /6, depicted in Fig. 1, is then
repeated, with the corresponding interchange of the particles,
and the left-right symmetry between the configurations at t
and t+T /6.

As shown in Fig. 1, the center of mass oscillates while
settling, with the dominant horizontal component. The hori-
zontal velocity is the largest for the first and the last snap-
shots of Fig. 1, i.e., for the aligned particles, see also Fig. 2.
In this case, the sideways motion can be understood by anal-
ogy with two settling spheres or an oblique rod.28,29

The explicit time dependence of vCM is shown in Fig. 2,
where the horizontal and vertical components of the center-
of-mass velocity are plotted as functions of time, in the
frame settling vertically with the time-averaged velocity V.
Note that the center-of-mass motion is characterized by the
period equal to T /3 rather than T.

The time dependence of vz,CM indicates that vertical set-
tling is the fastest for the almost equilateral configuration of
the sphere centers seen at the middle snapshot of Fig. 1, i.e.,
at t=T /12, and then after every T /6. On the other hand,
settling is the slowest for the configurations close to �but not
exactly equal to� the second and the last but one snapshot,
i.e., close to T /36 and t=5T /36, and then every T /6 after
these time instants. For such configurations, the gaps be-
tween the particle surfaces are still larger than the minimal
value, as shown in Fig. 3. The minimum of the interparticle
distances is reached for only one pair of the spheres at a time
and it is as small as 3.5�10−8. Therefore, the logarithmic
scale is used in Fig. 3 while plotting the distance between the

FIG. 1. �Color online� Configurations of the sphere centers at t=T�n−1� /36,
with n=1,2 , . . . ,7, as seen by an observer settling vertically with the time-
averaged velocity V given by Eq. �9�.
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FIG. 2. The instantaneous center-of-mass velocity as measured by an ob-
server settling with the time-averaged velocity V. The symbols � denote the
positions at every T /12.

063102-3 Stokesian dynamics of close particles Phys. Fluids 20, 063102 �2008�



sphere surfaces rij −1 versus time. The minima are observed
approximately at T /30 and 3T /10, and every T /6 before and
after these values. When the spheres are the closest to each
other, their line of centers is almost �but not exactly� hori-
zontal.

Trajectories of the centers of the spheres zi�xi� and of the
center of mass zCM�xCM� during a single period T are plotted
in Fig. 4. It is worthwhile to subtract the settling motion and
obtain closed trajectories of the sphere centers. One possibil-
ity is to adopt the center-of-mass frame. The corresponding
trajectories, zi−zCM vs xi−xCM, are plotted in Fig. 5, with the
corresponding movie linked online. A striking feature is that
we obtain the same closed trajectory for all spheres. The
particles circle along it separated by T /3. Existence of peri-
odic solutions for the relative motion of three identical
spheres in a fluid, chasing each other with a delay of one-
third of a period like “ponies on a merry-go-round,” have
been mathematically predicted in Ref. 26, but no example
has been described. Solutions of the same nature have been
also found in a different context: For a self-gravitating sys-
tem of three equal masses, which move along the same tra-
jectory, a circle or a figure-eight curve.30–32 The “butterfly”

shape of the trajectory shown in Fig. 5 is of a special interest
also because of the existence of cusps—points, where the
motion rapidly changes direction.

An alternative description of the relative motion is to use
the relative coordinates of the sphere centers, rij = �xij ,0 ,zij�.
The resulting trajectory, z23�x23�, identical to −z13�x13�, is
plotted in Fig. 6. Surprisingly, this curve contains tips—the
turning points, where the direction of the relative motion is
reversed.

The motion of the sphere centers with respect to the
center of sphere 3 is shown in the movie linked online. This
movie illustrates that, most of the time, the shearing motion
of the surfaces dominates the squeezing one. In Fig. 7, both
squeezing vn and shearing vt components of the relative ve-
locity v23 are plotted versus time. Indeed, the squeezing com-
ponent vn is negligible most of the time. The important ob-
servation is that at the smallest interparticle distances, the
particle relative motion is practically restricted to the sliding
only.33 Moreover, rapid changes of vn from/to zero corre-
spond to significant changes of the direction of the relative
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motion, observed at the cusps and tips of the relative trajec-
tory in Fig. 6.

With three dimensional numerical codes, we did not ob-
serve separation of the particles nor a change of the periodic
benchmark solution even after 100 periods. The periodic so-
lution presented above is robust, although it slowly moves
out of the vertical plane and eventually the particles separate,
if an off-plane perturbation is applied. On the other hand, if
the “optimal” initial conditions �8� are slightly perturbed
within the plane, the particles still oscillate, but quasiperiodi-
cally, with a second additional frequency. Such a behavior is
generic even for such a symmetric initial configuration of the
particle centers as the equilateral triangle with a vertical
base. For example, for the size of its side equal to 1.01, the
spectral density of x2�t� was computed and plotted in Fig. 8,
side by side with the spectral density corresponding the op-
timal solution.

The frequency f1 corresponds to the period of oscilla-
tions of the relative motion �T	170 for the optimal trajec-
tory�, whereas the frequency f2=3f1 corresponds to the os-
cillations of the center of mass of the system �cf. Fig. 1�.
Finally, the smallest peak �f3� on the bottom panel corre-

sponds to the slow modulation around the periodic orbit.
This modulation is inherent to the motion of the center of
mass. For the solutions analyzed in Fig. 8, the corresponding
plots of the spectral density of x2−xCM contain only the
single peak f1, and the plot of the spectral density of xCM,
only peaks f2 and f3 for the perturbed trajectory. Note that
the positions of the peaks on both panels do not coincide,
which shows that the period of the motion changes as the
trajectory is perturbed.

V. TESTING INTEGRATION SCHEMES

In this section, we analyze influence of integration rou-
tine and the method of avoiding overlaps on the sphere dy-
namics. As a benchmark problem for assessing the accuracy
and the efficiency of various numerical schemes, we use the
periodic motion of three spheres described in the previous
section, with the initial conditions given by Eq. �8�. This
gives a possibility to monitor such characteristics as the pe-
riod or the minimal distance between the sphere surfaces on
the trajectory, depending on the method.

As discussed in the previous section, the benchmark tra-
jectory has been evaluated very precisely by the adaptive
Runge–Kutta, ARK, method with the required error density
per unit time, �=10−10. With such a small error density, no
overlaps have been observed and the accuracy of the inter-
particle distance after a single period has been estimated as
1�10−8.

Here, we compare this trajectory with the results ob-
tained by various numerical algorithms used to integrate Eqs.
�5� and �6�. In each of them, we apply the same procedure to
evaluate the mobility matrix, following Sec. II. As mentioned
in Sec. III, finite time-step methods can lead to nonphysical
overlapping of spheres, and additional procedures that pre-
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FIG. 6. The relative trajectory of the sphere centers. The positions are de-
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FIG. 8. Spectral density 	 �square of the magnitude of the Fourier trans-
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time. Top: The optimal trajectory with initial conditions given by Eq. �8�.
Bottom: A slightly perturbed trajectory with respect to the optimal one. The
spectral density 	�f� was normalized to one at the maximum.
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vent this artifact are necessary. Adaptive routines can avoid
that problem, but they slow down when the spheres approach
each other and the timestep is decreased to very small values.

We consider two alternative ways of avoiding overlaps
in the fixed timestep methods, i.e., the elastic collision
method and radius renormalization method, as outlined in
Sect. III. Those are incorporated into three integration
schemes: Fourth order Runge–Kutta method �RK�, fourth or-
der Adams–Bashforth �AB� predictor method, and implicit
Euler �IE� technique �described in Appendix B�. This makes
six different possibilities �IEC, IER, RKC, RKR, ABC, and
ABR�, depending on the choice of the integration scheme
�IE, RK, and AB� and the overlap-avoiding method �colli-
sions “C” or renormalization “R”�.

We also compare the above routines with the adaptive
Runge–Kutta, ARK, integration scheme, supplemented by an
additional time-step reduction by a factor of 2, if potential
overlaps are detected. For the special case of the error den-
sity per unit time �=10−10, this procedure coincides with the
benchmark routine discussed above, because no potential
overlaps are detected.

Using less accurate routines is reasonable if they are
faster than our reference method. To measure routine effi-
ciency, we will use TCPU, which is the time �in seconds� that
CPU needs to calculate the system evolution during the time
unit �s, defined in Eq. �7�. For fixed time-step routines, TCPU

is almost constant during evolution. In the ARK method,
time step decreases when spheres are closer to each other, so
TCPU should increase in such cases. Indeed, such a tendency
can be observed in Fig. 9, where we plot the time depen-
dence of TCPU and of the smallest gap between the sphere
surfaces,


 = min�r12,r23,r31� − 1. �10�

The results obtained with different integration schemes
are compared in Fig. 10 and Table I. For the fixed time-step
routines, three values of the time step are used to control the
convergence. For the ARK procedure, the time step is chang-
ing, but we can control the average time step �dt
 by chang-
ing the error density per unit time �. For the data in Fig. 10

and Table I, we choose � in such a way as to obtain �dt

similar to the values used in the fixed time-step routines. In
Fig. 10, the decimal logarithm of the gap between surfaces of
one pair of spheres, r12−1, is shown as a function of time.
Negative values of r12−1 are omitted from the plots. In Table
I, also other features of the periodic trajectory are explicitly
compared: The period T, the minimum value of r12−1 over
the period 
min, and the average computational time �TCPU
.
Additionally, it is also indicated if potential overlaps have
been detected during the integration and treated by the cor-
responding overlap-avoiding procedure. Notice that in the
case of radius renormalization methods, when the spheres are
allowed to overlap, 
min becomes negative.

As seen in Fig. 10 and Table I, there are significant, both
quantitative and qualitative, differences between the results
obtained by different methods, which will now be discussed
in detail. A striking feature of IEC trajectory in Fig. 10 is the
presence of long chains of collisions, corresponding to non-
smooth parts of the plots. This shows, surprisingly, that
single collisions are rare. The effect of collisions is the most
significant in the IEC procedure; actually, the collisions
change the dynamics of very close particles in a profound
way. In the case of the IE scheme, paradoxically, the colli-
sions induce the tendency of particles to stay together longer
and at smaller distances than the ones calculated by the ref-
erence fourth order ARK scheme.34 Decreasing the time step
in IEC procedure, we observe that the period of the motion is
constantly increasing, whereas minimal distance between the
sphere surfaces is decreasing, reaching the numerical noise
level at dt=0.001. Therefore, IEC routine does not seem to
converge. Moreover, the results of IEC method differ from
the benchmark solution. For the IEC scheme with the small-
est time step dt=0.001, the period is T=209 and the minimal
distance between the sphere surfaces rmin=5�10−15. For the
benchmark solution, the period and the minimal distance be-
tween the sphere surfaces are T=170 and rmin=3�10−8,
respectively.

In the solution obtained by the IER routine, the particles
overlap most of the time, as illustrated in Fig. 10. The period
is about 50% larger than that in the case of the benchmark
motion and does not seem to converge to the proper limit
with decreasing time step. Moreover, the depth of the overlap
significantly increases with time, as seen in Fig. 11. Summa-
rizing, both IEC and IER procedures fail to reproduce the
benchmark solution.

Contrary to the IE procedures, both the Adams–
Bashforth and fixed time Runge–Kutta integration methods
do converge and are able to reproduce the benchmark solu-
tion for sufficiently small time step, as indicated in Fig. 10
and Table I. Such a result is to be expected because for dt
�0.001, no potential overlap has been detected and, there-
fore, not a single event of radius renormalization or elastic
collision has occurred.

Comparing accuracy of the overlap-avoiding procedures,
based on Table I and Fig. 10, naturally, we need to concen-
trate on time steps large enough for overlaps to occur, i.e., on
dt=0.1 and dt=0.01 �and the corresponding values of �dt

for ARK�. Analyzing trajectories evaluated with the time step
dt=0.1, we conclude that too large time steps of the ABC,
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FIG. 9. Computational time of the ARK method TCPU �solid line� and the
smallest gap 
 given by Eq. �10� �dashed line� as functions of time for the
error density per unit time �=10−10.
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ABR, RKC, and ARK procedures lead to separation of the
group of particles, with a single particle left behind a faster
pair, after approximately one period of the butterfly trajec-
tory. The computed evolution is therefore qualitatively dif-
ferent from the benchmark periodic settling. On the other
hand, for the RKR method with dt=0.1, the motion remains

periodic up to at least 103�s, although the period of the mo-
tion is significantly larger than that of the benchmark
solution.

Much better results are obtained with smaller time steps,
e.g., dt=0.01. The AB method has a similar accuracy as the
RK procedure, but it is about five times faster �since it uses
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FIG. 10. The gap between surfaces of two spheres, labeled 1 and 2, as a function of time, obtained with the use of different integration routines and methods
of treating overlaps.
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only one mobility matrix computation per time step, in con-
trast to RK, which needs five such computations�. When the
elastic collisions are used to avoid overlaps, the integration
with AB and RK routines gives nearly indistinguishable re-
sults, as seen in Fig. 10 and in the top panel of Fig. 12.
However, in the case of the radius renormalization, RK
seems to perform better than AB since it avoids sequences of

TABLE I. Comparison of accuracy and efficiency of different integration routines and methods of treating
overlaps.

Time step T 
min �TCPU
 �s� Overlaps

dt=0.1 151 4.0�10−11 0.85 Yes

IEC dt=0.01 186 4.6�10−13 3.25 Yes

dt=0.001 209 5.8�10−15 19.1 Yes

dt=0.1 235 −0.74 0.46 Yes

IER dt=0.01 243 −0.05 2.02 Yes

dt=0.001 245 3.5�10−8 18.9 Yes

dt=0.1 132 1.6�10−9 0.109 Yes

ABC dt=0.01 155 2.1�10−7 1.05 Yes

dt=0.001 170 3.5�10−8 10.2 No

dt=0.1 137 −4.3�10−5 0.108 Yes

ABR dt=0.01 174 −3.6�10−7 1.04 Yes

dt=0.001 170 3.5�10−8 10.2 No

dt=0.1 132 1.7�10−8 0.58 Yes

RKC dt=0.01 155 2.1�10−7 5.75 Yes

dt=0.001 170 3.5�10−8 52.9 No

dt=0.1 238 −9.8�10−6 0.58 Yes

RKR dt=0.01 172 2.5�10−8 5.5 Yes

dt=0.001 170 3.5�10−8 52.6 No

�=10−1 �dt
	0.081 147 2.8�10−8 0.7 Yes

ARK �=10−6 �dt
	0.009 162 6.4�10−8 1.6 No

Benchmark �=10−10
Šdt
É0.001 170 3.5Ã10−8 17.1 No
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FIG. 11. Time dependence of the gap between the surfaces of particles 1 and
2, evaluated by the IER procedure. Negative values correspond to the par-
ticle overlap.
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oscillations between negative and positive values of the gap,
visible as thick black vertical lines in Fig. 10. Such se-
quences has also been reported in an ABR method applied in
Ref. 17 to simulations of sheared hard-sphere suspensions.

Interestingly, the choice of the overlap-avoiding proce-
dure seems to have a greater impact on the trajectories than
the choice of the integration scheme, as may be concluded
from the comparison of the bottom panel of Fig. 12, where
the results of ABC and ABR are plotted together, with the
top one, where the results of ABC and RKC are plotted
together.

In comparison with the fixed time step routines �AB and
RK�, the adaptive ARK method with the comparable aver-
aged time-step is surprisingly efficient, being more than three
times faster than RK and only about 50% slower than AB.

Summarizing, for our benchmark trajectory, the best
choice of the integrating routine seems to be either any of the
radius renormalization procedures �RKR or ABR� or the
ARK method with additional time-step division if the poten-
tial overlap is detected. The best accuracy can be obtained by
the RKR procedure with sufficiently small time steps �for
dt=0.01, the period of the motion is computed with the ac-
curacy of 1%�. On the other hand, if computational speed is
a main concern, then one can choose the ABR or ARK
method. The first of them, ABR, is the fastest and gives 2%
accuracy of the period �for dt=0.01� but leads to unphysical
oscillations between the positive and negative values of the
gap size. The second one, ARK with a comparable averaged
time step, results in 5% precision of the period and is only
50% slower than ABR.

Generalization of these conclusions for other systems
should be treated with caution because for our benchmark
trajectory, the sliding motion plays the most prominent role.
Especially at the smallest gaps between the particle surfaces,
where the potential overlaps are detected, the sliding velocity
is many orders of magnitude larger than the shearing one. It
is not clear if this feature is indeed generic for all the poten-
tial overlaps. Also, the presence of the external shear flow
may lead to additional complications.17

VI. CONCLUSIONS

In this study, we considered the dynamics of close
spherical particles moving in a viscous fluid. A benchmark
periodic trajectory of three spheres was found, with the par-
ticles remaining constantly within a very short distance to
each other. The period of the motion corresponds to about
170�s �85 Stokes times�, and the longest simulations reported
reached more than 100 periods. Most of the time, the par-
ticles are in a sliding motion relative to each other, followed
by rapid changes of direction of the relative motion. The
smallest gap between the particles constantly remains below
1% of their diameter. This is in contrast to previously re-
ported trajectories that mostly have a scattering character,
i.e., particles drift away from each other after some short-
distance interaction. Permanent proximity of the particles
makes the considered trajectory an ideal benchmark for com-
parisons of accuracy between different numerical methods.
In particular, it is possible to test different approaches to the

problem of the particle overlaps that are numerical artifacts
of most fixed time-step integrating routines. The results of
our analysis show that the details of the particle motion
strongly depend on both the method used to integrate the
equations of motion and the method used to avoid the over-
laps.

For sufficiently small time–steps, the Runge-Kutta and
Adams–Bashforth fixed-time integration routines give rea-
sonable results, if combined with the radius renormalization
or elastic collisions as the overlap-avoiding procedures. Also,
the adaptive Runge–Kutta scheme with additional time-step
division performs well. For our benchmark trajectory and a
given time step, the best accuracy is obtained by the fixed-
time Runge–Kutta method with the radius renormalization,
RKR, which also allows for the largest time-steps. On the
other hand, the fastest is the AB procedure with the radius
renormalization, ABR, which evaluates the period with a
comparable precision to RKR but leads to a large number of
oscillations between positive and negative values of the gap
that separates the particles’ surfaces. Alternatively, one can
use the adaptive Runge–Kutta method with the additional
time-step reduction in the case of potential overlaps, ARK,
which produces acceptable accuracy with reasonable speed.
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APPENDIX A: ERROR CALCULATION
IN ADAPTIVE RUNGE–KUTTA METHOD

In this appendix, we discuss the accuracy of the adaptive
Runge–Kutta algorithm, following Ref. 36. A good estimate
of a truncation error of the algorithm is

�1�dt� = ��i=1

3
�ri

�5��t + dt� − ri
�4��t + dt��2, �A1�

where �ri
�5��t+dt�−ri

�4��t+dt�� is the difference between fifth
order and fourth order Runge–Kutta results for the position
of particle i at the next time step dt. This error is then com-
pared to the desired accuracy �0,

�0�dt� = �dt , �A2�

where � is the error density per unit time, specified at the
beginning of the simulation. A new value of the time step dt�
is then calculated as36
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dt� = �Sdt��0

�1
�1/5

if �0 
 �1

Sdt��0

�1
�1/4

if �0 � �1,� �A3�

where we take the safety factor S equal to 0.95.

APPENDIX B: IMPLICIT AND EXPLICIT
EULER METHOD WITH COLLISIONS

As described in Sec. III, the explicit Euler method with
hard-sphere collisions may be represented formally as

X�t + dt� = X�t� + �V�X�t��dt�HS �B1�

where an index HS means that a hard-sphere dynamics is
used to advance the system by dt. In the above equation, the
particle velocities are computed at the beginning of the time
step, just as in any explicit �forward� Euler method. How-
ever, explicit Euler method suffers from numerical instabil-
ity problem and one needs to resort to impractically short
time steps to obtain reliable results. To avoid this problem,
the following implicit scheme may be used:

X�t + dt� = X�t� + �V�X�t + dt��dt�HS, �B2�

which we are going to call “implicit Euler method with
collisions” �IEC�. To find X�t+dt�, we use a fixed point
iteration scheme, with an initial guess X0�t+dt�=X�t�. The
iterations are stopped when the difference between the val-
ues of X�t+dt� calculated in successive iterations is smaller
than 10−5.
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