Conformal actions, Kummer tables and hypergeometric-type functions

Przemysław Majewski
Chair of Mathematical Metods in Physics, Faculty of Physics, UoW

August 8, 2013

How the action of the symmetry group $\mathrm{SO}(6, C)$ and the choice of a nice set of parameters help one to understand and present logically a whole bunch of special functions.

History: early beginnings

History: early beginnings

Wikipedia ${ }^{\text {TM }}$ says

The term ,,hypergeometric series" was first used by John Wallis in his 1655 book Arithmetica Infinitorum. Hypergeometric series were studied by Leonhard Euler, but the first full systematic treatment was given by Carl Friedrich Gauss (1813). Studies in the nineteenth century included those of Ernst Kummer (1836), and the fundamental characterisation by Bernhard Riemann of the hypergeometric function by means of the differential equation it satisfies. Riemann showed that the second-order differential equation for ${ }_{2} F_{1}(z)$, examined in the complex plane, could be characterised (on the Riemann sphere) by its three regular singularities.

History: early beginnings

Wikipedia ${ }^{\text {TM }}$ says

The term ,,hypergeometric series" was first used by John Wallis in his 1655 book Arithmetica Infinitorum. Hypergeometric series were studied by Leonhard Euler, but the first full systematic treatment was given by Carl Friedrich Gauss (1813). Studies in the nineteenth century included those of Ernst Kummer (1836), and the fundamental characterisation by Bernhard Riemann of the hypergeometric function by means of the differential equation it satisfies. Riemann showed that the second-order differential equation for ${ }_{2} F_{1}(z)$, examined in the complex plane, could be characterised (on the Riemann sphere) by its three regular singularities.

Beware

I will try to follow the historical path on which the subject was being discovered.

Euler Gamma function

Euler Gamma function

- Euler integral of the first kind

$$
\begin{equation*}
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\int_{0}^{1} t^{a-1}(1-t)^{b-1} \mathrm{~d} t \tag{1}
\end{equation*}
$$

Euler Gamma function

- Euler integral of the first kind

$$
\begin{equation*}
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\int_{0}^{1} t^{a-1}(1-t)^{b-1} \mathrm{~d} t \tag{1}
\end{equation*}
$$

- Euler integral of the second kind

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} \mathrm{~d} t \tag{2}
\end{equation*}
$$

Euler Gamma function

- Euler integral of the first kind

$$
\begin{equation*}
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\int_{0}^{1} t^{a-1}(1-t)^{b-1} \mathrm{~d} t \tag{1}
\end{equation*}
$$

- Euler integral of the second kind

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} \mathrm{~d} t \tag{2}
\end{equation*}
$$

- Weierstrass product

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z \mathrm{e}^{\gamma z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) \mathrm{e}^{-\frac{z}{n}} \tag{3}
\end{equation*}
$$

Euler Gamma function

- Euler integral of the first kind

$$
\begin{equation*}
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\int_{0}^{1} t^{a-1}(1-t)^{b-1} \mathrm{~d} t \tag{1}
\end{equation*}
$$

- Euler integral of the second kind

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} \mathrm{~d} t \tag{2}
\end{equation*}
$$

- Weierstrass product

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z \mathrm{e}^{\gamma z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) \mathrm{e}^{-\frac{z}{n}} \tag{3}
\end{equation*}
$$

The inverse of the Gamma function is an entire function!

Euler Gamma function

- Euler integral of the first kind

$$
\begin{equation*}
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\int_{0}^{1} t^{a-1}(1-t)^{b-1} \mathrm{~d} t \tag{1}
\end{equation*}
$$

- Euler integral of the second kind

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} \mathrm{~d} t \tag{2}
\end{equation*}
$$

- Weierstrass product

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z \mathrm{e}^{\gamma z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) \mathrm{e}^{-\frac{z}{n}} \tag{3}
\end{equation*}
$$

The inverse of the Gamma function is an entire function!

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=\frac{\sin \pi z}{\pi} \Gamma(1-z) \tag{4}
\end{equation*}
$$

Hypergeometric series

Hypergeometric series

Hypergeometric series of type ${ }_{2} F_{1}(a, b ; c ; z)$

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!} \tag{5}
\end{equation*}
$$

Hypergeometric series

Hypergeometric series of type ${ }_{2} F_{1}(a, b ; c ; z)$

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!} \tag{5}
\end{equation*}
$$

Pochhammer's symbol

$$
\begin{equation*}
(a)_{n}=\prod_{k=0}^{n-1}(a+k)=a(a+1) \cdot \ldots \cdot(a+n-1) \tag{6}
\end{equation*}
$$

Hypergeometric series

Hypergeometric series of type ${ }_{2} F_{1}(a, b ; c ; z)$

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!} \tag{5}
\end{equation*}
$$

Pochhammer's symbol

$$
\begin{equation*}
(a)_{n}=\prod_{k=0}^{n-1}(a+k)=a(a+1) \cdot \ldots \cdot(a+n-1) \tag{6}
\end{equation*}
$$

Examples

$$
\begin{equation*}
(1)_{n}=n!\quad(-k)_{n}=0, \quad n \geq k \quad(c)_{n}=\frac{\Gamma(c+n)}{\Gamma(c)} \tag{7}
\end{equation*}
$$

Hypergeometric series

Hypergeometric series of type ${ }_{2} F_{1}(a, b ; c ; z)$

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!} \tag{5}
\end{equation*}
$$

Hypergeometric series

Hypergeometric series of type ${ }_{2} F_{1}(a, b ; c ; z)$

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!} \tag{5}
\end{equation*}
$$

- Easy to generalize, just put ,,k" parameters up and ,,m" parameters down

Hypergeometric series

Hypergeometric series of type ${ }_{2} F_{1}(a, b ; c ; z)$

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!} \tag{5}
\end{equation*}
$$

- Easy to generalize, just put ,,k" parameters up and ,,m" parameters down
- Easy to see where the series converges and thus defines an analytical function

Hypergeometric series

Hypergeometric series of type ${ }_{2} F_{1}(a, b ; c ; z)$

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!} \tag{5}
\end{equation*}
$$

- Easy to generalize, just put ,,k" parameters up and ,,m" parameters down
- Easy to see where the series converges and thus defines an analytical function
- Hard to compute any special values or to see limiting cases

Hypergeometric series

Hypergeometric series of type ${ }_{2} F_{1}(a, b ; c ; z)$

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!} \tag{5}
\end{equation*}
$$

- Easy to generalize, just put ,,k" parameters up and ,,m" parameters down
- Easy to see where the series converges and thus defines an analytical function
- Hard to compute any special values or to see limiting cases
- Due to problems with the denominator one should introduce

$$
\begin{equation*}
{ }_{2} \mathbf{F}_{1}(a, b ; c ; z)=\frac{{ }_{2} F_{1}(a, b ; c ; z)}{\Gamma(c)}=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{\Gamma(c+n) n!} \tag{6}
\end{equation*}
$$

Hypergeometric-type ${ }_{0} F_{1}$

Hypergeometric series of type ${ }_{0} F_{1}(c ; z)$

Hypergeometric-type ${ }_{0} F_{1}$

Hypergeometric series of type ${ }_{0} F_{1}(c ; z)$

$$
\begin{equation*}
{ }_{0} F_{1}(c ; z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(c)_{n} n!} \tag{7}
\end{equation*}
$$

- The function defined by the series above is one of the solutions to

$$
\begin{equation*}
\left(z \partial_{z}^{2}+c \partial_{z}-1\right) f(z)=0 \tag{8}
\end{equation*}
$$

Hypergeometric-type ${ }_{0} F_{1}$

Hypergeometric series of type ${ }_{0} F_{1}(c ; z)$

$$
\begin{equation*}
{ }_{0} F_{1}(c ; z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(c)_{n} n!} \tag{7}
\end{equation*}
$$

- The function defined by the series above is one of the solutions to

$$
\begin{equation*}
\left(z \partial_{z}^{2}+c \partial_{z}-1\right) f(z)=0 \tag{8}
\end{equation*}
$$

- In fact, it is a subclass of the confluent function ${ }_{1} F_{1}$

Hypergeometric-type ${ }_{0} F_{1}$

Hypergeometric series of type ${ }_{0} F_{1}(c ; z)$

$$
\begin{equation*}
{ }_{0} F_{1}(c ; z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(c)_{n} n!} \tag{7}
\end{equation*}
$$

- The function defined by the series above is one of the solutions to

$$
\begin{equation*}
\left(z \partial_{z}^{2}+c \partial_{z}-1\right) f(z)=0 \tag{8}
\end{equation*}
$$

- In fact, it is a subclass of the confluent function ${ }_{1} F_{1}$
- It is classically known as the modified Bessel function,

$$
\begin{equation*}
I_{\alpha}(w)=\left(\frac{w}{2}\right)^{\alpha}{ }_{0} \mathbf{F}_{1}\left(\alpha+1 ; \frac{w^{2}}{4}\right) \tag{9}
\end{equation*}
$$

Hypergeometric equation

Hypergeometric equation

Hypergeometric operator $\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)$

$$
\begin{equation*}
\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)=z(1-z) \partial_{z}^{2}+(c-(a+b+1) z) \partial_{z}-a b \tag{10}
\end{equation*}
$$

Hypergeometric equation

Hypergeometric operator $\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)$

$$
\begin{equation*}
\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)=z(1-z) \partial_{z}^{2}+(c-(a+b+1) z) \partial_{z}-a b \tag{10}
\end{equation*}
$$

- It is easy to apply this operator to the hypergeometric series

Hypergeometric equation

Hypergeometric operator $\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)$

$$
\begin{equation*}
\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)=z(1-z) \partial_{z}^{2}+(c-(a+b+1) z) \partial_{z}-a b \tag{10}
\end{equation*}
$$

- It is easy to apply this operator to the hypergeometric series
- This is the classical choice of parameters, a, b, c, which coincide well with the series and the integral represenations, but not with the underlying structure of symmetry with respect to $S O(6, \mathbb{C})$

Hypergeometric equation

Hypergeometric operator $\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)$

$$
\begin{equation*}
\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)=z(1-z) \partial_{z}^{2}+(c-(a+b+1) z) \partial_{z}-a b \tag{10}
\end{equation*}
$$

- It is easy to apply this operator to the hypergeometric series
- This is the classical choice of parameters, a, b, c, which coincide well with the series and the integral represenations, but not with the underlying structure of symmetry with respect to $\operatorname{SO}(6, \mathbb{C})$
- The operator has three regular singular points on the Riemann sphere 0,1 and ∞

Hypergeometric equation

Hypergeometric operator $\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)$

$$
\begin{equation*}
\mathcal{F}\left(a, b ; c ; z, \partial_{z}\right)=z(1-z) \partial_{z}^{2}+(c-(a+b+1) z) \partial_{z}-a b \tag{10}
\end{equation*}
$$

- It is easy to apply this operator to the hypergeometric series
- This is the classical choice of parameters, a, b, c, which coincide well with the series and the integral represenations, but not with the underlying structure of symmetry with respect to $\operatorname{SO}(6, \mathbb{C})$
- The operator has three regular singular points on the Riemann sphere 0,1 and ∞
- Parameters a, b solve the index equation for $z=\infty$. The indices at 0 and 1 are respectively $1-c$ and $c-a-b$

A nightmarish zoo from Abramowitz \& Stegun

Introduction

Hypergeometric differential operator in the classical setting Hypergeometric operator using Lie-algebraic parameters Hypergeometric operator in the balanced form Homographies and discrete symmetries

A nightmarish zoo from Abramowitz \& Stegun

15.2.10

$$
\begin{aligned}
&(c-a) F(a-1, b ; c ; z)+(2 a-c-a z+b z) F(a, b ; c ; z) \\
&+a(z-1) F(a+1, b ; c ; z)=0
\end{aligned}
$$

15.2.11

$$
(c-b) F(a, b-1 ; c ; z)+(2 b-c-b z+a z) F(a, b ; c ; z)
$$

$$
+b(z-1) F(a, b+1 ; c ; z)=0
$$

15.2.12

$$
\begin{aligned}
& c(c-1)(z-1) F(a, b ; c-1 ; z) \\
& +c[c-1-(2 c-a-b-1) z] F(a, b ; c ; z) \\
& \quad+(c-a)(c-b) z F(a, b ; c+1 ; z)=0
\end{aligned}
$$

15.2.13

$[c-2 a-(b-a) z] F(a, b ; c ; z)$

$$
\begin{aligned}
+a(1-z) & F(a+1, b ; c ; z) \\
& -(c-a) F(a-1, b ; c ; z)=0
\end{aligned}
$$

15.2.14

$(b-a) F(a, b ; c ; z)+a F(a+1, b ; c ; z)$

$$
-b F(a, b+1 ; c ; z)=0
$$

15.2.15

$(c-a-b) F(a, b ; c ; z)+a(1-z) F(a+1, b ; c ; z)$

$$
-(c-b) F(a, b-1 ; c ; z)=0
$$

15.2.16
$[c-\operatorname{LUT}(0-\omega) 2] F(\omega, v, c$, aj

$$
\begin{aligned}
&+b(1-z) F(a, b+1 ; c ; z) \\
&-(c-b) F(a, b-1 ; c ; z)=0
\end{aligned}
$$

15.2.23

$c[b-(c-a) z] F(a, b ; c ; z)-b c(1-z) F(a, b+1 ; c ; z)$

$$
+(c-a)(c-b) z F(a, b ; c+1 ; z)=0
$$

15.2.24

$(c-b-1) F(a, b ; c ; z)+b F(a, b+1 ; c ; z)$

$$
-(c-1) F(a, b ; c-1 ; z)=0
$$

15.2.25

```
\(c(1-z) F(a, b ; c ; z)-c F(a, b-1 ; c ; z)\)
    * \(+(c-a) z F(a, b ; c+1 ; z)=0\)
```


15.2.26

$$
\begin{aligned}
& {[b-1-(c-a-1) z] F(a, b ; c ; z)} \\
& \quad+(c-b) F(a, b-1 ; c ; z) \\
& \quad-(c-1)(1-z) F(a, b ; c-1 ; z)=0
\end{aligned}
$$

15.2.27

$$
\begin{aligned}
& c[c-1-(2 c-a-b-1) z] F(a, b ; c ; z) \\
& \quad+(c-a)(c-b) z F(a, b ; c+1 ; z) \\
& \quad-c(c-1)(1-z) F(a, b ; c-1 ; z)=0
\end{aligned}
$$

Lie algebraic parameters

Lie algebraic parameters

Let us introduce another set of parameters:

Lie algebraic parameters

Let us introduce another set of parameters:

- $-\alpha=1-c$, being the index at 0

Lie algebraic parameters

Let us introduce another set of parameters:

- $-\alpha=1-c$, being the index at 0
- $-\beta=c-a-b$, being the index at 1

Lie algebraic parameters

Let us introduce another set of parameters:

- $-\alpha=1-c$, being the index at 0
- $-\beta=c-a-b$, being the index at 1
- $\mu=b-a$, the difference between the indices at infinity

Lie algebraic parameters

Let us introduce another set of parameters:

- $-\alpha=1-c$, being the index at 0
- $-\beta=c-a-b$, being the index at 1
- $\mu=b-a$, the difference between the indices at infinity
- Inverse relations are

Lie algebraic parameters

Let us introduce another set of parameters:

- $-\alpha=1-c$, being the index at 0
- $-\beta=c-a-b$, being the index at 1
- $\mu=b-a$, the difference between the indices at infinity
- Inverse relations are

$$
\begin{equation*}
a=\frac{1}{2}(1+\alpha+\beta+\mu) \tag{11}
\end{equation*}
$$

Lie algebraic parameters

Let us introduce another set of parameters:

- $-\alpha=1-c$, being the index at 0
- $-\beta=c-a-b$, being the index at 1
- $\mu=b-a$, the difference between the indices at infinity
- Inverse relations are

$$
\begin{equation*}
a=\frac{1}{2}(1+\alpha+\beta+\mu) \quad b=\frac{1}{2}(1+\alpha+\beta-\mu) \tag{11}
\end{equation*}
$$

Lie algebraic parameters

Let us introduce another set of parameters:

- $-\alpha=1-c$, being the index at 0
- $-\beta=c-a-b$, being the index at 1
- $\mu=b-a$, the difference between the indices at infinity
- Inverse relations are

$$
\begin{equation*}
a=\frac{1}{2}(1+\alpha+\beta+\mu) \quad b=\frac{1}{2}(1+\alpha+\beta-\mu) \quad c=1+\alpha \tag{11}
\end{equation*}
$$

Introduction
The hypergeometric equation SO $(6, \mathbb{C})$ conformal action on hypergeometric funtions Endnotes

Hypergeometric operator $\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$

Hypergeometric operator $\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$

Once we employ Lie-algebraic parameters into action we get

Hypergeometric operator $\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$

Once we employ Lie-algebraic parameters into action we get

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}=z(1-z) \partial_{z}^{2}+((1+\alpha)(1-z)-(1+\beta) z) \partial_{z}-\frac{(1+\alpha+\beta)^{2}-\mu^{2}}{4} \tag{12}
\end{equation*}
$$

Hypergeometric operator $\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$

Once we employ Lie-algebraic parameters into action we get

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}=z(1-z) \partial_{z}^{2}+((1+\alpha)(1-z)-(1+\beta) z) \partial_{z}-\frac{(1+\alpha+\beta)^{2}-\mu^{2}}{4} \tag{12}
\end{equation*}
$$

- Its symmetries are becoming a lot more visible

Hypergeometric operator $\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$

Once we employ Lie-algebraic parameters into action we get

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}=z(1-z) \partial_{z}^{2}+((1+\alpha)(1-z)-(1+\beta) z) \partial_{z}-\frac{(1+\alpha+\beta)^{2}-\mu^{2}}{4} \tag{12}
\end{equation*}
$$

- Its symmetries are becoming a lot more visible
- We will see that the parameters really do have Lie-algebraic interpretation

$\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$ in balanced form

Introduction

$\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$ in balanced form

Balanced form and Schrödinger form

$\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$ in balanced form

Balanced form and Schrödinger form

It is known that any ODE of our type can be shown in the form of a Schrödinger operator by simple substitutions. Similarily a so-called balanced form can always be obtained

$\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$ in balanced form

Balanced form and Schrödinger form

It is known that any ODE of our type can be shown in the form of a Schrödinger operator by simple substitutions. Similarily a so-called balanced form can always be obtained

Canonical form of the hypergeometric case

$$
\begin{gather*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)= \\
=z^{-\alpha}(1-z)^{-\beta} \partial_{z} z^{\alpha+1}(1-z)^{\beta+1} \partial_{z}-\frac{(1+\alpha+\beta)^{2}-\mu^{2}}{4} \tag{13}
\end{gather*}
$$

$\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$ in balanced form

Balanced form and Schrödinger form

It is known that any ODE of our type can be shown in the form of a Schrödinger operator by simple substitutions. Similarily a so-called balanced form can always be obtained

Balanced form of the hypergeometric operator

$$
\begin{align*}
& z^{\frac{\alpha}{2}}(1-z)^{\frac{\beta}{2}} \mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right) z^{-\frac{\alpha}{2}}(1-z)^{-\frac{\beta}{2}}= \\
& \quad=\partial_{z} z(1-z) \partial_{z}-\frac{\alpha^{2}}{4 z}-\frac{\beta^{2}}{4(1-z)}-\frac{1-\mu^{2}}{4} \tag{13}
\end{align*}
$$

$\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)$ in balanced form

Balanced form and Schrödinger form

It is known that any ODE of our type can be shown in the form of a Schrödinger operator by simple substitutions. Similarily a so-called balanced form can always be obtained

Balanced form of the hypergeometric operator

$$
\begin{align*}
& z^{\frac{\alpha}{2}}(1-z)^{\frac{\beta}{2}} \mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right) z^{-\frac{\alpha}{2}}(1-z)^{-\frac{\beta}{2}}= \\
& \quad=\partial_{z} z(1-z) \partial_{z}-\frac{\alpha^{2}}{4 z}-\frac{\beta^{2}}{4(1-z)}-\frac{1-\mu^{2}}{4} \tag{13}
\end{align*}
$$

Notice!

The symmetries are becoming even more v-i-s-i-b-l-e.

A less nightmarish zoo from JD - Kummer table

$w=z$

$$
w=1-z:
$$

$$
w=\frac{1}{z}
$$

$$
w=1-\frac{1}{z}
$$

$$
w=\frac{1}{1-z}:
$$

$$
w=\frac{z}{z-1}
$$

$$
\begin{aligned}
& \mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right), \\
& (-z)^{-\alpha}(z-1)^{-\beta} \quad \mathcal{F}_{-\alpha,-\beta, \mu}\left(z, \partial_{z}\right) \quad(-z)^{\alpha}(z-1)^{\beta} \\
& (z-1)^{-\beta} \quad \mathcal{F}_{\alpha,-\beta,-\mu}\left(z, \partial_{z}\right) \quad(z-1)^{\beta}, \\
& (-z)^{-\alpha} \quad \mathcal{F}_{-\alpha, \beta,-\mu}\left(z, \partial_{z}\right) \quad(-z)^{\alpha} ; \\
& (z-1)^{-\alpha}(-z)^{-\beta} \quad \mathcal{F}_{-\beta,-\alpha, \mu}\left(z, \partial_{z}\right) \quad(z-1)^{\alpha}(-z)^{\beta} \text {, } \\
& (z-1)^{-\alpha} \quad \mathcal{F}_{\beta,-\alpha,-\mu}\left(z, \partial_{z}\right) \quad(z-1)^{\alpha}, \\
& (-z)^{-\beta} \quad \mathcal{F}_{-\beta, \alpha,-\mu}\left(z, \partial_{z}\right) \quad(-z)^{\beta} \text {; } \\
& (-z)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(-z) \mathcal{F}_{\mu, \beta, \alpha}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}[-\alpha-\beta-\mu-1]}, \\
& (-z)^{\frac{1}{2}(\alpha+\beta-\mu+1)}(z-1)^{-\beta} \quad(-z) \mathcal{F}_{-\mu,-\beta, \alpha}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta+\mu-1)}(z-1)^{\beta} \text {, } \\
& (-z)^{\frac{1}{2}(\alpha+\beta+\mu+1)}(z-1)^{-\beta} \quad(-z) \mathcal{F}_{\mu,-\beta,-\alpha}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta-\mu-1)}(z-1)^{\beta} \text {, } \\
& (-z)^{\frac{1}{2}(\alpha+\beta-\mu+1)} \quad(-z) \mathcal{F}_{-\mu, \beta,-\alpha}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta+\mu-1)} ; \\
& (-z)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(-z) \mathcal{F}_{\mu, \alpha, \beta}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta-\mu-1)}, \\
& (-z)^{\frac{1}{2}(\alpha+\beta-\mu+1)}(z-1)^{-\alpha} \quad(-z) \mathcal{F}_{-\mu,-\alpha, \beta}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta+\mu-1)}(z-1)^{\alpha} \text {, } \\
& (-z)^{\frac{3}{2}(\alpha+\beta+\mu+1)}(z-1)^{-\alpha} \quad(-z) \mathcal{F}_{\mu,-\alpha,-\beta}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta-\mu-1)}(z-1)^{\alpha}, \\
& (-z)^{\frac{1}{2}(\alpha+\beta-\mu+1)} \quad(-z) \mathcal{F}_{-\mu, \alpha,-\beta}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta+\mu-1)} ; \\
& (z-1)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(z-1) \mathcal{F}_{\beta, \mu, \alpha}\left(z, \partial_{z}\right) \quad(z-1)^{\frac{1}{2}(-\alpha-\beta-\mu-1)}, \\
& (-z)^{-\beta}(z-1)^{\frac{1}{2}(\alpha+\beta-\mu+1)} \quad(z-1) \mathcal{F}_{-\beta ;-\mu, \alpha}\left(z, \partial_{z}\right) \quad(-z)^{\beta}(z-1)^{\frac{1}{2}(-\alpha-\beta+\mu-1)} \text {, } \\
& (z-1)^{\frac{1}{2}(\alpha+\beta-\mu+1)}(z-1) \mathcal{F}_{\beta,-\mu,-\alpha}\left(z, \partial_{z}\right) \quad(z-1)^{\frac{1}{2}(-\alpha-\beta+\mu-1)} \text {, } \\
& (-z)^{-\beta}(z-1)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(z-1) \mathcal{F}_{-\beta, \mu,-\alpha}\left(z, \partial_{z}\right) \quad(-z)^{\beta}(z-1)^{\frac{1}{2}(-\alpha-\beta-\mu-1)} ; \\
& (z-1)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(z-1) \mathcal{F}_{\alpha, \mu, \beta}\left(z, \partial_{z}\right) \quad(z-1)^{\frac{1}{2}(-\alpha-\beta-\mu-1)}, \\
& (-z)^{-\alpha}(z-1)^{\frac{1}{2}(\alpha+\beta-\mu+1)} \quad(z-1) \mathcal{F}_{-\alpha,-\mu, \beta}\left(z, \partial_{z}\right) \quad(-z)^{\alpha}(z-1)^{\frac{1}{2}(-\alpha-\beta+\mu-1)} \text {, } \\
& (z-1)^{\frac{1}{2}(\alpha+\beta-\mu+1)}(z-1) \mathcal{F}_{\alpha_{-}-\mu,-\beta}\left(z, \partial_{z}\right) \quad(z-1)^{\frac{1}{2}(-\alpha-\beta+\mu-1)}, \\
& (-z)^{-\alpha}(z-1)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(z-1) \mathcal{F}_{-\alpha, \mu,-\beta}\left(z, \partial_{z}\right) \quad(-z)^{\alpha}(z-1)^{\frac{1}{2}(-\alpha-\beta-\mu-1)} .
\end{aligned}
$$

Introduction

Permutations of singular points

Introduction

Permutations of singular points

Let us take the functions

Introduction

Permutations of singular points

Let us take the functions

$$
\begin{equation*}
h_{1}(z)=1-z \tag{14}
\end{equation*}
$$

Permutations of singular points

Let us take the functions

$$
\begin{gather*}
h_{1}(z)=1-z \tag{14}\\
h_{2}(z)=\frac{1}{z} \tag{15}
\end{gather*}
$$

Permutations of singular points

Let us take the functions

$$
\begin{gather*}
h_{1}(z)=1-z \\
h_{2}(z)=\frac{1}{z} \tag{15}
\end{gather*}
$$

These are enough to generate all possible permutations of the three singular points! There are six of those.

Index shifting and parameter interchange

Introduction

Index shifting and parameter interchange

- Now it is almost obvious that

Index shifting and parameter interchange

- Now it is almost obvious that

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=z^{-\alpha} \mathcal{F}_{-\alpha, \beta,-\mu}\left(z, \partial_{z}\right) z^{\alpha} \tag{16}
\end{equation*}
$$

Index shifting and parameter interchange

- Now it is almost obvious that

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=z^{-\alpha} \mathcal{F}_{-\alpha, \beta,-\mu}\left(z, \partial_{z}\right) z^{\alpha} \tag{16}
\end{equation*}
$$

- By symmetry

Index shifting and parameter interchange

- Now it is almost obvious that

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=z^{-\alpha} \mathcal{F}_{-\alpha, \beta,-\mu}\left(z, \partial_{z}\right) z^{\alpha} \tag{16}
\end{equation*}
$$

- By symmetry

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=(1-z)^{-\beta} \mathcal{F}_{\alpha,-\beta,-\mu}\left(z, \partial_{z}\right)(1-z)^{\beta} \tag{17}
\end{equation*}
$$

Index shifting and parameter interchange

- Now it is almost obvious that

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=z^{-\alpha} \mathcal{F}_{-\alpha, \beta,-\mu}\left(z, \partial_{z}\right) z^{\alpha} \tag{16}
\end{equation*}
$$

- By symmetry

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=(1-z)^{-\beta} \mathcal{F}_{\alpha,-\beta,-\mu}\left(z, \partial_{z}\right)(1-z)^{\beta} \tag{17}
\end{equation*}
$$

- One can compose both, we have four forms of the hypergeometric operator.

Index shifting and parameter interchange

- Now it is almost obvious that

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=z^{-\alpha} \mathcal{F}_{-\alpha, \beta,-\mu}\left(z, \partial_{z}\right) z^{\alpha} \tag{16}
\end{equation*}
$$

- By symmetry

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=(1-z)^{-\beta} \mathcal{F}_{\alpha,-\beta,-\mu}\left(z, \partial_{z}\right)(1-z)^{\beta} \tag{17}
\end{equation*}
$$

- One can compose both, we have four forms of the hypergeometric operator.
- It turns out that changing z into $\frac{1}{z}$ changes α with μ (and gives a factor)

Index shifting and parameter interchange

- Now it is almost obvious that

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=z^{-\alpha} \mathcal{F}_{-\alpha, \beta,-\mu}\left(z, \partial_{z}\right) z^{\alpha} \tag{16}
\end{equation*}
$$

- By symmetry

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right)=(1-z)^{-\beta} \mathcal{F}_{\alpha,-\beta,-\mu}\left(z, \partial_{z}\right)(1-z)^{\beta} \tag{17}
\end{equation*}
$$

- One can compose both, we have four forms of the hypergeometric operator.
- It turns out that changing z into $\frac{1}{z}$ changes α with μ (and gives a factor)
- Three simple building blocks are enough for all of that!

A less nightmarish zoo from JD - Kummer table - again

$$
\begin{aligned}
& \mathcal{F}_{\alpha, \beta, \mu}\left(z, \partial_{z}\right), \\
& (-z)^{-\alpha}(z-1)^{-\beta} \quad \mathcal{F}_{-\alpha,-\beta, \mu}\left(z, \partial_{z}\right) \quad(-z)^{\alpha}(z-1)^{\beta} \\
& (z-1)^{-\beta} \quad \mathcal{F}_{\alpha,-\beta,-\mu}\left(z, \partial_{z}\right) \quad(z-1)^{\beta}, \\
& (-z)^{-\alpha} \quad \mathcal{F}_{-\alpha, \beta,-\mu}\left(z, \partial_{z}\right) \quad(-z)^{\alpha} ; \\
& w=1-z: \\
& w=\frac{1}{z} \\
& (-z)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(-z) \mathcal{F}_{\mu, \beta, \alpha}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta-\mu-1)} \text {, } \\
& (-z)^{\frac{1}{2}(\alpha+\beta-\mu+1)}(z-1)^{-\beta} \quad(-z) \mathcal{F}_{-\mu,-\beta, \alpha}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta+\mu-1)}(z-1)^{\beta}, \\
& (-z)^{\frac{1}{2}(\alpha+\beta+\mu+1)}(z-1)^{-\beta} \quad(-z) \mathcal{F}_{\mu,-\beta,-\alpha}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta-\mu-1)}(z-1)^{\beta}, \\
& (-z)^{\frac{1}{2}(\alpha+\beta-\mu+1)} \quad(-z) \mathcal{F}_{-\mu, \beta,-\alpha}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta+\mu-1)} ; \\
& w=1-\frac{1}{z}: \\
& (-z)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(-z) \mathcal{F}_{\mu, \alpha, \beta}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta-\mu-1)}, \\
& (-z)^{\frac{1}{2}(\alpha+\beta-\mu+1)}(z-1)^{-\alpha} \quad(-z) \mathcal{F}_{-\mu,-\alpha, \beta}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta+\mu-1)}(z-1)^{\alpha}, \\
& (-z)^{\frac{1}{2}(\alpha+\beta+\mu+1)}(z-1)^{-\alpha} \quad(-z) \mathcal{F}_{\mu,-\alpha,-\beta}\left(z, \partial_{z}\right) \quad(-z)^{\frac{1}{2}(-\alpha-\beta-\mu-1)}(z-1)^{\alpha}, \\
& (-z)^{\frac{1}{2}(\alpha+\beta-\mu+1)} \quad(-z) \mathcal{F}_{-\mu, \alpha,-\beta\left(z, \partial_{z}\right)} \quad(-z)^{\frac{1}{2}(-\alpha-\beta+\mu-1)} ; \\
& w=\frac{1}{1-z}: \\
& (z-1)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(z-1) \mathcal{F}_{\beta, \mu, \alpha}\left(z, \partial_{z}\right) \quad(z-1)^{\frac{1}{2}(-\alpha-\beta-\mu-1)} . \\
& (-z)^{-\beta}(z-1)^{\frac{1}{2}(\alpha+\beta-\mu+1)} \quad(z-1) \mathcal{F}_{-\beta,-\mu, \alpha}\left(z, \partial_{z}\right) \quad(-z)^{\beta}(z-1)^{\frac{1}{2}(-\alpha-\beta+\mu-1)}, \\
& (z-1)^{\frac{1}{2}(\alpha+\beta-\mu+1)} \quad(z-1) \mathcal{F}_{\beta,-\mu,-\alpha}\left(z, \partial_{z}\right) \quad(z-1)^{\frac{1}{2}(-\alpha-\beta+\mu-1)}, \\
& (-z)^{-\beta}(z-1)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(z-1) \mathcal{F}_{-\beta, \mu,-\alpha}\left(z, \partial_{z}\right) \quad(-z)^{\beta}(z-1)^{\frac{1}{2}(-\alpha-\beta-\mu-1)} ; \\
& w=\frac{z}{z-1} \text {. } \\
& (z-1)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(z-1) \mathcal{F}_{\alpha, \mu, \beta}\left(z, \partial_{z}\right) \quad(z-1)^{\frac{1}{2}(-\alpha-\beta-\mu-1)}, \\
& (-z)^{-\alpha}(z-1)^{\frac{1}{2}(\alpha+\beta-\mu+1)} \quad(z-1) \mathcal{F}_{-\alpha,-\mu, \beta}\left(z, \partial_{z}\right) \quad(-z)^{\alpha}(z-1)^{\frac{1}{2}(-\alpha-\beta+\mu-1)} \text {, } \\
& (z-1)^{\frac{1}{2}(\alpha+\beta-\mu+1)}(z-1) \mathcal{F}_{\alpha_{-}-\mu,-\beta}\left(z, \partial_{z}\right) \quad(z-1)^{\frac{1}{2}(-\alpha-\beta+\mu-1)}, \\
& (-z)^{-\alpha}(z-1)^{\frac{1}{2}(\alpha+\beta+\mu+1)} \quad(z-1) \mathcal{F}_{-\alpha, \mu,-\beta}\left(z, \partial_{z}\right) \quad(-z)^{\alpha}(z-1)^{\frac{1}{2}(-\alpha-\beta-\mu-1)} .
\end{aligned}
$$

Try to multiply

It is now clear that $2^{3} \cdot 3!=8 \cdot 2 \cdot 3=2 \cdot 24$ is the order of the Weyl group for $S O(6, \mathbb{C})$. We have briefly described the action of the discrete Weyl group on hypergeometric operators. Let us discover quickly how the whole group acts.

Introduction

Conformal reduction from $n+2$ to n complex dimensions so(6, C) Lie algebra
Coordinates
Root operators in the hand picked coordinates

Reduction of linear action on \mathbb{C}^{n+2} to conformal action on \mathbb{C}^{n}

Reduction of linear action on \mathbb{C}^{n+2} to conformal action on \mathbb{C}^{n}

- Take \mathbb{C}^{n+2} equipped with a bilinear form $Q(\vec{z})$ and with a natural action of $S O(n+2, \mathbb{C})$

Reduction of linear action on \mathbb{C}^{n+2} to conformal action on \mathbb{C}^{n}

- Take \mathbb{C}^{n+2} equipped with a bilinear form $Q(\vec{z})$ and with a natural action of $S O(n+2, \mathbb{C})$
- As next step consider the quadric $\mathcal{V}=\left\{\vec{z} \in \mathbb{C}^{n+2}: Q(\vec{z})=0\right\}$

Reduction of linear action on \mathbb{C}^{n+2} to conformal action on \mathbb{C}^{n}

- Take \mathbb{C}^{n+2} equipped with a bilinear form $Q(\vec{z})$ and with a natural action of $S O(n+2, \mathbb{C})$
- As next step consider the quadric $\mathcal{V}=\left\{\vec{z} \in \mathbb{C}^{n+2}: Q(\vec{z})=0\right\}$
- One can reduce \mathcal{V} by the action of the multiplicative group of the complex numbers, $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$, i.e. ,,projectivize"

Reduction of linear action on \mathbb{C}^{n+2} to conformal action on \mathbb{C}^{n}

- Take \mathbb{C}^{n+2} equipped with a bilinear form $Q(\vec{z})$ and with a natural action of $S O(n+2, \mathbb{C})$
- As next step consider the quadric $\mathcal{V}=\left\{\vec{z} \in \mathbb{C}^{n+2}: Q(\vec{z})=0\right\}$
- One can reduce \mathcal{V} by the action of the multiplicative group of the complex numbers, $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$, i.e. ,,projectivize"
- We have

$$
\begin{equation*}
\mathcal{V} / \mathbb{C}^{\times} \hookleftarrow \mathbb{C}^{n} \tag{18}
\end{equation*}
$$

Reduction of linear action on \mathbb{C}^{n+2} to conformal action on \mathbb{C}^{n}

- Take \mathbb{C}^{n+2} equipped with a bilinear form $Q(\vec{z})$ and with a natural action of $S O(n+2, \mathbb{C})$
- As next step consider the quadric $\mathcal{V}=\left\{\vec{z} \in \mathbb{C}^{n+2}: Q(\vec{z})=0\right\}$
- One can reduce \mathcal{V} by the action of the multiplicative group of the complex numbers, $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$, i.e. ,,projectivize"
- We have

$$
\begin{equation*}
\mathcal{V} / \mathbb{C}^{x} \hookleftarrow \mathbb{C}^{n} \tag{18}
\end{equation*}
$$

- Note that $\mathcal{V} / \mathbb{C}^{\times}$is preserved by the action of $S O(n+2, \mathbb{C})$

Reduction of linear action on \mathbb{C}^{n+2} to conformal action on \mathbb{C}^{n}

- Take \mathbb{C}^{n+2} equipped with a bilinear form $Q(\vec{z})$ and with a natural action of $S O(n+2, \mathbb{C})$
- As next step consider the quadric $\mathcal{V}=\left\{\vec{z} \in \mathbb{C}^{n+2}: Q(\vec{z})=0\right\}$
- One can reduce \mathcal{V} by the action of the multiplicative group of the complex numbers, $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$, i.e. ,,projectivize"
- We have

$$
\begin{equation*}
\mathcal{V} / \mathbb{C}^{x} \hookleftarrow \mathbb{C}^{n} \tag{18}
\end{equation*}
$$

- Note that $\mathcal{V} / \mathbb{C}^{\times}$is preserved by the action of $S O(n+2, \mathbb{C})$

Thus we have constructed the conformal action of $S O(n+2, \mathbb{C})$ on \mathbb{C}^{n}

Reduction of linear action on \mathbb{C}^{n+2} to conformal action on \mathbb{C}^{n}

- Take \mathbb{C}^{n+2} equipped with a bilinear form $Q(\vec{z})$ and with a natural action of $S O(n+2, \mathbb{C})$
- As next step consider the quadric $\mathcal{V}=\left\{\vec{z} \in \mathbb{C}^{n+2}: Q(\vec{z})=0\right\}$
- One can reduce \mathcal{V} by the action of the multiplicative group of the complex numbers, $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$, i.e. ,,projectivize"
- We have

$$
\begin{equation*}
\mathcal{V} / \mathbb{C}^{x} \hookleftarrow \mathbb{C}^{n} \tag{18}
\end{equation*}
$$

- Note that $\mathcal{V} / \mathbb{C}^{\times}$is preserved by the action of $S O(n+2, \mathbb{C})$

Thus we have constructed the conformal action of $S O(n+2, \mathbb{C})$ on \mathbb{C}^{n}

It is not obvious that one can also ,,push forward" the Laplace operator. In fact it descends to the quotient space when one considers homogeneous functions of order $1-\frac{n}{2}$ on the quadric.

so(6, C) Lie algebra

Conformal reduction from $n+2$ to n complex dimensions so(6, $\mathbb{C})$ Lie algebra
Coordinates
Root operators in the hand picked coordinates

so(6, C) Lie algebra

- Take \mathbb{C}^{6} equipped with the bilinear form

$$
\begin{equation*}
Q(\vec{z})=2\left(z_{-1} z_{1}+z_{-2} z_{2}+z_{-3} Z_{3}\right) \tag{19}
\end{equation*}
$$

so(6, C) Lie algebra

- Take \mathbb{C}^{6} equipped with the bilinear form

$$
\begin{equation*}
Q(\vec{z})=2\left(z_{-1} z_{1}+z_{-2} z_{2}+z_{-3} z_{3}\right) \tag{19}
\end{equation*}
$$

- Then

$$
\begin{equation*}
\Delta=2\left(\partial_{z_{-1}} \partial_{z_{1}}+\partial_{z_{-2}} \partial_{z_{2}}+\partial_{z_{-3}} \partial_{z_{3}}\right) \tag{20}
\end{equation*}
$$

so(6, C) Lie algebra

- Take \mathbb{C}^{6} equipped with the bilinear form

$$
\begin{equation*}
Q(\vec{z})=2\left(z_{-1} z_{1}+z_{-2} z_{2}+z_{-3} z_{3}\right) \tag{19}
\end{equation*}
$$

- Then

$$
\begin{equation*}
\triangle=2\left(\partial_{z_{-1}} \partial_{z_{1}}+\partial_{z_{-2}} \partial_{z_{2}}+\partial_{z_{-3}} \partial_{z_{3}}\right) \tag{20}
\end{equation*}
$$

- $S O(6, \mathbb{C})$ Lie algebra is generated by twelve root operators

$$
\begin{equation*}
B_{i j}:=z_{-i} \partial_{z_{j}}-z_{-j} \partial_{z_{i}}=-B_{j i} \ldots \tag{21}
\end{equation*}
$$

so(6, C) Lie algebra

- Take \mathbb{C}^{6} equipped with the bilinear form

$$
\begin{equation*}
Q(\vec{z})=2\left(z_{-1} z_{1}+z_{-2} z_{2}+z_{-3} z_{3}\right) \tag{19}
\end{equation*}
$$

- Then

$$
\begin{equation*}
\triangle=2\left(\partial_{z_{-1}} \partial_{z_{1}}+\partial_{z_{-2}} \partial_{z_{2}}+\partial_{z_{-3}} \partial_{z_{3}}\right) \tag{20}
\end{equation*}
$$

- $S O(6, \mathbb{C})$ Lie algebra is generated by twelve root operators

$$
\begin{equation*}
B_{i j}:=z_{-i} \partial_{z_{j}}-z_{-j} \partial_{z_{i}}=-B_{j i} \ldots \tag{21}
\end{equation*}
$$

- ... and three Cartan operators

$$
\begin{equation*}
N_{i}:=B_{-i i}=-B_{i-i}=z_{i} \partial_{z_{i}}-z_{-i} \partial_{z_{-i}} \tag{22}
\end{equation*}
$$

Introduction

Conformal reduction from $n+2$ to n complex dimensions so(6, C) Lie algebra

Coordinates

Root operators in the hand picked coordinates

Suitable choice of coordinates remembering that $6=4+2$

Conformal reduction from $n+2$ to n complex dimensions so(6, C) Lie algebra
Coordinates
Root operators in the hand picked coordinates

Suitable choice of coordinates remembering that $6=4+2$

Let us take the following coordinates:

Suitable choice of coordinates remembering that $6=4+2$

Let us take the following coordinates:

$$
\begin{aligned}
r & =\sqrt{2\left(z_{-1} z_{1}+z_{-2} z_{2}\right)} \\
u_{1} & =\sqrt{\frac{z_{1}}{z_{-1}}} \\
u_{2} & =\sqrt{\frac{z_{2}}{z_{-2}}} \\
w & =\frac{z_{-1} z_{1}}{z_{-1} z_{1}+z_{-2} z_{2}}
\end{aligned}
$$

Suitable choice of coordinates remembering that $6=4+2$

Let us take the following coordinates:

$$
\begin{aligned}
r & =\sqrt{2\left(z_{-1} z_{1}+z_{-2} z_{2}\right)} \\
u_{1} & =\sqrt{\frac{z_{1}}{z_{-1}}} \\
u_{2} & =\sqrt{\frac{z_{2}}{z_{-2}}} \\
w & =\frac{z_{-1} z_{1}}{z_{-1} z_{1}+z_{-2} z_{2}}
\end{aligned}
$$

and

Suitable choice of coordinates remembering that $6=4+2$

Let us take the following coordinates:

$$
\begin{aligned}
r & =\sqrt{2\left(z_{-1} z_{1}+z_{-2} z_{2}\right)} \\
u_{1} & =\sqrt{\frac{z_{1}}{z_{-1}}} \\
u_{2} & =\sqrt{\frac{z_{2}}{z_{-2}}} \\
w & =\frac{z_{-1} z_{1}}{z_{-1} z_{1}+z_{-2} z_{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
p & =\sqrt{2 z_{3} z_{-3}}, \\
u_{3} & =\sqrt{\frac{z_{3}}{z_{-3}}}
\end{aligned}
$$

Suitable choice of coordinates remembering that $6=4+2$

Let us take the following coordinates:

$$
\begin{aligned}
r & =\sqrt{2\left(z_{-1} z_{1}+z_{-2} z_{2}\right)} \\
u_{1} & =\sqrt{\frac{z_{1}}{z_{-1}}} \\
u_{2} & =\sqrt{\frac{z_{2}}{z_{-2}}} \\
w & =\frac{z_{-1} z_{1}}{z_{-1} z_{1}+z_{-2} z_{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
p & =\sqrt{2 z_{3} z_{-3}}, \\
u_{3} & =\sqrt{\frac{z_{3}}{z_{-3}}}
\end{aligned}
$$

In this coordinates the bilinear form is $Q(\vec{z})=r^{2}+p^{2}$. Therefore the reduction to the quadric will be given by $p=\mathrm{i}$.

Conformal reduction from $n+2$ to n complex dimensions so(6, C) Lie algebra
Coordinates
Root operators in the hand picked coordinates

Laplace operator or hypergeometric operator in the balanced form?

Laplace operator or hypergeometric operator in the balanced form?

Then the Laplace operator is $\triangle_{\mathbb{C}^{6}}=\triangle_{\mathbb{C}^{4}}+\triangle_{\mathbb{C}^{2}}$, where

Laplace operator or hypergeometric operator in the balanced form?

Then the Laplace operator is $\triangle_{\mathbb{C}^{6}}=\triangle_{\mathbb{C}^{4}}+\triangle_{\mathbb{C}^{2}}$, where

$$
\triangle_{\mathbb{C}^{4}}=\partial_{r}^{2}+\frac{3}{r} \partial_{r}+\frac{4}{r^{2}}\left[\partial_{w} w(1-w) \partial_{w}+\frac{1}{4 w}\left(u_{1} \partial_{u_{1}}\right)^{2}+\frac{1}{4(1-w)}\left(u_{2} \partial_{u_{2}}\right)^{2}\right]
$$

Laplace operator or hypergeometric operator in the balanced form?

Then the Laplace operator is $\triangle_{\mathbb{C}^{6}}=\triangle_{\mathbb{C}^{4}}+\triangle_{\mathbb{C}^{2}}$, where

$$
\triangle_{\mathbb{C}^{4}}=\partial_{r}^{2}+\frac{3}{r} \partial_{r}+\frac{4}{r^{2}}\left[\partial_{w} w(1-w) \partial_{w}+\frac{1}{4 w}\left(u_{1} \partial_{u_{1}}\right)^{2}+\frac{1}{4(1-w)}\left(u_{2} \partial_{u_{2}}\right)^{2}\right]
$$

and

$$
\triangle_{\mathbb{C}^{2}}=2 \partial_{z_{3}} \partial_{z_{-3}}=\partial_{p}{ }^{2}+\frac{1}{p} \partial_{p}-\frac{u_{3}^{2}}{p^{2}} \partial_{u_{3}}{ }^{2} .
$$

Laplace operator or hypergeometric operator in the balanced form?

Then the Laplace operator is $\triangle_{\mathbb{C}^{6}}=\triangle_{\mathbb{C}^{4}}+\triangle_{\mathbb{C}^{2}}$, where

$$
\triangle_{\mathbb{C}^{4}}=\partial_{r}^{2}+\frac{3}{r} \partial_{r}+\frac{4}{r^{2}}\left[\partial_{w} w(1-w) \partial_{w}+\frac{1}{4 w}\left(u_{1} \partial_{u_{1}}\right)^{2}+\frac{1}{4(1-w)}\left(u_{2} \partial_{u_{2}}\right)^{2}\right]
$$

and

$$
\triangle_{\mathbb{C}^{2}}=2 \partial_{z_{3}} \partial_{z_{-3}}=\partial_{p}^{2}+\frac{1}{p} \partial_{p}-\frac{u_{3}^{2}}{p^{2}} \partial_{u_{3}}{ }^{2} .
$$

The four dimensional part with respect to coordinates w, u_{1}, u_{2}, u_{3} gives the hypergeometric equation provided one makes a certain ansatz (roughly - the details of the reduction, even though most interesting, have been skipped for simplicity of this presentation)!

$$
\begin{equation*}
F\left(w, u_{1}, u_{2}, u_{3}\right)=u_{1}^{\alpha} u_{2}^{\beta} u_{3}^{\mu} F(w) \tag{23}
\end{equation*}
$$

Introduction

Root operators in the hand picked coordinates

Cartan operators

Introduction

Conformal reduction from $n+2$ to n complex dimensions so(6, $\mathbb{C})$ Lie algebra

Root operators in the hand picked coordinates

Cartan operators

Obviously in the new coordinates the three Cartan operators look like

Cartan operators

Obviously in the new coordinates the three Cartan operators look like

$$
\begin{equation*}
N_{1}=u_{1} \partial_{u_{1}} \tag{24}
\end{equation*}
$$

Cartan operators

Obviously in the new coordinates the three Cartan operators look like

$$
\begin{align*}
& N_{1}=u_{1} \partial_{u_{1}} \tag{24}\\
& N_{2}=u_{2} \partial_{u_{2}} \tag{25}
\end{align*}
$$

Cartan operators

Obviously in the new coordinates the three Cartan operators look like

$$
\begin{align*}
& N_{1}=u_{1} \partial_{u_{1}} \tag{24}\\
& N_{2}=u_{2} \partial_{u_{2}} \tag{25}\\
& N_{3}=u_{3} \partial_{u_{3}} \tag{26}
\end{align*}
$$

Further we will frequently use those operators as the hypergeometric functions are their eigenvectors.

Introduction

Root operators in the hand picked coordinates

Root operators 1

Conformal reduction from $n+2$ to n complex dimensions so(6, C) Lie algebra
Coordinates
Root operators in the hand picked coordinates

Root operators 1

The root operators not involving coordinate 3 or -3 are

Root operators 1

The root operators not involving coordinate 3 or -3 are

$$
B_{-2-1}=u_{1} u_{2} \sqrt{w(1-w)}\left[\partial_{w}-\frac{N_{1}}{2 w}+\frac{N_{2}}{2(1-w)}\right]
$$

Root operators 1

The root operators not involving coordinate 3 or -3 are

$$
\begin{aligned}
B_{-2-1} & =u_{1} u_{2} \sqrt{w(1-w)}\left[\partial_{w}-\frac{N_{1}}{2 w}+\frac{N_{2}}{2(1-w)}\right] \\
B_{-21} & =\frac{u_{2}}{u_{1}} \sqrt{w(1-w)}\left[\partial_{w}+\frac{N_{1}}{2 w}+\frac{N_{2}}{2(1-w)}\right]
\end{aligned}
$$

Root operators 1

The root operators not involving coordinate 3 or -3 are

$$
\begin{aligned}
B_{-2-1} & =u_{1} u_{2} \sqrt{w(1-w)}\left[\partial_{w}-\frac{N_{1}}{2 w}+\frac{N_{2}}{2(1-w)}\right] \\
B_{-21} & =\frac{u_{2}}{u_{1}} \sqrt{w(1-w)}\left[\partial_{w}+\frac{N_{1}}{2 w}+\frac{N_{2}}{2(1-w)}\right] \\
B_{2-1} & =\frac{u_{1}}{u_{2}} \sqrt{w(1-w)}\left[\partial_{w}-\frac{N_{1}}{2 w}-\frac{N_{2}}{2(1-w)}\right]
\end{aligned}
$$

Root operators 1

The root operators not involving coordinate 3 or -3 are

$$
\begin{aligned}
B_{-2-1} & =u_{1} u_{2} \sqrt{w(1-w)}\left[\partial_{w}-\frac{N_{1}}{2 w}+\frac{N_{2}}{2(1-w)}\right] \\
B_{-21} & =\frac{u_{2}}{u_{1}} \sqrt{w(1-w)}\left[\partial_{w}+\frac{N_{1}}{2 w}+\frac{N_{2}}{2(1-w)}\right] \\
B_{2-1} & =\frac{u_{1}}{u_{2}} \sqrt{w(1-w)}\left[\partial_{w}-\frac{N_{1}}{2 w}-\frac{N_{2}}{2(1-w)}\right] \\
B_{21} & =\frac{1}{u_{1} u_{2}} \sqrt{w(1-w)}\left[\partial_{w}+\frac{N_{1}}{2 w}-\frac{N_{2}}{2(1-w)}\right]
\end{aligned}
$$

Root operators 1

The root operators not involving coordinate 3 or -3 are

$$
\begin{aligned}
B_{-2-1} & =u_{1} u_{2} \sqrt{w(1-w)}\left[\partial_{w}-\frac{N_{1}}{2 w}+\frac{N_{2}}{2(1-w)}\right] \\
B_{-21} & =\frac{u_{2}}{u_{1}} \sqrt{w(1-w)}\left[\partial_{w}+\frac{N_{1}}{2 w}+\frac{N_{2}}{2(1-w)}\right] \\
B_{2-1} & =\frac{u_{1}}{u_{2}} \sqrt{w(1-w)}\left[\partial_{w}-\frac{N_{1}}{2 w}-\frac{N_{2}}{2(1-w)}\right] \\
B_{21} & =\frac{1}{u_{1} u_{2}} \sqrt{w(1-w)}\left[\partial_{w}+\frac{N_{1}}{2 w}-\frac{N_{2}}{2(1-w)}\right]
\end{aligned}
$$

Note how obvious and ellegant the action of the Weyl group of $S O(6, \mathbb{C})$ looks using the above shown forms!

Introduction

Conformal reduction from $n+2$ to n complex dimensions so(6, C) Lie algebra
Coordinates
Root operators in the hand picked coordinates

Root operators 2

Root operators 2

The root operators involving coordinate 3 or -3 , after taking $p=\mathrm{ir}$ and reducing to homogeneous functions of order λ in coordinate r, equal

Root operators 2

The root operators involving coordinate 3 or -3 , after taking $p=\mathrm{ir}$ and reducing to homogeneous functions of order λ in coordinate r, equal

$$
\begin{gathered}
B_{3-1}=\frac{\mathrm{i}}{2} \frac{u_{1}}{u_{3}} \sqrt{w}\left[\lambda+2(1-w) \partial_{w}-\frac{N_{1}}{w}+N_{3}\right] \\
B_{31}=\frac{\mathrm{i}}{2} \frac{1}{u_{1} u_{3}} \sqrt{w}\left[\lambda+2(1-w) \partial_{w}+\frac{N_{1}}{w}+N_{3}\right] \\
B_{-3-1}=\frac{\mathrm{i}}{2} u_{3} u_{1} \sqrt{w}\left[\lambda+2(1-w) \partial_{w}-\frac{N_{1}}{w}-N_{3}\right] \\
B_{-31}= \\
=\frac{i}{2} \frac{u_{3}}{u_{1}} \sqrt{w}\left[\lambda+2(1-w) \partial_{w}+\frac{N_{1}}{w}-N_{3}\right]
\end{gathered}
$$

Root operators 2

The root operators involving coordinate 3 or -3 , after taking $p=\mathrm{ir}$ and reducing to homogeneous functions of order λ in coordinate r, equal

$$
\begin{gathered}
B_{3-2}=\frac{i}{2} \frac{u_{2}}{u_{3}} \sqrt{1-w}\left[\lambda-2 w \partial_{w}-\frac{N_{2}}{1-w}+N_{3}\right] \\
B_{32}= \\
\frac{i}{2} \frac{1}{u_{2} u_{3}} \sqrt{1-w}\left[\lambda-2 w \partial_{w}+\frac{N_{2}}{1-w}+N_{3}\right] \\
B_{-3-2}= \\
=\frac{i}{2} u_{2} u_{3} \sqrt{1-w}\left[\lambda-2 w \partial_{w}-\frac{N_{2}}{1-w}-N_{3}\right] \\
B_{-32}= \\
=\frac{i}{2} \frac{u_{3}}{u_{2}} \sqrt{1-w}\left[\lambda-2 w \partial_{w}+\frac{N_{2}}{1-w}-N_{3}\right]
\end{gathered}
$$

Root operators 2

The root operators involving coordinate 3 or -3 , after taking $p=\mathrm{ir}$ and reducing to homogeneous functions of order λ in coordinate r, equal

$$
\begin{gathered}
B_{3-2}=\frac{\mathrm{i}}{2} \frac{u_{2}}{u_{3}} \sqrt{1-w}\left[\lambda-2 w \partial_{w}-\frac{N_{2}}{1-w}+N_{3}\right] \\
B_{32}=\frac{\mathrm{i}}{2} \frac{1}{u_{2} u_{3}} \sqrt{1-w}\left[\lambda-2 w \partial_{w}+\frac{N_{2}}{1-w}+N_{3}\right] \\
B_{-3-2}=\frac{\mathrm{i}}{2} u_{2} u_{3} \sqrt{1-w}\left[\lambda-2 w \partial_{w}-\frac{N_{2}}{1-w}-N_{3}\right] \\
B_{-32}=\frac{i}{2} \frac{u_{3}}{u_{2}} \sqrt{1-w}\left[\lambda-2 w \partial_{w}+\frac{N_{2}}{1-w}-N_{3}\right]
\end{gathered}
$$

The symmetries and relations for hypergeometric-type operators are visible here in the simplest way. Also this algebra can easily generate all possible formulae which arise through that construction! Please remember that the change of 1 into 2 involves the change of w into $1-w$ and that is all!

A short outline of my PhD's work

A short outline of my PhD's work

A short outline of my PhD's work

- We have studied Gell-Mann - Low adiabatic limit approach to scattering, and calculated rigorously a time-ordered exponential for a non-commutative family of operators

A short outline of my PhD's work

- We have studied Gell-Mann - Low adiabatic limit approach to scattering, and calculated rigorously a time-ordered exponential for a non-commutative family of operators
- The solution was involving hypergeometric-type functions

A short outline of my PhD's work

- We have studied Gell-Mann - Low adiabatic limit approach to scattering, and calculated rigorously a time-ordered exponential for a non-commutative family of operators
- The solution was involving hypergeometric-type functions
- We looked at the geometric interpretation of the six exactly solvable Schrödinger potentials (by means of hypergeometric functions)

A short outline of my PhD's work

- We have studied Gell-Mann - Low adiabatic limit approach to scattering, and calculated rigorously a time-ordered exponential for a non-commutative family of operators
- The solution was involving hypergeometric-type functions
- We looked at the geometric interpretation of the six exactly solvable Schrödinger potentials (by means of hypergeometric functions)
- That gave us interpretation, that Schrödinger operators, which are also special cases of the hypergeometric operator, are in fact Laplace-Beltrami operators on certain 3 d surfaces embedded in 4 d real subspaces of \mathbb{C}^{4}

A short outline of my PhD's work

- We have studied Gell-Mann - Low adiabatic limit approach to scattering, and calculated rigorously a time-ordered exponential for a non-commutative family of operators
- The solution was involving hypergeometric-type functions
- We looked at the geometric interpretation of the six exactly solvable Schrödinger potentials (by means of hypergeometric functions)
- That gave us interpretation, that Schrödinger operators, which are also special cases of the hypergeometric operator, are in fact Laplace-Beltrami operators on certain 3 d surfaces embedded in 4 d real subspaces of \mathbb{C}^{4}
- Jan introduced me to the global picture of the Lie group of symmetries for the hypergeometric equation which I liked very much and which finally helped me to understand the real beauty of the great plurality of possibilities.

A little about literature

A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present a long list here. For a condensed, full presentation, involving Lie groups of symmetries, I will show references to works of Jan Dereziński and recently also PM.

A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present a long list here. For a condensed, full presentation, involving Lie groups of symmetries, I will show references to works of Jan Dereziński and recently also PM.

- Jan Dereziński, Hypergeometric type functions and their symmetries, has been sent to AHP

A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present a long list here. For a condensed, full presentation, involving Lie groups of symmetries, I will show references to works of Jan Dereziński and recently also PM.

- Jan Dereziński, Hypergeometric type functions and their symmetries, has been sent to AHP
- Jan Dereziński, Michat Wrochna, Exactly solvable Schrödinger operators, Annales Henri Poincare 12 (2011) 397-418

A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present a long list here. For a condensed, full presentation, involving Lie groups of symmetries, I will show references to works of Jan Dereziński and recently also PM.

- Jan Dereziński, Hypergeometric type functions and their symmetries, has been sent to AHP
- Jan Dereziński, Michał Wrochna, Exactly solvable Schrödinger operators, Annales Henri Poincare 12 (2011) 397-418
- Jan Dereziński, PM, From the confromal group to symmetries of the hypergeometric operators, under construction

A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present a long list here. For a condensed, full presentation, involving Lie groups of symmetries, I will show references to works of Jan Dereziński and recently also PM.

- Jan Dereziński, Hypergeometric type functions and their symmetries, has been sent to AHP
- Jan Dereziński, Michał Wrochna, Exactly solvable Schrödinger operators, Annales Henri Poincare 12 (2011) 397-418
- Jan Dereziński, PM, From the confromal group to symmetries of the hypergeometric operators, under construction

Not discussed here was the reduction from 5d to 3d giving conformal representations of $S O(5, \mathbb{C})$ on solutions of the Gegenbauer equation

A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present a long list here. For a condensed, full presentation, involving Lie groups of symmetries, I will show references to works of Jan Dereziński and recently also PM.

- Jan Dereziński, Hypergeometric type functions and their symmetries, has been sent to AHP
- Jan Dereziński, Michał Wrochna, Exactly solvable Schrödinger operators, Annales Henri Poincare 12 (2011) 397-418
- Jan Dereziński, PM, From the confromal group to symmetries of the hypergeometric operators, under construction

Not discussed here was the reduction from 5d to 3d giving conformal representations of $\operatorname{SO}(5, \mathbb{C})$ on solutions of the Gegenbauer equation

- M. Abramowitz, I. Stegun, Handbook of Mathematical Fucntions, multiple editions, i.e. tenth printing, December 1972

Thank you for your attention!

It was a pleasure to give a talk to such an audience. ©

