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Three-particle contribution to sedimentation and collective diffusion
in hard-sphere suspensions
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The virial expansion of the collective mobility~sedimentation! coefficient is considered for hard
sphere suspensions at equilibrium. The term of the second order in volume fraction, which involves
three-particle hydrodynamic interactions, is calculated with high accuracy. To achieve that we
represent the collective mobility coefficient as the sum of convergent integrals over particle
configurations. In this way the short-wave-number limitk→0 is avoided. Moreover, an efficient
numerical procedure is applied to evaluate the hydrodynamic interactions. The algorithm is based on
the multipole expansion, corrected for lubrication. The method allows us to analyze contributions to
the collective mobility coefficient from different configurations of three particles and to select the
dominant part. This suggests a general approximation scheme. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1484380#
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I. INTRODUCTION

In the last few decades there has been a wide interes1–11

in investigations of structure, transport properties, and mic
hydrodynamics of suspensions. One of the fundame
problems is sedimentation, that is how a suspension mo
under a given force field, e.g., gravity. The basic quantity
description of this process is the sedimentation velocityU,
which is the averaged velocity of suspended particles, m
sured with respect to the mean suspension velocity.12,13 Ac-
tually, the quantity of interest is the dimensionless ratio ofU
andU0 , whereU0 is the velocity, with which a single par
ticle would move in the suspending fluid under the giv
force field in absence of any other particles. This ratio
called the collective mobility~or sedimentation! coefficient
K,13

K5
U

U0
. ~1!

The coefficientK is also needed to describe the macrosco
diffusion, since the collective diffusion coefficientDc is
given as2,13,14

Dc5K
D0

S~0!
, ~2!

a!Author to whom correspondence should be addressed. Electronic
mekiel@ippt.gov.pl
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whereS(0) is value of the structure factor fork50, D0 is the
single particle diffusion coefficient, related to the tempe
ture T, the Boltzmann constantkB and the single particle
mobility m0 by the Einstein’s relation,15 that is, D0

5kBTm0 . For a sphere of radiusa, immersed in a Stokes
fluid of viscosity h, m05(6pha)21. The basic issue ha
been to determine how the sedimentation coefficient depe
on the suspension concentration. This concentration is u
ally expressed in terms of the dimensionless volume frac
f, equal to the volume of all the particles, divided by t
total volume of the suspension.

Both the sedimentation coefficientK and the collective
diffusion Dc have been extensively investigated experime
tally. The collective diffusion has been studied by the d
namic light scattering~see, for example, Refs. 16–20!. The
sedimentation has been analyzed by various methods, am
others, in ultracentrifuge,17,18 for fluidized beds,21 and for
suspensions settling under gravity by particle tracking,22,23

by visual observation of sedimenting boundaries,24,25 and by
an acoustic technique.26 The concentration dependence of t
sedimentation coefficient,K(f), has been measured for th
whole range of volume fractions, up to the phase transitio25

There exists also numerical simulations of the sedim
tation coefficient for various concentrations, in particular v
numerical solutions to the Stokes equations with perio
boundary conditions27,28 and via a discretized~lattice! Bolt-
zmann equation~see, e.g., Refs. 20, 29!. The numerical re-
sults agree with the experimental data.
il:
1 © 2002 American Institute of Physics
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There has been a large interest in theoretical deriva
of the concentration dependence of the sedimentation co
cient. The main problem has been related to evaluation of
equilibrium average of the mobility matrix. That is, in a n
ive approach to this problem, there would appear infinit
due to integration of the long-range hydrodynamic inter
tions. There are two main methods how to tackle this pr
lem. The first one2,30,31 is based on averaging the Fouri
transform of the mobility matrix, and then taking the lim
k→0. Although in this procedure divergences do not app
but in practice it is cumbersome to perform calculations
many small values ofk, if the mobility matrix is obtained
numerically.32 An alternative is to derive a finite expressio
for the sedimentation coefficient by a direct averaging of
microscopic expressions for the mobility matrix. The k
point in this approach is to evaluate velocities of sediment
particles with respect to the mean velocity of the whole s
pension~particles plus fluid!.12,33 In practice, it means sepa
rating out from the mobility matrix all those terms, whic
contribute towards the mean velocity of the suspension.
small concentrations, such a procedure was performed
Batchelor,12,13 and in general case, by Felderhof,34–36

Nozières,37 and Noetinger.38 In the following, such a regu-
larization scheme will be outlined and applied.

In this work we concentrate on theoretical investigati
of a suspension made of identical spheres of equal rada,
immersed in the Stokes fluid. We assume that the suspen
particles interact with each other as hard spheres. The
ume fractionf of such a suspension is given as

f5 4
3 pa3n, ~3!

where the number densityn5N/V is the number of particles
per unit volume. There have been attempts to evaluate t
retically the dependence ofK on the volume fraction in the
whole range off, with the use of various methods~see, e.g.,
Refs. 39–42!. When the concentration is not very high, o
may use as the method the virial expansion of the collec
mobility coefficient, that is the expansion ofK in powers of
the volume fraction,

K511lcf1bcf
21 ¯ . ~4!

In this paper we concentrate on this approach. The p
cedure to evaluate the two-particle coefficientlc was devel-
oped by Batchelor in Ref. 12, where also the numerical va
lc526.55 was given. Later a systematic method to rep
sent the two-particle hydrodynamic interactions with the u
of expansion in inverse powers of the interparticle distancR
has been developed and applied to the sedimentation p
lem. To evaluatelc , Felderhof43 and Fijnaut44 approximated
the two-particle mobility matrix by taking into account a
the terms up toR27, and getlc526.44. With 150 terms in
the expansion, more accurate value oflc526.54660.001
was obtained in Ref. 45.

Evaluation of the three-particle hydrodynamic intera
tions is more complex than in the case of two particl
therefore until now there has been no calculation of the
efficient bc with a comparably high accuracy as forlc , and
this paper is a step in this direction. Beenakker and Ma
evaluatedbc in Ref. 46~together withlc!, however, the de-
Downloaded 11 Oct 2004 to 128.227.48.233. Redistribution subject to AI
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tails of the calculations have not been published.47 Jones,
Muthukumar, and Cohen48 kept several terms in the scatte
ing expansion of the three-particle hydrodynamic inter
tions, and getbc518.27. Clercx and Schram32 developed a
systematic approach, and getbc520.8. They used the mul
tipole expansion~however, without taking into account th
short-range lubrication effects! to calculate numerically the
three-particle mobility matrix, averaged its Fourier tran
form, and numerically took the limitk→0. It is hard to es-
timate the accuracy of results obtained in this way.

In this paper we construct a method of calculating t
coefficientbc , which allows us to control the accuracy of th
final result. In order to achieve that, we correct for lubric
tion to speed up the slow convergence of the multipole
pansion for the hydrodynamic interactions. Moreover, we
the regularization scheme without taking the Fourier tra
forms, and in this way we avoid uncertainty of taking th
limit k→0 from numerical expressions. This work has al
another goal. That is, to point out the structure of derivat
and to analyze significance of contributions from differe
configurations of three particles.

We start in Sec. II from an outline of the algorithm
constructed by Cichocki, Felderhof, and the
co-workers,49–53 which we apply to calculate numericall
hydrodynamic interactions between spheres in the Sto
flow. In this scheme~similarly as in another ones54–58!, the
multipole expansion,6,59 which takes care of the long
distance hydrodynamic interactions, is combined with the
brication theory, which accounts for the short-range beh
ior, according to the idea of Brady, Bossis, an
Durlofsky,54,55,60 with the improvements introduced in Re
52. Next, in Sec. III, we describe the regularizatio
procedure,35–38which we use to determine the sedimentati
coefficient. The key point is to calculate the particle curre
relative to the average suspension velocity. The scatte
series is split into different structures, and the expansion
correlation functions is carried out. This method is based
direct evaluation ofK, without the Fourier transformation
Then, in Sec. IV, we apply this procedure to virial expansi
of the sedimentation coefficient up to the three-particle c
tributions. Apart from the self-diffusion coefficient52 and the
two-particle contributions, we get several new terms, cor
sponding to different three-particle configurations. In Sec
we evaluate all the terms; some of them analytically, so
by a series expansion of two-particle hydrodynamic fun
tions, and the last one by the Monte Carlo method of in
gration over relative configurations of three particles. Fina
in Sec. VI, we identify the terms, which give the domina
contribution to the sedimentation coefficient, and we sugg
a rule of approximation.

II. HYDRODYNAMIC INTERACTIONS
BETWEEN MANY SPHERES: MOBILITY PROBLEM

Consider N spheres of equal radiia, which undergo ex-
ternal forcesF1 , . . . ,FN and external torquesT1 , . . . ,TN

~in the following abbreviated asF andT !, and which are
immersed in an incompressible fluid of viscosityh. Assume
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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1233J. Chem. Phys., Vol. 117, No. 3, 15 July 2002 Three-particle contribution to sedimentation
that the Reynolds number is low and that the fluid veloc
and pressure,v(r ) and p(r ), satisfy the stationary Stoke
equations,6

h“2v~r !2“p~r !50, “•v50, ~5!

with the stick boundary conditions at the particle surfac
Si ,

v~r !5wi~r ![Ui1Vi3~r2r i!,

for rPSi ,i 51, . . . ,N, ~6!

where r i stands for the position of the center of particlei ,
while U1 , . . . ,UN andV1 , . . . ,VN ~in the following abbre-
viated asU and V! are the translational and the rotation
velocities of all the particles.

To solve Eqs.~5!–~6!, the density fi(r ) of induced
forces61–63is introduced for each particlei 51, . . . ,N. These
forces, located at the particle surfaces, are exerted onto
fluid by the spheres and are determined by the bound
conditions~6!. The rigid body motion of the particles may b
now interpreted as a fictitious fluid flow forur2r iu<a,
which obeys the Stokes equations~5!. This way Eqs.~5!,
with the additional source term at the r.h.s., equal
2( i 51

N fi(r ), may be extended onto the whole space.61–63

Their solution for an unbounded fluid, which is at rest
infinity, v(r ), can be written as

v~r !5(
j 51

N E T~r2r 8! f j~r 8!d3r 8, ~7!

whereT denotes the Oseen tensor,6

T~r !5
1

8phr
~ I1 r̂ r̂ !. ~8!

Now let us choose a particlei and consider Eq.~7! at its
surfaceSi . Taking into account the boundary conditions~6!,
one can write Eq.~7! in terms of integral operators as

wi5Z0
21~ i ! fi1(

j Þ i
G~ i j ! f j . ~9!

In the above equation we decomposed the integral oper
at the r.h.s. of Eq.~7! into two parts. The first one64 describes
the contribution to the velocity of particlei from the induced
forces located on the same particlei . The second part in-
volves Green operators65,66 G( i j ), where j 51, . . . ,N, but
j Þ i , which account for the contributions towi coming from
other particles thani . The operatorG( i j ) it is not symmetric
with respect to the interchange ofi and j .

To solve the integral Eq.~9!, the multipole expansion
is introduced. In this way the problem is reduced to
infinite system of linear algebraic equations for mat
elements, which are labeled by the particle number and
three multipole indicesl , m, s, where l 51,2,. . . , while
m52 l , . . . ,1 l , and s50,1,2. The details on the integra
operatorsG, Z0 may be found, e.g., in Ref. 53; their mult
pole matrix elements are given explicitly in the Appendix

The system of equations, which follow from the mul
pole matrix representation of Eq.~9! allows to solve the fric-
tion and mobility problems. In the mobility problem,6 U and
Downloaded 11 Oct 2004 to 128.227.48.233. Redistribution subject to AI
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V are evaluated in terms ofF andT. In the absence of an
external ambient fluid flow this relation has the form,

S U
VD5S mtt mtr

mrt mrr D SFT D , ~10!

wherempq ~p,q5t or r ! are the 3N33N Cartesian tensors
and the superscriptst and r correspond to the translationa
and the rotational components, respectively. The 6N36N
matrix, which appears at the r.h.s. of Eq.~10! is called the
N-particle mobility matrix,59,67and denoted in short asm. Its
inverse is called the friction matrix.

The analysis of Eq.~7! allows to express the mobility
~10! as the multiple scattering series67 ~equivalent to super-
position of all the reflections68 for the mobility problem6!.
The sum of this series is given as50

m5m01m0Z0

1

11GẐ0

GZ0m0 . ~11!

Here m0 is the one-particle mobility. The operatorẐ05Z0

2Z0m0Z0 differs from Z0 for l 51 only50,67 ~see Appendix
for its matrix elements!. The operatorGẐ0 produces subse
quent scattered~reflected! velocity fields, which are force-
free and torque-free.6

Now let us consider the cluster expansion of the mobi
matrix. That is, let us decomposem into theM -particle clus-
ter matricesmjk

(M )(1 ¯M ) (M51, . . . ,N). For j 5k the
M -particle cluster matrices were defined, e.g., in Ref. 52,
for j Þk they are given as

m12~1 ¯M !

5m12
(2)~12!1 (

iÞ1,2

M

m12
(3)~12i !1 ¯ 1m12

(M )~1 ¯M !.

~12!

In particular, m12
(2)(12)5m12(12) and m12

(3)(123)5m12(123)
2m12(12). Here we consider a semidilute dispersion, a
clusters of more than three particles will not be taken in
account.

The cluster expansion of the mobility~12! is evaluated
by splitting the multiple scattering series~11! into terms,
which describe the interactions within the correspond
clusters. The three-particle cluster mobility,

m12
(3)~123!5Fm0Z0

1

11GẐ0

GZ0m0G
12

8
~123! ~13!

is the sum of scatterings, which start from particle 1, finish
particle 2, and involveall three particles:~123!. The last
property is denoted by prime. For example, the lowest or
scattering inm12

(3)(123) has the form,

2m0~1!Z0~1!G~13!Ẑ0~3!G~32!Z0~2!m0~2!. ~14!

In the following we assume that there is no applied torqu
T50, and we are interested only in the translational mot
of all the spheres,U. Therefore we evaluatemtt only; so as
we simplify the notation: from now onm will stand for mtt.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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III. SEDIMENTATION COEFFICIENT

In this section we outline the method,35,37,38which leads
to the microscopic expression for the sedimentation coe
cient K, defined in Eq.~1!. Let us stress that although w
start from analysis of the Fourier transforms, but the fi
expression forK has a form of a sum of the converge
integrals over particle configurations, with nok→0 limit in-
volved. To begin, let us consider the sedimentation phen
ena when an external force fieldE(r ) is applied to suspende
particles, so thatE(r i) is equal to the forceFi acting on
particlei . The external field induces a particle current, whi
can be described by the density

j~r !5(
i 51

N

Ui d~r2r i !. ~15!

We assume that the distribution of particles is the eq
librium one. The respective averaging operation will be d
noted by^•&. Relation between the average particle curr
and the force field is a linear one, as follows from Eq.~10!.
With the use of the Fourier transformŝ(k), Ê(k) of the
current and of the force field, respectively, one has

^ ̂~k!&5X̂~k! Ê~k!, ~16!

with the response kernel given by

X̂~k!5
1

V (
i , j 51

N

^mi j e
ik(r i2r j )&, ~17!

whereV is volume of the system. It has to be stressed th
strictly speaking, Eqs.~16!–~17! ~and also the correspondin
expressions in this section! are valid in the thermodynami
limit, i.e., whenN→`, V→`, but N/V5const.

The above kernel can be decomposed into two parts

X̂~k!5X̂self1X̂o~k!. ~18!

The self-term corresponds to the sum overi 5 j in Eq. ~17!
and can be written as

X̂self5n^m11&. ~19!

Its virial expansion has been analyzed in Ref. 52.
The kernelX̂o(k) in turn contains the off-diagonal term

with iÞ j in Eq. ~17!. With the use of the cluster expansio
~12!, its structure can be expressed as

X̂o~k!5(
s52

`
ns

~s22!!

3E d2̄ ds g~1¯s! m12
(s)~1¯s! eik(r12r2),

~20!

where the integral is over positions of particles 2,3,. . . ,s,
while n is the number density, andnsg(1¯s) stands for the
s-particle equilibrium distribution function. As far as th
cluster expansions are considered, it is worthwile to men
Ref. 69.

The sedimentation coefficientK, introduced in Eq.~1!,
is related2 to the elementk̂•X̂(k)• k̂ ~wherek̂5k /uku) by
Downloaded 11 Oct 2004 to 128.227.48.233. Redistribution subject to AI
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K5
1

nm0
lim
k→0

@ k̂•X̂~k!• k̂#. ~21!

In general it is a cumbersome task to computeK with the
use of the above formula because of the long-wavelen
limit involved. Moreover, due to long-range of hydrody
namic interactions the kernelX̂(k) is not continuous atk
50, so that one cannot just putk50 there. This problem can
be resolved by the regularization procedure, the idea
which was first outlined by Felderhof34 and then developed
by Nozières,37 Felderhof,35 and Noetinger.38 The rest of the
chapter is devoted to a brief summary of those results.

As it has been pointed out by many authors~see, e.g.,
Refs. 12, 13, 33, 34!, in general, the external forceE gives
rise not only to the particle current, but also to the nonz
flow of suspension as a whole. The idea behind regular
tion is to calculate the particle current relative to the avera
velocity of suspension̂v(r )&, which incorporates all long-
range terms of the r.h.s. of Eq.~16!. The definition ofv(r ) is
the following: for a given configuration of particlesv(r ) is
equal to the fluid velocity whereverr is inside the fluid and
coincides with the rigid body motion whereverr lies inside
the particle. It has been proven in Refs. 35, 38 that in
long-wavelength limit Eq.~16! can be rewritten as

^ ̂~k!&2n^v̂~k!&5X̂irr~k! Ê~k!, k→0, ~22!

where the ‘‘irreducible’’ kernelX̂irr(k) is continuous atk
50. Moreover, thek→0 limit of k̂•X̂irr(k)• k̂ is the same as
this of k̂•X̂(k)• k̂. Taking into account isotropy of the system
we therefore get forK the expression, which may be evalu
ated directly, without taking any Fourier transforms,

K5
1

3nm0
Tr X̂irr~k50!. ~23!

The structure of the kernelX̂irr(k) is analogous to the struc
ture of X̂(k), given by Eq.~18!. In the following we are
going to concentrate on the ‘‘off-diagonal’’ termX̂o

irr(k50),
as the ‘‘self’’ term X̂self5X̂self

irr does not depend onk. For
X̂o

irr(k50) one gets

X̂o
irr~k50!5(

s52

`
ns

~s22!!

3E d2̄ ds@g~1¯s!m12
(s)~1¯s!# irr, ~24!

where the exact meaning of@ # irr is to be elucidated.
First, the notion of articulation structure is introduce

and assigned to the scattering expansion terms ofm in Eq.
~11!. An operatorG is called the articulation line if all
the particles following it in the scattering sequence a
different from those, which come before it. The scatteri
sequence with no articulation line is said to beG-irreducible.
On the other hand, the scattering sequence with at least
articulation line is said to beG-reducible. For any such
G-reducible sequence of scatterings, which starts at par
1 and ends at particle 2, the set of particle labels 1,2,...,s
is partitioned into a sequence of disjoint subs
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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C1 ,C2 , . . . ,Ck , such that 1PC1 , 2PCk and each subset i
connected with the preceding subset by an articulation l
Such a partition is called the articulation structure and
noted as (C1uC2u¯uCk). For example, the term

m0~1! Z0~1! G~12!Ẑ0~2!G~23! Ẑ0~3! G~32! Z0~2! m0~2!
~25!

has the articulation structure of the form (1u23), as particle 1
is connected with the group of particles 2 and 3 by o
operatorG(12) only. @Note that scattering sequences, whi
share the same articulation structure, may have diffe
articulation lines. For example, the sequen
m0(1) Z0(1) G(13) Ẑ0(3) G(32) Z0(2) m0(2) has the ar-
ticulation line G(13) and the same articulation structu
(1u23) as the expression~25!, for which the articulation line
is equal toG(12).#

Therefore each termm12
(s)(1¯s) in the cluster expansion

~12! may be written as

m12
(s)~1¯s!5 (

k51

s

(
$C1¯Ck%

m̃12~C1u¯uCk!, ~26!

where the second sum goes over different partitions of the
of the particle labels (1,2,̄ ,s) into a sequence ofk disjoint
subsetsC1 ,C2 , . . . ,Ck with 1PC1 , 2PCk . The expression
m̃12(C1uC2u¯uCk) stands for the sum of all the terms in th
scattering expansion ofm12

(s)(12,̄ s), which share the sam
articulation structure (C1uC2u¯uCk).

For example, for two particles,

m̃12~1u2!5m0~1!Z0~1!G~12!Z0~2!m0~2!, ~27!

m̃12~12!5m12
(2)~12!2m̃12~1u2!, ~28!

where the scattering sequence in Eq.~28! is determined from
Eq. ~11!.

For three particles,

m̃12~1u3u2!52m0~1!Z0~1!G~13!Ẑ0~3!G~32!

3Z0~2!m0~2!, ~29!

m̃12~13u2!5C11~13!G~12!Z0~2!m0~2!

1C13~13!G~32!Z0~2!m0~2!2m̃12~1u3u2!,

~30!

m̃12~1u32!5m0~1!Z0~1!G~12!C22
T ~23!

1m0~1!Z0~1!G~13!C32
T ~23!2m̃12~1u3u2!,

~31!

m̃12~123!5m12
(3)~123!2m̃12~13u2!2m̃12~1u32!

2m̃12~1u3u2!. ~32!

Here the operatorCkl(13) stands for the sum of those sca
terings in Eq.~11!, which contain only two particles~13!,
and which start from particlek51 or 3, and finish at particle
l 51 or 3,

Ckl~13!52Fm0Z0

1

11GẐ0

GẐ0G
kl

~13!. ~33!
Downloaded 11 Oct 2004 to 128.227.48.233. Redistribution subject to AI
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Definition of Ckl(23) is a straightforward generalization o
Eq. ~33!; CT is the transposition ofC.

Next with each articulation structure (C1u¯uCk) one as-
sociates an appropriate correlation functionh(C1u¯uCk),
which is called the block distribution function. The bloc
distribution function h(C), which corresponds to a
G-irreducible termm̃(C) is just the usual particle distribu
tion function,

h~C!5g~C!. ~34!

The block distribution functions assigned toG-reducible
structures are defined by the following recursive relation:

h~C1u¯uCi uCi 11!5h~C1u¯uCi Ci 11!

2h~C1u¯uCi !h~Ci 11!. ~35!

Finally, @g(1¯s)m12(1¯s)# irr is defined in terms of ar-
ticulation structures and block distribution functions as

@g~1¯ s!m12
(s)~1¯s!# irr

5 (
k51

s

(
$C1¯Ck%

h~C1u¯uCk!m̃12~C1u¯uCk!. ~36!

For two particles,

@g~12!m12
(2)~12!# irr5@g~12!21#m̃12~1u2!1g~12!m̃12~12!

~37!

with m̃12(1u2) andm̃12(12) given by Eq.~28!.
For three particles,

@g~123!m12
(3)~123!# irr

5g~123!m̃12~123!1@g~123!2g~13!#m̃12~13u2!

1@g~123!2g~23!#m̃12~1u32!

1@g~123!2g~13!2g~23!11#m̃12~1u3u2!, ~38!

with the articulation structuresm̃ given in Eqs.~29!–~32!.

IV. VIRIAL EXPANSION OF THE SEDIMENTATION
COEFFICIENT

In this section we expand Eq.~23! in powers of volume
fraction to evaluate the sedimentation coefficient up
O(f2), as indicated in Eq.~4!. We quote known results fo
the linear term in Eq.~4!, lcf, and for the quadratic terms in
the self-contributions, defined by Eq.~19!. We use Eq.~24!
to evaluate the remaining part ofbcf

2.
First, we perform virial expansion of the hard sphe

equilibrium correlation functions in powers of volume fra
tion f,

g~1¯s!5W~1¯s!@11fg(1)~1¯s!1¯#, ~39!

where

W~1¯s!5 )
i . j 51

s

W~ i j !, ~40!

andW( i j ) are given as

W~ i j !5H 0 for ur i2r j u<2a,

1 elsewhere.
~41!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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In particular,70

g(1)~12!5H 826R121
R12

3

2
for 1<R12<2,

0 elsewhere.

~42!

From now on we use dimensionless distances, normalize
the particle diameter 2a:Ri5r i /(2a), Ri j 5Ri2Rj andRi j

5uRi j u.
Next we perform virial expansion of the sedimentati

coefficientK, defined in Eq.~1!, i.e. we specify the coeffi-
cientslc andbc in Eq. ~4!. Coefficientlc comes from two-
particle hydrodynamic interactions. It consists of two par

lc5lself1lo . ~43!

In Eq. ~43!, lself accounts for chains of two-particle scatte
ing processes, which start and end at particle 1. Such
contributions were calculated by Batchelor,13 and next recal-
culated with higher accuracy by Cichocki and Felderhof,45,71

lself521.8315. ~44!

In Eq. ~43! lo accounts for chains of two-particle sca
tering processes, which start at particle 1 and end at par
2. Equations~37! and ~41! allow us to writelo as a sum of
two parts: with virtually overlapping and with nonoverla
ping particles 1 and 2,

lo52
2

pm0
E

R12<1
d3R12Tr m̃12~1u2!

1
2

pm0
E

R12>1
d3R12Tr m̃12~12!. ~45!

The virtually overlapping part is equal to25 ~see Refs. 12,
42–44, 46!. The nonoverlapping integral was calculated a
proximately in Refs. 12, 43, 44, 46, and recalculated w
higher accuracy in Ref. 45 to be equal to 0.285. Combina
of those results with Eq.~44! gives45

lc526.546. ~46!

To describe the structure of the coefficientbc , we de-
compose it into seven parts of a different type,

bc5(
i 51

7

bi . ~47!

The first term,b1 , is the contribution coming fromXself,
given in Eq. ~19!. That is, b1 is the f2 coefficient in the
virial expansion of the self-diffusion coefficient. It has be
already calculated in Ref. 52,

b1520.21960.004. ~48!

The second term,b2 , accounts for the two-particle con
tribution, @g(12)m12

(2)(12)# irr, given in Eq.~37!. Due to virial
expansion of the two-particle equilibrium correlation fun
tion g(12), displayed in Eq.~42!, this term has the following
form:
Downloaded 11 Oct 2004 to 128.227.48.233. Redistribution subject to AI
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b25
2

pm0
E

1<R12<2
d3R12S 826R121

R12
3

2 D
3Tr@m12

(2)~12!#. ~49!

To calculate this term, we perform the scattering expans
of the two-particle mobility in inverse powers of the inte
particle distance,R, up to 1/R500, and we get

b2513.6386. ~50!

The result agrees with the valueb2513.64 given in Ref. 32.
The other parts in Eq.~47! correspond to contributions

from the three-particle term@g(123)m12
(3)(123)# irr, which is

specified in Eq.~38!. To calculate those contributions, w
have to expand the block distribution functions up toO(f).
To simplify this procedure, we make use of the correspo
ing symmetry of the response kernel, and we perform p
mutations of the particles in the expression~30!, to get the
same articulation lineG(23) for each term@by analogy, we
get the same articulation lineG(13) for all the terms in the
expression~31!#.

So we will need only the following three-particle hard
sphere block distribution functions~35!:

g~123!2g~13!2g~23!115 f ~12!W~13!W~23!

1 f ~13! f ~23!1O~f!,

~51!

g~123!2g~13!5 f ~12!W~13!W~23!

1W~13! f ~23!1O~f!, ~52!

g~123!5W~123!1O~f!, ~53!

where f ( i j )5W( i j )21 is the Mayer function.70

Evaluation of the response kernel~24! may be further
simplified. To this goal, the Green operatorG( i j ) is decom-
posed into a long-range part,Ḡ( i j ), and a short-range par
Gs( i j ) ~the details are given in the Appendix!,

G~ i j !5Ḡ~ i j !1Gs~ i j !. ~54!

By definition,Ḡ( i j ) consists of all the terms, which scale a
Ri j

2n , wheren<3, for Ri j →`. Taking into account transfor
mation properties of the partGs( i j ) under rotations of the
reference system, one obtains the following relation~see Ap-
pendix!,

E d3Ri j G
s~ i j !W~ i j !50, iÞ j . ~55!

Now we use expansion of the block distribution fun
tions from Eqs.~51! to ~53! and the scattering sequenc
from Eqs.~29! to ~32! to write down explicitly the contribu-
tion to sedimentation coefficient from the three-particle te
@g(123)m12

(3)(123)# irr. With the simplification introduced by
Eq. ~55!, this contribution may be written as a sum of th
following expressions:
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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b352
12

p2m0
E

R13<1,R23<1
d3R13d3R23

3Tr@m0~1! Z0~1! G~13! Ẑ0~3! G~32! Z0~2! m0~2!#,

~56!

b45
12

p2m0
E

R13>1,R23>1,R12<1
d3R13d3R23

3Tr@m0~1! Z0~1! Ḡ~13! Ẑ0~3! Ḡ~32! Z0~2! m0~2!#,

~57!

b552
24

p2m0
E

R13>1,R23<1
d3R13d3R23

3Tr@B~13! G~32! Z0~2! m0~2!#, ~58!

b652
24

p2m0
E

R13>1,R23>1,R12<1
d3R13d3R23

3Tr@B~13! Ḡ~32! Z0~2! m0~2!#, ~59!

b75
12

p2m0
E

R13>1,R23>1,R12>1
d3R13d3R23Tr@mS 12~123!#,

~60!

where mS are defined by the equations, which follow fro
Eqs.~29! to ~32! under the replacement:G→Ḡ, m̃→mS , with
the unchanged Eq.~33! for C. The operatorB~13! is given as

B~13!5C33~13!1C13~13!

1m0~1! Z0~1! Ḡ~13! Ẑ0~3!. ~61!

The integralsb3–b7 will be calculated in the next sec
tion.

V. EVALUATION OF f2 CONTRIBUTIONS
TO SEDIMENTATION COEFFICIENT

Equations~57!–~60! contain traces of certain operator
We evaluate them from the multipole matrix elements~with-
out transformation to Cartesian representation!. We use the
multipoles defined in Ref. 53, and in this case Eqs.~B7!–
~B8! from Appendix B in Ref. 53 lead to the following for
mula:

Tr @ ¯ #5
3

4p (
m521,0,1

~1m0u ¯ u1m0!. ~62!

To evaluate matrix elements of operatorsG~13! and
G~32! in Eqs. ~57!–~59!, we use the displacemen
theorems,72 which contain spherical harmonicsYLM(R̂) with
two different arguments,R̂5R̂13 or R̂32. To simplify calcu-
lations, we choose the system of spherical coordinates
which ẑ5R̂31, the unit vectors~R̂13, R̂23! span the plane
f50, and cosu5R̂13•R̂23. In this way, for example, the
multipole matrix elements of the operatorB~13! are diagonal
in (m,m8), and they depend only on the interparticle d
tanceR13. In the following, we will need only the element
(1m0uB(13)u lms), with m521,0,1, which can be written
as
Downloaded 11 Oct 2004 to 128.227.48.233. Redistribution subject to AI
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-

~1m0uB~13!u lms!5~2a! l 1s21 Blms~R13!, ~63!

where Blms has been made dimensionless. To determ
Blms(R13), an algorithm for the calculation of two-spher
hydrodynamic functions is needed. Following, e.g., Refs.
52, we representBlms(R13) as a series expansion in invers
powers of the interparticle distance,

Blms~R13!5 (
n54

`

cn
( lms) 1

R13
n . ~64!

Let us stress that, according to the structure of Eq.~61!, the
long-range parts do not appear in the above equation, th
fore the series starts from the fourth power. We calculated
coefficients withn<500, what leads to the desired accura

In our system of coordinates, matrix elements of the o
eratorG~32! depend on interparticle distanceR23 and on the
angleu. Since both operatorsB~13! and Ẑ0 are diagonal in
(m,m8), then Eq.~62! selects only the matrix elements o
G~32! diagonal in (m,m8). Therefore to evaluate the term
bi , i 53, . . . ,6, we will need only the elements
( lmsuG(32)u1m0), wherem521,0,1. With the use of Eq
~A9! and of the explicit form ofS12 from Ref. 72, those
matrix elements can be written as

~ lmsuG~32!u1m0!5
1

h ~2a! l 1s wlms~cosu!
1

R23
l 1s ,

~65!

where wlms(cosu) are dimensionless combinations of th
Legendre polynomialsPL(cosu), with L51,2,3,4 @see Ap-
pendix for the explicit form ofwlms(cosu)#.

After these preliminaries, we are ready to calculate
subsequent integralsbi . Essentially, we use three differen
procedures: first forb3 and b5 , second forb4 and b6 , and
third for b7 . In Sec. V A we outline the first and the secon
method, and we apply them to the simplest case: analyt
evaluation ofb3 andb4 . In Sec. V B we use the first and th
second procedures to simplify and calculate the integralsb5

and b6 . In Sec. V C we apply the Monte Carlo method
integrate the last part, and we getb7 .

A. Analytical result for b 3 and b 4

From the structure of Eq.~56! it follows that calculation
of b3 can be reduced to evaluation of products of two in
grals of the operatorG: overR13 and overR23. The integral
of G( i j ) over the virtual overlap of particlesi and j have
been carried out analytically in Ref. 42. Taking into accou
Eq. ~5.3! from Ref. 42, we write

( lmsuF E
Ri j <1

G~ i j ! d3Ri j G u l 8m8s8)

5
d l l 8 dmm8

h ~2a!2l 1s1s821
k l ,ss8 , ~66!

where the only nonvanishing dimensionless matrix eleme
k l ,ss8 are listed below,

k1,025k1,2052
4p

135
, k1,005

4p

9
, ~67!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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k1,115
2p

9
, k2,005

2p

75
. ~68!

Taking into account thatZ0(2) m0(2) is diagonal in (l ,l 8),
applying Eqs.~A6! for Ẑ0 , and using Eqs.~66!–~68!, we are
left only with k1,025k1,20 in Eq. ~56!,

b352
92

p2 k1,02
2 ẑ1,22. ~69!

The dimensionless elementsẑl ,ss8 , where l 51,2, . . . and
s,s850,1,2, are evaluated from the multipole matrix e
ments ofẐ0 in Eqs.~A1!–~A6!. Making use of Eqs.~68! and
~A6!, we finally get the analytic result,

b352 1
5 . ~70!

The integrand ofb4 depends on the long-range Gre
operatorḠ(32), and therefore it may be simplified, if th
following relation and its transposition are applied:

~ lmsuẐ0~3! Ḡ~32! Z0~2! m0~2!u1m0!

5~ lmsuẐ0~3! Ḡ~32!u1m0!. ~71!

@Equation~71! may be proved with the use of multipole fo
mulas from the Appendix.# As a result, in evaluation ofb4

there appear only the multipoles (lmsuG(32)u1m0) with
( ls)PA, where

A5$~12!,~20!,~21!,~30!%. ~72!

@There is no (ls)5(10),(11), because for such (ls) matrix
elements ofẐ0 vanish.#

Equations~57!, ~62!, ~65!, ~A6!, and symmetry property
~A11! give

b45
27

p2 E
R13>1,R23>1,R12<1

d3R13d3R23

3 (
( ls)PA

(
m521,0,1

wlms~1! ẑl ,ss wlms~cosu!

3S 1

R23 R13
D l 1s

, ~73!

wherewlms(cosu) are polynomials in cosu, given explicitly
in the Appendix.

In our system of coordinates,b4 may be reduced to a
triple integral, parameterized by~R13, R23, u!. In this param-
eterization, the integral from Eq.~73! has the form,

E
R13>1,R23>1,R12<1

d3R13d3R23@ ¯#

58p2S E1

2

dR13E
1

R1311

dR23ER13
2

1R23
2

21

2R13R23

1

d~cosu!

1E
2

`

dR13E
R1321

R1311

dR23ER13
2

1R23
2

21

2R13R23

1

d~cosu!D
3R23

2 R13
2 @ ¯#. ~74!
Downloaded 11 Oct 2004 to 128.227.48.233. Redistribution subject to AI
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We carry out analytically the integrals of expression~73!
over the range specified in Eq.~74!, and we get the exac
result,

b45
233343

20480
'11.3937. ~75!

B. Evaluation of b 5 and b 6 by series expansion

From Eq.~58! it follows that b5 , similarly asb3 , is a
product of two integrals. With the use of Eqs.~62!, ~66!–
~68!, expression~58! for b5 is reduced to the following non
overlap integral overR13:

b552
63

p (
m521,0,1

F E
R13>1

dR13R13
2 B1m2~R13!G k1,20. ~76!

We evaluate numerically the coefficients in the ser
expansion~64! of B1m2(R13), and we carry out the integra
~76! analytically for each of the terms in Eq.~64!. Taking
500 terms in the series, we finally get

b5520.0647. ~77!

The integral inb6 does not reduce to a product of tw
integrals, asb5 does. To writeb6 in a form similar to expres-
sion ~73! for b4 , we apply Eqs.~62!–~63! and ~65!,

b652
54

p2 E
R13>1,R23>1,R12<1

d3R13d3R23

3 (
( ls)PA

1

R23
l 1s (

m521,0,1
Blms~R13! wlms~cosu!.

~78!

To evaluateb6 , we use essentially the same method of in
gration as forb4 , i.e., the parameterization (R13,R23,u) and
the range~74!. As in Eq.~76!, we take 500 terms in the serie
expansion~64! of Blms(R13), and we perform analytically
the integrals in Eq.~78! for each term. The sum results in

b6522.8001. ~79!

C. Calculation of b 7 by the Monte Carlo method

To evaluateb7 , we calculate the mobility matrix accord
ing to the scheme presented in Ref. 52. In this algorithm
multipole expansion is performed and the short range lu
cation effects are taken into account. That is, we add a p
wise lubrication correction to the friction matrix, and w
invert the result to get the corrected mobility matrix. To g
the corrected articulation structuremS i j (123), the regulariza-
tion procedure described in Sec. III is repeated for the c
rected three-particle mobility.

Having the corrected expression formS i j (123), we apply
to Eq. ~60! the method of integration introduced in Ref. 5
The integrand depends on the relative positions only, the
fore b7 may be reduced to a triple integral. To carry it ou
we use the parameterization~R12, a, b!, displayed in Fig. 1,
whereR12 is the smallest of the interparticle separations
the triplet ~123!, and we perform symmetrization with re
spect to the particle labels.

We write Eq.~60! as
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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b75
96

m0
E

p2b>a>b>p2(a1b)
da db

sin2 a sin2 b

sin4~a1b!

3E
1

`

dR12R12
5 (

i 51

3

(
j Þ i

3

TrmS i j ~123!. ~80!

First, we perform integration overR12, applying the
Simpson method. To get better accuracy we split the inte
@1,̀ # into five unequal parts, matching smaller size to mo
steep integrand. In the last interval@5,̀ #, it is sufficient to
approximate the three-particle mobility by the leading ter
which scales as (R12)

28. The Monte Carlo technique is ap
plied to carry out the integration over angles in each p
separately. We perform 30 000 Monte Carlo trials forR12

P(1,1.005), 150 000 trials forR12P(1.005,1.1), 550 000 tri-
als for R12P(1.1,1.9), 158 000 trials forR12P(1.9,5), and
100 000 trials forR12P(5,̀ ). Finally, we obtain

b750.16960.005, ~81!

where the error bars correspond to the standard deviation
to all the Monte Carlo trials.

VI. FINAL RESULTS AND CONCLUSIONS

We evaluatebc , the f2 coefficient in the virial expan-
sion of the sedimentation coefficient given by Eq.~4!. The
sum of all the three-particle contributions from Sec V
given as

(
i 53

7

bi58.49860.005. ~82!

By combination of Eqs.~48!, ~50!, and ~82!, we finally get
the f2 contribution to the sedimentation coefficient asbc

521.91860.006. Therefore virial expansion ofK has the
form,

K5126.546f121.918f21 ¯ . ~83!

Discussion of the above results consists of two pa
First, we compare the derivation off2 contributions to the
sedimentation coefficient, presented in this work, with

FIG. 1. For nonoverlap of particles 1 and 2, the relative configuration o
triplet is parameterized by~R12 , a, b!.
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previous papers on this subject. Second, we point out
dominant contributions in our calculations, and therefore
suggest a scheme of approximation, which goes beyond
context of this paper.

The method applied here takes into account lubricat
effects and avoids uncertainty due to numerical evaluation
the limit k→0. These two reasons, in our opinion, accou
for the differences between values obtained in this paper
the previous results,32,48and allow to control the uncertainty
The totalf2 contribution to the sedimentation coefficient
evaluated here as 21.91860.006. To relate this result to th
previous papers,32,46,48 we concentrate on comparison wit
Ref. 32, which contains the most complete calculation. O
value is larger by about 5% than 20.8, the number follow
from Ref. 32 after correction of a misprint in their Eq.~5.24!.
The three-particle contribution to the sedimentation coe
cient from such chains of scattering processes, which s
and end at two different particles, i.e., 8.49860.005, given
in Eq. ~82!, is larger by about 15% than 7.4, the correspon
ing number evaluated in Ref. 32.

If one would like to approximate the three-particle m
bility matrix by a finite sum of expressions, which are pr
portional to inverse powers of the interparticle distanc
then within the method presented here one is able to eval
the corresponding contribution to the sedimentation coe
cient analytically. For example, let us consider the lon
interparticle-distance asymptotics, introduced by Mazur a
van Saarloos.59,73,74By definition, this approximation is con
structed as a sum of all the terms in the three particle mo
ity matrix, which decrease as 1/Rn, with n<7, when all the
distances within the triplet are increased by a factorR. The
contribution to the second order virial term of the sedime
tation coefficient from the scattering sequences, which s
and end at different particles, that is, the sum of the termbi

with i 53, . . . ,7, inthis asymptotic approximation is equal t
163973/20480'8.0065. This exact value agrees well wi
8.0, the corresponding numerical estimation performed
Clercx and Schram.32

The advantage of the method presented in this pape
that it allows to identify the terms, which give the domina
contribution to thef2 term in the sedimentation coefficien
The significant effect of the self-diffusion termb1 and the
term b2 following from virial expansion of the two-particle
correlation functiong(12), has been already known. He
we analyze how large areb3 , . . . ,b7 , the contributions to
the sedimentation coefficient from the scattering sequen
which involve exactly three particles, and which start a
end at different spheres. We conclude that all such contr
tions may be approximated byb41b6 , which is easy to be
accurately calculated. Indeed,b41b658.5936, while the re-
maining terms are equal tob31b51b7520.096, that is, to
only about 1% of the three-particle term( i 53

7 bi , given in
Eq. ~82!. Therefore from all the scattering sequences, wh
involve exactly three spheres, and which start and end
different particles, the largest contribution to the sedimen
tion coefficient comes from the configurations with virtu
overlap of two particles, which are not directly connected
neitherG nor its long-distance part, as schematically dra
in Fig. 2. This suggests how to approximately evaluate

a

P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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corresponding part of the sedimentation coefficient for c
centrated suspensions. That is, in higher order terms of
virial expansion, one should sum up the contributions fr
similar configurations, that is with virtual overlap of thos
particles, which are not connected by any operatorG in the
scattering expansion of the mobility matrix.

APPENDIX: MULTIPOLE EXPANSION

In the multipole expansion we use two complete sets
vector functions,75 which are fitted to the spherical symmet
of the Stokes equations~5!: v lms

1 (r ), regular atr50, and
v lms

2 (r ), regular at ur u→`, where s50,1,2, while l
51,2,3, . . . andm50,61, . . .6 l . These multipole vectors
were introduced in Ref. 64; here we use the modified defi
tion from Ref. 53. The corresponding matrix elements of
operatorsZ0 , Ẑ0 , andm0 between the multipole vectors a
the sphere surface are diagonal in (l ,l 8) and in (m,m8).

The matrix elements of the operatorZ0 have the form,53

~ lmsuZ0u l 8m8s8!5d l l 8 dmm8 h ~2a!2l 1s1s821 zl ,ss8 ,
~A1!

where the elementszl ,ss8 are dimensionless, and the on
nonzero ones are given below:

zl ,005
l ~2l 21!~2l 11!2

22l 21 ~ l 11!
, ~A2!

zl ,025zl ,205
~2l 21!~2l 11!2~2l 13!

22l 12 , ~A3!

zl ,115
l ~ l 11!~2l 11!

22l 11 , ~A4!

zl ,225
~ l 11!~2l 11!4~2l 13!

22l 15 l
. ~A5!

The matrix elements of the operatorẐ0 are equal to
those of the operatorZ0 ~i.e., ẑl ,ss85zl ,ss8), if lÞ1. For l

51 the only nonvanishing matrix element ofẐ0 is

~1m2uẐ0u1m2!5h ~2a!5 ẑ1,225h ~2a!5
45

16
. ~A6!

FIG. 2. Relative configuration of a triplet with virtual overlap of spheres
and 2, as in the integralsb4 andb6 . Solid lines connect the particles (i j ),
which are joined by at least oneG( i j ) ~or its long-distance part! in the
scattering expansion of the integrands ofb4 andb6 .
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The only nonzero matrix elements ofm0 are

~1m0um0u1m0!5~1m0uZ0u1m0!215
2

9ha
, ~A7!

~1m1um0u1m1!5~1m1uZ0u1m1!215
1

6ha3 . ~A8!

For nonoverlapping particles, that is forr i j .2a, evalu-
ation of (lmsuG( i j )u l 8m8s8) is based on the displaceme
theorems forv lms

6 , the solutions of the Stokes equations72

These theorems give

~ lmsuG~ i j !u l 8m8s8!5
nlm

h nl 8m8
S12~r i j ; lms,l 8m8s8!

;
1

r i j
l 1 l 81s1s821

, r i j .2a, ~A9!

where the coefficientsS12 are given in Ref. 72. They are
linear combinations of spherical harmonicsYLM( r̂ i j ) and are
proportional to inverse powers ofr i j . The normalization fac-
tors nlm are

nlm5F 4p

2l 11

~ l 1m!!

~ l 2m!! G
1/2

. ~A10!

Note that the Green operatorG( i j ) is not equal toG( j i ),
and that its matrix elements, given by Eq.~A9!, satisfy the
Lorentz symmetry,

~ lmsuG~ i j !u l 8m8s8!5~ l 8m8s8uG~ j i !u lms!. ~A11!

The matrix elements ofG( i j ) are now decomposed int
two groups, according to the rate of their decay atr i j →`,
specified by Eq.~A9! as r i j

2n , wheren is a positive integer.
According to the definitions from Sec. III, matrix element
for which n.3, correspond to the short-range Green ope
tor Gs, and matrix elements, for whichn<3, correspond
to the long-range Green operatorḠ. From Eq.~A9! it fol-
lows that the only matrix elements ofḠ, which appear in
Eqs. ~38!, correspond to (l 8s8)5(10) and (ls)PA
5$(12),(20),(21),(30)%, or the interchange of (ls) and
( l 8s8).

The key point is that the integral ofGs( i j ) W( i j ) over
r i j vanishes. Indeed, the integral overr i j is absolutely con-
vergent@unlike the integral ofḠ( i j ) W( i j )#. Moreover, the
matrix elements ofGs are linear combinations of spherica
harmonicsYLM with L.0, which are orthogonal to the con
stantY00. Therefore the integral over angles vanishes, a
Eq. ~55! is proved.

Finally, we evaluate explicitly those matrix elements
the long-range Green operator, which have been used in
calculations. That is, we use Eq.~A9! with the formulas for
S12, taken from Ref. 72, to expresswlms in terms of Leg-
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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endre polynomials, and to determine explicitly the dep
dence ofwlms on cosu,

w10252
1

30 S cos2 u2
1

3D , ~A12!

w1125w12125
1

60 S cos2 u2
1

3D , ~A13!

w20052
1

4
A3

5
cosuS cos2 u2

1

3D , ~A14!

w2105w22105
1

4A5
cosu ~cos2 u21!, ~A15!

w20150, ~A16!

w21152w221152
1

4A5
S cos2 u2

1

3D , ~A17!

w3005
5

4A21
S cos4 u2

18

25
cos2 u1

1

25D , ~A18!

w3105w3210

52
5

8A14
S cos4 u2

26

25
cos2 u1

11

75D . ~A19!
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