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The virial expansion of the collective mobilifsedimentation coefficient is considered for hard
sphere suspensions at equilibrium. The term of the second order in volume fraction, which involves
three-particle hydrodynamic interactions, is calculated with high accuracy. To achieve that we
represent the collective mobility coefficient as the sum of convergent integrals over particle
configurations. In this way the short-wave-number likit:-0 is avoided. Moreover, an efficient
numerical procedure is applied to evaluate the hydrodynamic interactions. The algorithm is based on
the multipole expansion, corrected for lubrication. The method allows us to analyze contributions to
the collective mobility coefficient from different configurations of three particles and to select the
dominant part. This suggests a general approximation schem2002 American Institute of
Physics. [DOI: 10.1063/1.1484380

I. INTRODUCTION whereS(0) is value of the structure factor f&e=0, D is the

g single particle diffusion coefficient, related to the tempera-
In the last few decades there has been a wide inferést ture T, the Boltzmann constarkg and the single particle

in investigations of structure, transport properties, and micro-__, .. . . 15 .
hydrodynamics of suspensions. One of the fundamenta'?1Oblllty to by the Einstein's relatioft; that is, Do

. . ' . . =kgTug. For a sphere of radiug, immersed in a Stokes
problems is sedimentation, that is how a suspension moves . . . 1 S
fluid of viscosity », uo=(677na) ~. The basic issue has

under a given force field, e.g., gravity. The basic quantity in ) i ) o
been to determine how the sedimentation coefficient depends

description of this process is the sedimentation velotity ) i X o
which is the averaged velocity of suspended particles, med2" the suspension concentration. This concentration is usu-

sured with respect to the mean suspension veldgiyac-  ally expressed in terms of the dimensionless volume fraction
tually, the quantity of interest is the dimensionless ratitof ¢ equal to the volume of all the particles, divided by the
andU,, whereU, is the velocity, with which a single par- total volume of the suspension.

ticle would move in the suspending fluid under the given  Both the sedimentation coefficiekt and the collective
force field in absence of any other particles. This ratio isdiffusion D, have been extensively investigated experimen-
called the collective mobilityor sedimentationcoefficient tally. The collective diffusion has been studied by the dy-

K, namic light scatteringsee, for example, Refs. 16-20he
sedimentation has been analyzed by various methods, among

v others, in ultracentrifugt’'® for fluidized beds and for

K= Uy’ @ suspensions settling under gravity by particle trackig,

by visual observation of sedimenting boundafié€ and by
The coefficienK is also needed to describe the macroscopi@n acoustic techniqu@.The concentration dependence of the
diffusion, since the collective diffusion coefficie, is  sedimentation coefficienk (¢), has been measured for the

given ag'3 whole range of volume fractions, up to the phase transftion.
There exists also numerical simulations of the sedimen-
D —K & @ tation coefficient for various concentrations, in particular via
¢ S(0)’ numerical solutions to the Stokes equations with periodic

boundary conditiorté?® and via a discretizedattice) Bolt-

dAuthor to whom correspondence should be addressed. Electronic maifmann equati_omsee’ e.g. _Refs' 20, p9The numerical re-
mekiel@ippt.gov.pl sults agree with the experimental data.
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There has been a large interest in theoretical derivatiotails of the calculations have not been publisAedones,
of the concentration dependence of the sedimentation coeffMuthukumar, and Cohéf kept several terms in the scatter-
cient. The main problem has been related to evaluation of theng expansion of the three-particle hydrodynamic interac-
equilibrium average of the mobility matrix. That is, in a na- tions, and geb.=18.27. Clercx and Schrathdeveloped a
ive approach to this problem, there would appear infinitiesystematic approach, and dget=20.8. They used the mul-
due to integration of the long-range hydrodynamic interactipole expansionthowever, without taking into account the
tions. There are two main methods how to tackle this probshort-range lubrication effegt$o calculate numerically the
lem. The first ong**3!is based on averaging the Fourier three-particle mobility matrix, averaged its Fourier trans-
transform of the mobility matrix, and then taking the limit form, and numerically took the limik—O. It is hard to es-
k—0. Although in this procedure divergences do not appeatimate the accuracy of results obtained in this way.
but in practice it is cumbersome to perform calculations for  In this paper we construct a method of calculating the
many small values ok, if the mobility matrix is obtained coefficientb., which allows us to control the accuracy of the
numerically®? An alternative is to derive a finite expression final result. In order to achieve that, we correct for lubrica-
for the sedimentation coefficient by a direct averaging of thdion to speed up the slow convergence of the multipole ex-
microscopic expressions for the mobility matrix. The key pansion for the hydrodynamic interactions. Moreover, we use
point in this approach is to evaluate velocities of sedimentinghe regularization scheme without taking the Fourier trans-
particles with respect to the mean velocity of the whole susforms, and in this way we avoid uncertainty of taking the
pension(particles plus fluitl*?3In practice, it means sepa- limit k—0 from numerical expressions. This work has also
rating out from the mobility matrix all those terms, which another goal. That is, to point out the structure of derivation
contribute towards the mean velocity of the suspension. Foand to analyze significance of contributions from different
small concentrations, such a procedure was performed bgonfigurations of three particles.

Batchelor*?'® and in general case, by Felderti$f3® We start in Sec. Il from an outline of the algorithm,
Nozieres®” and Noetinge?® In the following, such a regu- constructed by Cichocki, Felderhof, and their
larization scheme will be outlined and applied. co-workerst®=5% which we apply to calculate numerically

In this work we concentrate on theoretical investigationhydrodynamic interactions between spheres in the Stokes
of a suspension made of identical spheres of equal edii flow. In this schemdsimilarly as in another on&§™>9, the
immersed in the Stokes fluid. We assume that the suspensionultipole expansiofi’”® which takes care of the long-
particles interact with each other as hard spheres. The votlistance hydrodynamic interactions, is combined with the lu-

ume fraction¢ of such a suspension is given as brication theory, which accounts for the short-range behav-
. 3 ior, according to the idea of Brady, Bossis, and
¢=zma’n, (3 Durlofsky5455%%with the improvements introduced in Ref.

where the number density=N/V is the number of particles 22~ Next, in Sec. Ill, we describe the regularization

per unit volume. There have been attempts to evaluate the@rocedure”**which we use to determine the sedimentation
retically the dependence & on the volume fraction in the coefficient. The key point is to calculate the particle current

whole range ofp, with the use of various methodsee, e.g. relative to the average suspension velocity. The scattering
Refs, 39-42 When the concentration is not very hi'gh one Series is split into different structures, and the expansion of

may use as the method the virial expansion of the collectiv&o”elaﬂon functions is carried out. This method is based on
mobility coefficient, that is the expansion Kfin powers of direct evaluation oK, without the Fourier transformation.

the volume fraction, Then, in Sgc. v, we apply.this procedure to virial ex.pansion
of the sedimentation coefficient up to the three-particle con-
K=1+\cp+beg?+ -+ (4)  tributions. Apart from the self-diffusion coefficietand the

In this paper we concentrate on this approach. The prot_wo-partlcle contributions, we get several new terms, corre-

cedure to evaluate the two-particle coefficiantwas devel- sponding to different three-particle configurations. In Sec. V

oped by Batchelor in Ref. 12, where also the numerical valu%/e evalu_ate all the _terms; some Of. them analyt|ca||_y, some
\.= —6.55 was given. Later a systematic method to repre2y @ Series expansion of two-particle hydrodynamic func-

sent the two-particle hydrodynamic interactions with the usé'onS’ and the Ia_st one t?y the_ Monte Carlo me_thod O.f Inte-
of expansion in inverse powers of the interparticle distaRce gratlon over relative configurations of three particles. Finally,

has been developed and applied to the sedimentation proﬂl Sep. \./l’ we |dent|fy. the ter_ms, Wh'(?h. give the dominant
lem. To evaluate.,, Felderhof? and Fijnaut* approximated contribution to the sgdlmentanon coefficient, and we suggest
the two-particle mobility matrix by taking into account all a fule of approximation.

the terms up t®R~’, and get\ .= — 6.44. With 150 terms in

the expansion, more accurate valuengf= —6.546+0.001

was obtained in Ref. 45. Il. HYDRODYNAMIC INTERACTIONS

Evaluation of the three-particle hydrodynamic interac-geTwWEEN MANY SPHERES: MOBILITY PROBLEM
tions is more complex than in the case of two particles,

therefore until now there has been no calculation of the co- Consider N spheres of equal radii which undergo ex-
efficientb, with a comparably high accuracy as fog, and  ternal forcesF, ... ,Fy and external torque¥y, ... ,Zy

this paper is a step in this direction. Beenakker and Mazufin the following abbreviated ag and 7)), and which are
evaluatedb,, in Ref. 46(together with\ ), however, the de- immersed in an incompressible fluid of viscosifyAssume
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that the Reynolds number is low and that the fluid velocityQ) are evaluated in terms ¢F andZ-. In the absence of an
and pressurep(r) and p(r), satisfy the stationary Stokes external ambient fluid flow this relation has the form,

equationg, 0
u T U
7V2(r)—Vp(r)=0, V-v=0, (5) o~y w7 (10
with the stick boundary conditions at the particle sun‘ace§mhere’“pq (p.q=t or r) are the A x 3N Cartesian tensors
S and the superscriptsandr correspond to the translational
v(n)=w,(N=U;+Q;x(r—r,), and the rotational components, respectively. Théx@N
) matrix, which appears at the r.h.s. of H4O) is called the
for reS,i=1,... N, (6)  N-particle mobility matrixt®” and denoted in short gs. Its

wherer; stands for the position of the center of particle NVerse is called the friction matrix. =
while Uy, ... Uy andQ,, . .. Qy (in the following abbre- The analysis of Eq(7) allows to express the mobility

viated asU and Q) are the translational and the rotational (10 @s the multiple scattering ser?és{equi\{glent to super-

velocities of all the particles. position of all the rgflepuo@ f%r the mobility problerf.
To solve Egs.(5)—(6), the densityf,(r) of induced 1he sum of this series is given ds

force$~%3is introduced for each particie=1,. .. N. These

forces, located at the particle surfaces, are exerted onto the n= o+ poZo

fluid by the spheres and are determined by the boundary 1+GZ,

conditions(6). The rigid body motion of the particles may be R

now interpreted as a fictitious fluid flow for—r|<a,  Here uq is the one-particle mobility. The operatdp=2Z,

which obeys the Stokes equatiof®. This way Egs.(5),  —ZomoZo differs from Z, for =1 only>*®’ (see Appendix

with the additional source term at the r.h.s., equal tofor its matrix elements The operatoGZO produces subse-

—3N fi(r), may be extended onto the whole spft€® quent scatteredreflected velocity fields, which are force-

Their solution for an unbounded fluid, which is at rest atfree and torque-fre.

GZopo- (13)

infinity, v(r), can be written as Now let us consider the cluster expansion of the mobility
N matrix. That is, let us decompogeinto the M-particle clus-
i M)yq ... = =
v(r)=2 T(r—r’)fj(r’)d3r’, @) ter ma.trlces;ujk (1 _M) (M—l,.:.,N). FOF.j—k the
i=1 M -particle cluster matrices were defined, e.g., in Ref. 52, and

for j#k they are given as

M1l M)

whereT denotes the Oseen tenSor,

T(r)= (1+7F). (8

M
8mnr
! =uP(12+ 3 p2)+ o pL M),
Now let us choose a particleand consider Eq.7) at its i#1.2
surfaceS, . Taking into account the boundary conditidis, (12)

one can write Eq(7) in terms of integral operators as
In particular, u{2(12)= u,5(12) and u$3(123)= u,(123)

—mx(12). Here we consider a semidilute dispersion, and

clusters of more than three particles will not be taken into

account.

In the above equation we decomposed the integral operator Tne cluster expansion of the mobilit2) is evaluated

at the r.h.s. of Eq(7) into two parts. The first orfédescribes by splitting the multiple scattering serigdl) into terms,

the contribution to the velocity of particiefrom the induced  \yhich describe the interactions within the corresponding
forces located on the same particleThe second part in-  cjysters. The three-particle cluster mobility.

volves Green operatdt¥® G(ij), wherej=1,... N, but

j #i, which account for the contributions g coming from @)

other particles than The operatos(ij) it is not symmetric mi7 (123 =
with respect to the interchange ofndj.

To solve the integral Eq(9), the multipole expansion
is introduced. In this way the problem is reduced to an
infinite system of linear algebraic equations for matrix
elements, which are labeled by the particle number and bg
three multipole indiced, m, o, wherel=1,2,..., while
m=—I,...,+1, and 0=0,1,2. The details on the integral _ 5
operatorsG, Z, may be found, e.g., in Ref. 53; their multi- #o(1)Zo(1)G(1320(3)G(32)Z0(2) po(2). a4
pole matrix elements are given explicitly in the Appendix. In the following we assume that there is no applied torques,

The system of equations, which follow from the multi- Z7=0, and we are interested only in the translational motion
pole matrix representation of E() allows to solve the fric-  of all the spheresl). Therefore we evaluatg" only; so as
tion and mobility problems. In the mobility problefi) and  we simplify the notation: from now o will stand for u'.

wi=zal<i>fi+j§i G(ij)f;. 9)

!

(123 (13
12

1
MoZo N GZopo
1+ GZ,

is the sum of scatterings, which start from particle 1, finish at
particle 2, and involveall three particles(123). The last
roperty is denoted by prime. For example, the lowest order
cattering inu{3(123) has the form,
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I1l. SEDIMENTATION COEFFICIENT 1 o .
K= —Ilim[k- X(k)-K]. (21

In this section we outline the methd which leads Nio k-0
to the microscopic expression for the sedimentation coeffi-
cient K, defined in Eq.(1). Let us stress that although we

a?7,38

In general it is a cumbersome task to compKiteith the

. . .~ use of the above formula because of the long-wavelength
start from analysis of the Fourier transforms, but the final;™ >
limit involved. Moreover, due to long-range of hydrody-

expression forK has a form of a sum of the convergent o . - ) )
namic interactions the kerne{(k) is not continuous ak

integrals over particle configurations, with ke-0 limit in- a k s
volved. To begin, let us consider the sedimentation phenom= 0: SO that one cannot just pkt=0 there. This problem can

ena when an external force fiei{r) is applied to suspended be_resolved_ by thg regularization procedure, the idea of
particles, so thak(r;) is equal to the forceF; acting on which was first outlined by Felderhffand then developed

particlei. The external field induces a particle current, which?Y N02|qes?7 Felderhof;® and Noetinge?® The rest of the
can be described by the density chapter' is devoted to a brief summary of those results.
As it has been pointed out by many authgsse, e.g.,
) N Refs. 12, 13, 33, 34in general, the external forde gives
J(r):izl Ui é(r—r). (15 rise not only to the particle current, but also to the nonzero
flow of suspension as a whole. The idea behind regulariza-
We assume that the distribution of particles is the equition is to calculate the particle current relative to the average
librium one. The respective averaging operation will be de-velocity of suspensiotv(r)), which incorporates all long-
noted by(-). Relation between the average particle currentange terms of the r.h.s. of E(L6). The definition ofv (r) is
and the force field is a linear one, as follows from Ef)).  the following: for a given configuration of particlagr) is
With the use of the Fourier transfornggk), E(k) of the  equal to the fluid velocity whereveris inside the fluid and

current and of the force field, respectively, one has coincides with the rigid body motion wherevellies inside
. A the particle. It has been proven in Refs. 35, 38 that in the
(JK))=X(k) E(k), (180 |ong-wavelength limit Eq(16) can be rewritten as
with the response kernel given by (](k))—n(z”)(k))=5(i”(k) E(k), k-0, 22)
N
)A((k)zé > <Mijeik(ri—rj)>, (17)  where the “irreducible” kernelX™(k) is continuous atk
ij=1

=0. Moreover, thek— 0 limit of k- X" (k) -k is the same as
whereV is volume of the system. It has to be stressed thatthis of k- X(k) - k. Taking into account isotropy of the system,
strictly speaking, Eq416)—(17) (and also the corresponding we therefore get foK the expression, which may be evalu-
expressions in this sectiprare valid in the thermodynamic ated directly, without taking any Fourier transforms,
limit, i.e., whenN— o, V—oo, but N/V=const.
The above kernel can be decomposed into two parts, K=

TrX"(k=0). (23
S 5 5 Nuo
X(K) = Xseit Xo(K). (18

The self-term corresponds to the sum overj in Eq. (17)
and can be written as

The structure of the kerné&{"(k) is analogous to the struc-
ture of X(k), given by Eq.(18). In the following we are
going to concentrate on the “off-diagonal” terﬁ(ﬂ’(kz 0),
Xeer=N{ pt11). (19  as the “self” term Xo= X, does not depend ok. For

iy —
Its virial expansion has been analyzed in Ref. 52. Xo (k=0) one gets

The kernelX,(k) in turn contains the off-diagonal terms i ~ ns
with i #j in Eq. (17). With the use of the cluster expansion X, (k=0)= 22 =
(12), its structure can be expressed as '

* s (9(1...q)7i"
Rok)= 2 —(S_”Z), x J d2--ds[g(1--s)u3(1--9)]",  (29)

where the exact meaning pf]™ is to be elucidated.

First, the notion of articulation structure is introduced

and assigned to the scattering expansion terma af Eq.
(20) (11). An operatorG is called the articulation line if all

the particles following it in the scattering sequence are
where the integral is over positions of particles 2,3,s,  different from those, which come before it. The scattering
while n is the number density, antfg(1---s) stands for the sequence with no articulation line is said to®drreducible.

s-particle equilibrium distribution function. As far as the On the other hand, the scattering sequence with at least one
cluster expansions are considered, it is worthwile to mentiorrticulation line is said to bes-reducible. For any such

xfdz---ds 9(1--s) wid(1--s) &K1,

Ref. 69. _ . o . _ G-reducible sequence of scatterings, which starts at particle
The sedimentation coefficieit, introduced in Eq(1), 1 and ends at particle 2, the set of particle labels. 1,2,
is related to the elemenk- X(k) -k (wherek=k/|k|) by is partitioned into a sequence of disjoint subsets
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C.,Cy, ... C, such that £C,, 2e Cy and each subset is Definition of C,,(23) is a straightforward generalization of
connected with the preceding subset by an articulation lineEq. (33); C' is the transposition o€.
Such a partition is called the articulation structure and de-  Next with each articulation structur€g|---|C,) one as-
noted as C,|C,|---|C,). For example, the term sociates an appropriate correlation functibC,|---|Cy),

A N which is called the block distribution function. The block
Po(1) Zo(1) G(12)Z0(2)G(23) Zo(3) G(32) Zo(2) po(2) distribution function h(C), which corresponds to a

G-irreducible termu(C) is just the usual particle distribu-

has the articulation structure of the form|28), as particle 1 tion function,
is connected with the group of particles 2 and 3 by one _
operatorG(12) only.[Note that scattering sequences, which h(C)=g(C). (34
share the same articulation structure, may have differenthe block distribution functions assigned ®®-reducible
articulation  lines. For example, the sequencestructures are defined by the following recursive relation:

#o(1) Zo(1) G(13) Zo(3) G(32) Zo(2) mo(2) has the ar- h(Cy|-++|Ci|Ci+1)=h(C4|--*|Ci{ Ci+1)

ticulation line G(13) and the same articulation structure

(1]23) as the expressiai25), for which the articulation line —h(Cyf---[CN(Ci ). (35)
is equal toG(12) ] Finally, [g(1- - -S) uy(1:--S)]™ is defined in terms of ar-

Therefore each term{3)(L---s) in the cluster expansion ticylation structures and block distribution functions as
(12) may be written as %) irr
91+ 9)d(1:+-5)]

S
pI(Ls)=2 X A Cl[Cy), (26) s _
k=1 (Cred =2, 2 Cil|CYRACI - ICo. (36)
where the second sum goes over different partitions of the set ! k_
of the particle labels (1,2, ,s) into a sequence & disjoint For two particles,
subset,C,, ... ,Cwith 1eC;, 2e C,. The expression 12) D (1T =T a(12) — 117 (112) + a(12) Fero( 12
f1AC1|C5|--+|Cy) stands for the sum of all the terms in the [9(12)4137(12]"=[9(12) ~ 1A 1]2) + 9(12)Fd 237)

scattering expansion q&{3(12; --s), which share the same
articulation structure ©,|C5|---|Cy).
For example, for two particles,

with J115(1]2) andjiy(12) given by Eq(28).
For three patrticles,

fird 112)= po(1)Zo(1)G(12Z(2) ro(2), (27) [9(123p7(123]"
7112(12)=M(122)(12)—7112(1|2), (28) 29(123)7512(123)+[g(123)_g(13)]ﬁ12(132)
where the scattering sequence in E2) is determined from +[9(123 ~9(23)J11(1]32)
Eq. (11). +[9(123-9(13 - g(23) +11x(1/3[2), (39

For three particles, ] ) ) . )
with the articulation structureg given in Eqs.(29)—(32).

TuA(1]312) = — po(1)Zo(1)G(13)Z(3)G(32)
XZo(2) po(2), (29 IV. VIRIAL EXPANSION OF THE SEDIMENTATION
- COEFFICIENT
M12(132)=C11(13)G(12)Z(2) mo(2)
In this section we expand E@3) in powers of volume

+Cia(13G(32)Z6(2) o(2) = A 1I3]2),  fraction to evaluate the sedimentation coefficient up to
(300  O(¢?), as indicated in Eq4). We quote known results for
_ T the linear term in Eq(4), A:¢, and for the quadratic terms in
1132 = po(1)Zo(1)G(12)Cyy(23) the self-contributions, defined by E(L9). We use Eq(24)
+ 1o(1)Zo(1)G(13)CLy23) ~ Fig(1[3[2), 0 evaluate the remaining part b”.
First, we perform virial expansion of the hard sphere
(3)  equilibrium correlation functions in powers of volume frac-

Pl 123 = pf3) (123 — iy 132) — g 1/32) tion ¢,
— uA1(32). 32) g(L-+8)=W(L--8)[ 1+ pgM (L --s)+- -], (39
where

Here the operato€,(13) stands for the sum of those scat-
terings in Eq.(11), which contain only two particle$l3), ° N
and which start from particle= 1 or 3, and finish at particle W(1:-+s) :i>111 W(ij), (40
=1 or 3, I~
andW(ij) are given as
0 for |ri—r|<2a,

(13). (33 Wi - Iri=ril

Kl 1 elsewhere.

Cu(13)=—

1 o
Moo —GZ,
1+GZ,

(41)
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In particular/® 2 RS,
b2:_ d3R12 8_ 6R12+ -
sz TR J1<Ryp<2 2
8—6R;,+ — for 1=sR,<2,
gW(12)= ”2 t (42) X T w2 (12)]. (49)

0 elsewhere. ) ) )
To calculate this term, we perform the scattering expansion

From now on we use dimensionless distances, normalized bgf the two-particle mobility in inverse powers of the inter-
the particle diameter R;=r;/(2a), R;=R;—R; andR;;  particle distanceR, up to 1R°®, and we get
=Rl

Next we perform virial expansion of the sedimentation ~ P>=13.6386. (50
coefficientK, defined in EqJ1), i.e. we specify the coeffi-
cients\. andb, in Eqg. (4). Coefficient\. comes from two-
particle hydrodynamic interactions. It consists of two parts,

The result agrees with the vallg=13.64 given in Ref. 32.
The other parts in Eq47) correspond to contributions
from the three-particle terrhg(123)u{3(123)]'", which is
Ne=Nseirt Ao - (43)  specified in Eq.(38). To calculate those contributions, we
have to expand the block distribution functions upQ6¢).
In Eq. (43), Ageir @ccounts for chains of two-particle scatter- To simplify this procedure, we make use of the correspond-
ing processes, which start and end at particle 1. Such selfag symmetry of the response kernel, and we perform per-
contributions were calculated by Batchetdand next recal- mutations of the particles in the expressi@d), to get the
culated with higher accuracy by Cichocki and Feldeftidf,  same articulation lin€(23) for each terniby analogy, we
get the same articulation lin@(13) for all the terms in the
Aseir= —1.8315. (44) expression31)].
So we will need only the following three-particle hard-

In Eqg. (43) A, accounts for chains of two-particle scat- %phere block distribution function@5):

tering processes, which start at particle 1 and end at particl
2. Equationg37) and(41) allow us to writeA, as a sum of

two parts: with virtually overlapping and with nonoverlap- 9(123~9(13)~g(23 +1=F(1W(1HW(23)

ping particles 1 and 2, +1(13 (23 + O(¢),
2 (51)
No=——— ARy, Tr g (1]2)
THo JRyp=1 (123 —g(13) = f (12)W(13)W(23)
2 ARy, Tr g (12). (45) +W(13)f(23)+O(¢), (52
™o Ri=1
0(123=W(123 + O(¢), (53

The virtually overlapping part is equal to5 (see Refs. 12,

42-44, 46. The nonoverlapping integral was calculated ap-wheref(ij)=W(ij)—1 is the Mayer functior®
proximately in Refs. 12, 43, 44, 46, and recalculated with  Evaluation of the response kern@4) may be further
higher accuracy in Ref. 45 to be equal to 0.285. Combinatiosimplified. To this goal, the Green operat®(ij) is decom-

of those results with E¢(44) gives® posed into a long-range paf(ij), and a short-range part,

\o— - 6.546. (46) G*(ij) (the details are given in the Appenglix

To describe the structure of the coefficidnt, we de- G(ij)=G(ij)+Gij). (54)

compose it into seven parts of a different type, = _ _
By definition, G(ij) consists of all the terms, which scale as

! Ri]”, wheren<3, for R;;— 0. Taking into account transfor-
bc:Z b; . (47) mation properties of the pa®S(ij) under rotations of the
=t reference system, one obtains the following relatese Ap-

The first termp; , is the contribution coming frodyy;, ~ PENdX,
given in Eq.(19). That is, b, is the ¢? coefficient in the
virial expansion of 'the self-diffusion coefficient. It has been f d3RijGS(ij YW(ij)=0, i#]. (55)
already calculated in Ref. 52,

b, = —0.219+0.004. (48) Now we use expansion of the block distribution func-
tions from Egs.(51) to (53) and the scattering sequences
The second termly,, accounts for the two-particle con- from Eqgs.(29) to (32) to write down explicitly the contribu-
tribution,[g(12)u(122’(12)]‘”, given in Eq.(37). Due to virial  tion to sedimentation coefficient from the three-particle term
expansion of the two-particle equilibrium correlation func-[g(123)u!{3(123)]"". With the simplification introduced by
tion g(12), displayed in Eg42), this term has the following Eq. (55), this contribution may be written as a sum of the
form: following expressions:
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bs= —2—12 J d®Ry3d°R
oo M0 JRiz<1Rps<1 13 23
X T po(1) Zo(1) G(13) Zy(3) G(32) Zo(2) po(2)],
(56)
12
b,= f d®R,,d°R
4 772/1«0 R13=1Ry3=1R,<1 13 2
X TH po(1) Zo(1) G(13) Zo(3) G(32) Zo(2) po(2)],
(57)
24
be=— J d®R,d°R
° 772,U~0 R13=1Rys<1 18 2
XTI B(13) G(32) Zp(2) mo(2)], (58
24
bg=— J d®R,5d°R
° 772#0 R13=1Rp3=1Ryo<1 13 28
X TIB(13) G(32) Zo(2) po(2)], (59
12 . . )
7="2 f d°Ry30d°Ro3 T ft1(123)],
T M0 JRi3=1Ry3=1R5>1
(60)

where i1 are defined by the equations, v@ich follow from

Egs.(29) to (32) under the replacemen&— G, p— g, with
the unchanged E@33) for C. The operatoB(13) is given as

+ po(1) Zo(1) G(13) Zo(3). (61)

The integralsh;—b- will be calculated in the next sec-

tion.

V. EVALUATION OF ¢? CONTRIBUTIONS
TO SEDIMENTATION COEFFICIENT

Equations(57)—(60) contain traces of certain operators.

We evaluate them from the multipole matrix elemewigth-
out transformation to Cartesian representatidile use the
multipoles defined in Ref. 53, and in this case E@&7)—

(B8) from Appendix B in Ref. 53 lead to the following for-

mula:

3 > (1mo|--- |1moO).

Tr[ ]: Em=7l’0'l

(62

To evaluate matrix elements of operatdB13) and

Three-particle contribution to sedimentation 1237

(1mO|B(13)[Imo)=(22)"" 7" * Bjmy(Rya), (63

where B,,, has been made dimensionless. To determine
Bims(R13), an algorithm for the calculation of two-sphere
hydrodynamic functions is needed. Following, e.g., Refs. 49,
52, we represerB,,,,(R;3) as a series expansion in inverse
powers of the interparticle distance,

[’

1
Bimo(R13) = > Cgma)_n-
n=4 13
Let us stress that, according to the structure of (Bd), the
long-range parts do not appear in the above equation, there-
fore the series starts from the fourth power. We calculated the
coefficients withn=500, what leads to the desired accuracy.
In our system of coordinates, matrix elements of the op-
eratorG(32) depend on interparticle distan&; and on the
angle 6. Since both operator8(13) and 20 are diagonal in
(m,m"), then Eq.(62) selects only the matrix elements of
G(32) diagonal in fm,m"). Therefore to evaluate the terms
b;, i=3,...,6, we will need only the elements
(Imo|G(32)|21m0), wherem= —1,0,1. With the use of Eq.
(A9) and of the explicit form ofS™~ from Ref. 72, those
matrix elements can be written as

(64)

1 1

(Ima|G(32)|1mO)= WWWU(COSﬁ) §£|—U,

(65)
where w,,(cosé) are dimensionless combinations of the
Legendre polynomial®, (cosé), with L=1,2,3,4[see Ap-
pendix for the explicit form ofw;,,,(cosé)].

After these preliminaries, we are ready to calculate the
subsequent integrals; . Essentially, we use three different
procedures: first fob; andbs, second forb, andbg, and
third for b;. In Sec. V A we outline the first and the second
method, and we apply them to the simplest case: analytical
evaluation ofb; andb,. In Sec. V B we use the first and the
second procedures to simplify and calculate the intedrals
and bg. In Sec. VC we apply the Monte Carlo method to
integrate the last part, and we det.

A. Analytical result for b; and b,

From the structure of Eq56) it follows that calculation
of b; can be reduced to evaluation of products of two inte-
grals of the operatoB: overR;3 and overR,3. The integral
of G(ij) over the virtual overlap of particleisand j have
been carried out analytically in Ref. 42. Taking into account

G(32 in Egs. (57—(59, we use the displacement Ed. (5.3 from Ref. 42, we write

theorems? which contain spherical harmonids ,,(R) with
two different argumentsR=R,5 or Rs,. To simplify calcu-

(Imo|

f G(ij)df*Ri,-}n'm'a')

<
1]

lations, we choose the system of spherical coordinates, in

which 2=Rs;, the unit vectors(R;3, R, span the plane
$=0, and co¥=R;3-R,3. In this way, for example, the

multipole matrix elements of the operat®(13) are diagonal

5“ ’ 5mm!

- 1 Kl,go' s
2a)2|+(r+(r 1

(66)
7 (

where the only nonvanishing dimensionless matrix elements

in (m,m"), and they depend only on the interparticle dis- K| 4o are listed below

tanceR3. In the following, we will need only the elements
(1mO|B(13)|Ima), with m=—1,0,1, which can be written

as

4ar
K102~ K120 — 135’

4ar
K1,00— 9

(67)
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2 20 We carry out analytically the integrals of express{@B)
K111~ g7 K2,00= 75+ (68) over the range specified in E(74), and we get the exact
result,
Taking into account thaZ ¢(2) uo(2) is diagonal in [,1"), 233343
applying Eqs(A6) for 20, and using Eq9.66)—(68), we are by=———--~11.3937. (75)
left only with &1 g3= k1 20in EQ. (56), 20480
92 B. Evaluation of bs and bg by series expansion

by=—— K3 022122 (69) _ o _
From Eq.(598) it follows that bs, similarly asbs, is a

The dimensionless elements,, , wherel=1,2,... and Product of two integrals. With the use of Eq$2), (66)-

o,0'=0,1,2, are evaluated from the multipole matrix ele-(68), expressior(58) for bs is reduced to the following non-

ments of2, in Eqs.(AL)—(A6). Making use of Eqs(68) and ~ °Verlap integral oveR:

(A6), we finally get the analytic result, 63
bs=—— f dR13RI3B1ma(Ria) | k120.  (76)
bg=— 1. (70) T m=-101| JRiz=1
We evaluate numerically the coefficients in the series
expansion(64) of Bi»(R13), and we carry out the integral
(76) analytically for each of the terms in E¢64). Taking
500 terms in the series, we finally get

The integrand ofb, depends on the long-range Green

operatorc_5(32), and therefore it may be simplified, if the
following relation and its transposition are applied:

(Ima|Z4(3) G(32) Zo(2) po(2)|1mO) bg=—0.0647. (77)

=(Imo|Z(3) G(32)|1m0). (71) The integral inbg does not reduce to a product of two
integrals, ads does. To writébg in a form similar to expres-
[Equation(71) may be proved with the use of multipole for- sjon (73) for b,, we apply Eqs(62)—(63) and (65),
mulas from the AppendiX.As a result, in evaluation adb,

there appear only the multipolesn{c|G(32)|1m0) with b :_5_4 d®R..d°R
(o) e A, where 6 m* Ris=1Rps= 1R <1 18 s
A={(12),(20),(21),(30)}. (72) 1
_ , X > s 2 Bimg(Rig) Wime(C0S6).
[There is no (o) =(10),(11), because for suchef) matrix (lo)eA Raz m=-101
elements ofZ, vanish] (79
quatlons(57), (62), (65), (A6), and symmetry property To evaluatebg, we use essentially the same method of inte-
(A1) give gration as fotb,, i.e., the parameterizatiomR(s, R,3, #) and
27 the rangg74). As in Eq.(76), we take 500 terms in the series
by=—> j d°Ry3d°Rys expansion(64) of B|,,,(R.3), and we perform analytically
R1g=1Rp=1R1p=1 the integrals in Eq(78) for each term. The sum results in
X E 2 Wlma(l) 2|,a'a'Wll’ﬂo(cosa) b6: —2.8001. (79)
(loyeA m=-1,0,1
1 I+o C. Calculation of b5 by the Monte Carlo method
X Ry ng) ' (73 To evaluateh,, we calculate the mobility matrix accord-

o ] o ing to the scheme presented in Ref. 52. In this algorithm the
wherew,n,(cosf) are polynomials in cos, given explicitly  myitipole expansion is performed and the short range lubri-
in the Appendix. . cation effects are taken into account. That is, we add a pair-

In our system of coordinate$,, may be reduced t0 @ \yise |ubrication correction to the friction matrix, and we
triple integral, parameterized K2;3, Ry, 6). In this param- hyert the result to get the corrected mobility matrix. To get

eterization, the integral from E¢73) has the form, the corrected articulation structufig;(123), the regulariza-
tion procedure described in Sec. Il is repeated for the cor-
f d®Ry3d°R,q -] rected three-particle mobility.
Rig=1Rp5=1R1z=1 Having the corrected expression ffiy; (123), we apply
2 Rygt1 1 to Eqg. (60) the method of integration introduced in Ref. 52.
=8772( J degJ dRy3 |R2,+R2,~1 d(COSH) The integrand depends on the relative positions only, there-
' ! T 2R1R3 fore b; may be reduced to a triple integral. To carry it out,
" Ryst1 1 we use the. parameterizatidR,,, @, B), displayed in Fig. 1, _
+f deaf dR23fR§3+ R2,-1 d(cosa)) whereR;, is the smallest of the interparticle separations in
2 Rig—1 R the triplet (123, and we perform symmetrization with re-
- spect to the particle labels.
XRRid -] (74) We write Eq.(60) as
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previous papers on this subject. Second, we point out the
dominant contributions in our calculations, and therefore we

suggest a scheme of approximation, which goes beyond the
context of this paper.

The method applied here takes into account lubrication
effects and avoids uncertainty due to numerical evaluation of
the limit k—0. These two reasons, in our opinion, account
for the differences between values obtained in this paper and
the previous result®*®and allow to control the uncertainty.
The total ¢? contribution to the sedimentation coefficient is
evaluated here as 21.918.006. To relate this result to the
previous paper#648we concentrate on comparison with
Ref. 32, which contains the most complete calculation. Our
value is larger by about 5% than 20.8, the number following
from Ref. 32 after correction of a misprint in their £§.24).

The three-particle contribution to the sedimentation coeffi-
F_IG. 1_. For nonovgrlap of particles 1 and 2, the relative configuration of acjant from such chains of scattering processes, which start
triplet is parameterized biRz, a ). and end at two different particles, i.e., 8.498.005, given

in Eq. (82), is larger by about 15% than 7.4, the correspond-
Sin? a sir? 8 ing number evaluated in Ref. 32.

96 _ . .
b7:_f a — If one would like to approximate the three-particle mo-
Mo Jm-p=a=p=m—(atp) sinf(a+ ) bility matrix by a finite sum of expressions, which are pro-
" 3 3 portional to inverse powers of the interparticle distances,
% J dR;, Rizgl E Triw;(123. (80)  then within the method presented here one is able to evaluate
1 I=1 j#i

the corresponding contribution to the sedimentation coeffi-

First, we perform integration oveR;,, applying the cient analytically. For example, let us consider the long-
Simpson method. To get better accuracy we split the intervdnterparticle-distance asymptotics, introduced by Mazur and
[1,<] into five unequal parts, matching smaller size to morevan Saarloos?"*7*By definition, this approximation is con-
steep integrand. In the last intenyd =], it is sufficient to structed as a sum of all the terms in the three particle mobil-
approximate the three-particle mobility by the leading term,ity matrix, which decrease asR, with n<7, when all the
which scales asR;,) 8. The Monte Carlo technique is ap- distances within the triplet are increased by a fa®ofThe
plied to carry out the integration over angles in each parpontribution to the second order virial term of the sedimen-
separately. We perform 30000 Monte Carlo trials Ry,  tation coefficient from the scattering sequences, which start
€ (1,1.005), 150 000 trials fdR;,e (1.005,1.1), 550 000 tri- and end at different particles, that is, the sum of the tdsms
als for Rj,e (1.1,1.9), 158000 trials foR;,e (1.9,5), and Withi=3,...,7, inthis asymptotic approximation is equal to
100 000 trials forR,e (5.¢). Finally, we obtain 163973/20486:8.0065. This exact value agrees well with
8.0, the corresponding numerical estimation performed by

b7=0.169+0.005, 81 Clercx and Schrar®?
where the error bars correspond to the standard deviation due The advantage of the method presented in this paper is
to all the Monte Carlo trials. that it allows to identify the terms, which give the dominant
contribution to theg? term in the sedimentation coefficient.
VI. FINAL RESULTS AND CONCLUSIONS The significant effect of the self-diffusion tertm and the

5 o . term b, following from virial expansion of the two-particle
We evaluateb, the ¢ coefficient in the virial expan- correlation functiong(12), has been already known. Here

sion of the sedimentation coefficient given by Ed). The e analyze how large ares, ... b;, the contributions to
sum of all the three-particle contributions from Sec V iSthe sedimentation coefficient from the scattering sequences,
given as which involve exactly three particles, and which start and
7 end at different spheres. We conclude that all such contribu-
23 b;=8.498+ 0.005. (82)  tions may be approximated by, + bg, which is easy to be
<

accurately calculated. Indeedl,+ bg=8.5936, while the re-
By combination of Eqs(48), (50), and(82), we finally get  maining terms are equal tw;+bs+b,=—0.096, that is, to
the ¢2 contribution to the sedimentation coefficient bs  only about 1% of the three-particle terBy_sb;, given in
=21.918-0.006. Therefore virial expansion & has the EQ.(82). Therefore from all the scattering sequences, which
form, involve exactly three spheres, and which start and end at
. 9 different particles, the largest contribution to the sedimenta-
K=1-6.546¢+21.9184"+---. B3 tion coefficient comes from the configurations with virtual
Discussion of the above results consists of two partsoverlap of two particles, which are not directly connected by
First, we compare the derivation @ contributions to the neitherG nor its long-distance part, as schematically drawn
sedimentation coefficient, presented in this work, with thein Fig. 2. This suggests how to approximately evaluate the
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The only nonzero matrix elements pf, are

2
(1m0|/u0|1m0)=(1mO|Zo|1m0)_1=9—77a, (A7)

1
3 (A8)

= 71:
(1m1| po|1ml)=(1m1|Zy|1m1) 672

For nonoverlapping particles, that is fof>2a, evalu-
ation of (ma|G(ij)|I’m’c’) is based on the displacement
FIG. 2. Relative configuration of a triplet with virtual overlap of spheres 1 theorems for Imo » _the solutions of the Stokes equatldﬁs.
and 2, as in the integrals, andbg. Solid lines connect the particlesj§, These theorems give
which are joined by at least on@(ij) (or its long-distance partin the

scattering expansion of the integrandsbgfandbg . n
Im

(Ima|G(@ij)[I'm'o") =

ST (rij;Ima,l’'m' o)
I"m’

corresponding part of the sedimentation coefficient for con- 1

centrated suspensions. That is, in higher order terms of the

virial expansion, one should sum up the contributions from

similar configurations, that is with virtual overlap of those

particles, which are not connected by any oper@dn the  where the coefficient§" ~ are given in Ref. 72. They are

scattering expansion of the mobility matrix. linear combinations of spherical harmoni¢gy (f;;) and are
proportional to inverse powers of; . The normalization fac-
torsn,, are

Nm, rij>2a, (Ag)
ij

APPENDIX: MULTIPOLE EXPANSION

In the multipole expansion we use two complete sets of
vector functions? which are fitted to the spherical symmetry ~ "im=
of the Stokes equation(): v,.,,(r), regular atr=0, and

Uimo(r), regular at|r|—o, where ¢=0,1,2, while | Sy .
;TUZ(% c gandnzoltll ...xl. These multipole vectors Note that_ the Gr_een operatG(l_j) is not equal tO.G(J')’
were introduced in Ref. 64; here we use the modified defini-and that its matrix elements, given by H#9), satisfy the

tion from Ref. 53. The corresponding matrix elements of theLorentz symmetry,

operatorsZ, 20, and uy between the multipole vectors at o .
the sphere surface are diagonal il () and in (m,m’). (Imo[G(ip)[I'm"e")=(1"m"a’[G(ji)|Imo).  (A1D)
The matrix elements of the operai®g have the forn?>

21+1 (I—m)!

(A10)

4 (|+m)!r’2

e totol -1 The matrix elements o&(ij) are now decomposed into

(Ima|Zo/l'm' ") =8\ Sy 7 (22) Z.ge's two groups, according to the rate of their decay at-o,
(A1) specified by Eq(A9) asri_j“, wheren is a positive integer.

where the elementg, ,,. are dimensionless, and the only According to the definitions from Sec. I, matrix elements,

nonzero ones are given below: for which n>3, correspond to the short-range Green opera-
S X :
1(21—1)(21 +1)2 tor G% and matrix elements, f({ which=<3, corrgspond
2 00= 22T+ (A2)  to the long-range Green operat: From Eg.(A9) it fol-
lows that the only matrix elements @&, which appear in
B _(2I—1)(2I +1)2(21+3) A3 Egs. (38), correspond to I(o’)=(10) and (o)eA
21,02~ 2,20~ 5772 ’ (A3) _1(12),(20),(21),(30), or the interchange ofl¢) and
(o).
. _ld+1)(2l+1) (Ad) The key point is that the integral @S(ij) W(ij) over
-7 52[F1 . . .
111 221+ r;; vanishes. Indeed, the integral owey is absolutely con-

(1+1)(21 + 1)4(21 +3) vergent[unlike the integral ofG(ij) W(ij)]. Moreover, the
. (A5) matrix elements ofz® are linear combinations of spherical
harmonicsY, , with L>0, which are orthogonal to the con-
The matrix elements of the operatﬁro are equal to StantYgy. Therefore the integral over angles vanishes, and
those of the operataZy (i.€.,2 5,1 =2 ,4), if 1#1. Forl  EQ.(S5) is proved.
—1 the only nonvanishing matrix element 3§ is Finally, we evaluate explicitly those matrix elements of
the long-range Green operator, which have been used in the
calculations. That is, we use E@A9) with the formulas for
S*~, taken from Ref. 72, to expresg,,, in terms of Leg-

Z) 20~ 2275

R i 45
(1m2[Zo|1m2)= 75 (2a)°Z; o= 77(23)51—6- (A6)
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endre polynomials, and to determine explicitly the depen#2J. M. Ham and G. M. Homsy, Int. J. Multiphase Fld#, 533(1989.

dence ofw,,,, On cosb,

1 1
W102= ~ 35 cog -3/, (A12)
1 1
W112=W1-12=¢75 cos =3 (A13)
1 /3 1
Wa00= ~ 7 gcosa cog 0—§ , (A14)
Wo10=W,_ 1g=——=C0s6 (coF §—1), Al5
210 2—-10 4\/g ( ) ( )
W01=0, (A16)
! ( g0 1) (A17)
Woi= —Wy_1,=— ——| COS 0— = |,
211 2—-11 4\/5 3
oo ¢ 18 g ! A18
wgoo—4—\/2_1 co 0—2—500 6+2—5, (A18)
W310=W3-10
5 26 11
:_8_\/ﬁ.<CO§ 60— 2—5COS2 0+7—5 . (Alg)
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