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How the action of the symmetry group SO(6,C) and the choice of a nice set of
parameters help one to understand and present logically a whole bunch of special
functions.
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History: early beginnings

Wikipedia ~ says

The term ,,hypergeometric series” was first used by John Wallis in his 1655 book
Arithmetica Infinitorum. Hypergeometric series were studied by Leonhard Euler,
but the first full systematic treatment was given by Carl Friedrich Gauss (1813).
Studies in the nineteenth century included those of Ernst Kummer (1836), and
the fundamental characterisation by Bernhard Riemann of the hypergeometric
function by means of the differential equation it satisfies. Riemann showed that
the second-order differential equation for »F1(z), examined in the complex plane,
could be characterised (on the Riemann sphere) by its three regular singularities.
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History: early beginnings

Wikipedia ~ says

The term ,,hypergeometric series” was first used by John Wallis in his 1655 book
Arithmetica Infinitorum. Hypergeometric series were studied by Leonhard Euler,
but the first full systematic treatment was given by Carl Friedrich Gauss (1813).
Studies in the nineteenth century included those of Ernst Kummer (1836), and
the fundamental characterisation by Bernhard Riemann of the hypergeometric
function by means of the differential equation it satisfies. Riemann showed that
the second-order differential equation for »F1(z), examined in the complex plane,
could be characterised (on the Riemann sphere) by its three regular singularities.

Beware

| will try to follow the historical path on which the subject was being discovered.
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Introduction

Euler Gamma function

@ Euler integral of the first kind

B(a, b) = % - /0 £ 1 - ¢)Plde (1)
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@ Euler integral of the first kind

B(a, b) = % - /0 £ 1 - ¢)Plde (1)

@ Euler integral of the second kind

Mz) = /O T rletde 2)
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Introduction

Euler Gamma function

@ Euler integral of the first kind

B(a, b) = % - /0 £ 1 - ¢)Plde (1)

@ Euler integral of the second kind

Mz) = /O T rletde 2)

@ Weierstrass product

L :zewzﬁ (1+%) e n 3)
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Euler Gamma function

@ Euler integral of the first kind

B(a, b) = % = /0 271 — t)Plde

@ Euler integral of the second kind

Mz) = /O T rletde 2)

@ Weierstrass product

The inverse of the Gamma function is an entire function!
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Introduction

Euler Gamma function

@ Euler integral of the first kind

B(a, b) = % - /0 £ 1 - ¢)Plde (1)

@ Euler integral of the second kind

Mz) = /O T rletde 2)

@ Weierstrass product

The inverse of the Gamma function is an entire function! J
° . )
sinmz
_— = r(1— 4
i~ e -2) *)
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Euler Gamma function
Hypergeometric-type series

Hypergeometric series
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Hypergeometric series
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Introduction

Hypergeometric series

2Fi(a, b;c;z) = ; (az,,c()ljzﬂzn o
(a)n:ﬁ(a+k):a(a+1).,,,.(aJrnil) ©
k=0

v
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Hypergeometric series

oo bicir) =) O ®)
(a)nﬁ(a+k)3(a+1)....-(a+n1) (6)
Wa=n  (—k)n=0, n>k ()= % (7)
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Hypergeometric-type series

Hypergeometric series

Hypergeometric series of type 2F1(a, b; ¢; z)

2Fi(a, b; c; 2) Z (8)(b)nz" (5)

(c)nn!

o Easy to generalize, just put , k" parameters up and ,,m" parameters down
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Hypergeometric-type series

Hypergeometric series

Hypergeometric series of type 2F1(a, b; ¢; z)

2Fi(a, b; c; 2) Z (8)(b)nz" (5)

(c)nn!

o Easy to generalize, just put , k" parameters up and ,,m" parameters down

@ Easy to see where the series converges and thus defines an analytical
function

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction

Hypergeometric-type series

Hypergeometric series

Hypergeometric series of type 2F1(a, b; ¢; z)

2Fi(a, b; c; 2) Z (8)(b)nz" (5)

(c)nn!

o Easy to generalize, just put , k" parameters up and ,,m" parameters down

@ Easy to see where the series converges and thus defines an analytical
function

@ Hard to compute any special values or to see limiting cases
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Introduction

Hypergeometric series

Hypergeometric series of type 2F1(a, b; ¢; z)

2Fi(a, b; c; 2) Z (8)(b)nz" (5)

(c)nn!

Easy to generalize, just put , k" parameters up and ,,m"” parameters down

@ Easy to see where the series converges and thus defines an analytical
function

@ Hard to compute any special values or to see limiting cases

@ Due to problems with the denominator one should introduce
Fi(a,b;c;z) s (a)a(b)nz"
Fi(a, biciz) = 20222 = N s

2F1(a, by c; 2) r(c) 2 T(c+ nn! (6)
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Hypergeometric-type series

Hypergeometric-type oF1
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type series

Hypergeometric-type oF1

Hypergeometric series of type oFi(c; z)

oo

oFilei) =Y (7)

n=0

@ The function defined by the series above is one of the solutions to

(z 8%+ cd, — 1) f(z) =0 (8)
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type series

Hypergeometric-type oF1

Hypergeometric series of type oFi(c; z)

oo

oFi(c;z) = Z C) - (7)

n=0

@ The function defined by the series above is one of the solutions to
(2822+c82—1) f(z)=0 (8)

@ In fact, it is a subclass of the confluent function 1 F;
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Hypergeometric-type series

Hypergeometric-type oF1

Hypergeometric series of type oFi(c; z)

oo

oFi(c;z) = Z C) - (7)

n=0

@ The function defined by the series above is one of the solutions to
(2822+c82—1) f(z)=0 (8)

@ In fact, it is a subclass of the confluent function 1 F;

@ It is classically known as the modified Bessel function,

lo(w) = (g)“oa (a+ 1; WTQ) 9)

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Hypergeometric differential operator in the classical setting
The hypergeometric equation a

Hypergeometric equation
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ergeometric differential operator in the classical setting
The hypergeometric equation geometric operator using Lie-algeb parameters

Hypergeometric equation

Hypergeometric operator F(a, b; ¢; z, 9;)

Fla,bic;z,d,) =2(1—2)3,° +(c—(a+ b+1)z) 3, — ab (10)
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Hypergeometnc differential operator in the classical setting
The hypergeometric equation c operator using L bi arameters

Hypergeometric equation

Hypergeometric operator F(a, b; ¢; z, 9;)

Fla,bic;z,d,) =2(1—2)3,° +(c—(a+ b+1)z) 3, — ab (10)

o It is easy to apply this operator to the hypergeometric series
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Hypergeometnc differential operator in the classical setting
The hypergeometric equation < ator usir bi arameters

Hypergeometric equation

Hypergeometric operator F(a, b; ¢; z, 9;)

Fla,bic;z,d,) =2(1—2)3,° +(c—(a+ b+1)z) 3, — ab (10)

o It is easy to apply this operator to the hypergeometric series

@ This is the classical choice of parameters, a, b, ¢, which coincide well
with the series and the integral represenations, but not with the underlying
structure of symmetry with respect to SO(6, C)
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metric differential operator i classical setting
The hypergeometric equation c operator using Lie parameters

Hypergeometric equation

Hypergeometric operator F(a, b; ¢; z, 9;)

Fla,bic;z,d,) =2(1—2)3,° +(c—(a+ b+1)z) 3, — ab (10)

o It is easy to apply this operator to the hypergeometric series

@ This is the classical choice of parameters, a, b, ¢, which coincide well
with the series and the integral represenations, but not with the underlying
structure of symmetry with respect to SO(6, C)

@ The operator has three regular singular points on the Riemann sphere 0, 1
and oo
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metric differential operator i classical setting
The hypergeometric equation c operator using Lie parameters

Hypergeometric equation

Hypergeometric operator F(a, b; ¢; z, 9;)

Fla,bic;z,d,) =2(1—2)3,° +(c—(a+ b+1)z) 3, — ab (10)

o It is easy to apply this operator to the hypergeometric series

@ This is the classical choice of parameters, a, b, ¢, which coincide well
with the series and the integral represenations, but not with the underlying
structure of symmetry with respect to SO(6, C)

@ The operator has three regular singular points on the Riemann sphere 0, 1
and oo

@ Parameters a, b solve the index equation for z = co. The indices at 0 and
1 are respectively 1 —cand c—a—b
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A nightmarish zoo from Abramowitz & Stegun
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ergeometric differential operator in the classical setting
The hypergeometric equation geometric operator using Lie-algeb parameters

raphi

A nightmarish zoo from Abramowitz & Stegun

168U T W =W\, ¥, G, 57

B30 +b(1—2)Fla, b+1; & 8)

(e—a)Fla—1,b;¢; 2)+(2a—c—az+be)Fo, bi c; 2) —(e—B)F(a, b—1; & =0
+a(z—1)Fla+1, b; 5 2)=0 | 15.2.28

15211 clb—{c—a)z]Fla, b; o; 2)—be{1 — 2)Fla, b+ 1;.¢; 5)

(e—b5)F(a,b—1; ; )4+ (2b—c—bz+a2)Fla, b;c; 2) + (e—a) (e—b)zF{g, b; c+1; =0
+b(z—1)F(a, b+1; ¢; 3)=0 15.2.24

15.2.12 (e—b—1)F(a, b; ¢; =) +bF(a, b+1; ¢; 2)

e{e—1)(z—1)Fla, b; c—1; 2) —{e—1)F(a, b; e—1; z)=0

+de—1—(2e—a—b—1)21F(a, b; ¢; 2) 15.2.25

+(e—a){e—b)zFla, &; c+1; &) =0 | o(1—2)F(a, b; ¢; z)—eFla, b—1; ¢; 2)

s » +(e—a)zF(a,b; e+1; =0
[e—2a—(b—a)2)F(s, b; ¢; ) e

+a(l—z)Fla+1, b:;; g) . P mam 15305, b & 9
15.2.14 Sl s +(c=b)Fla, b=1; ¢; 2)

—fg— = ; e=1; g)=0

(b—a) Fla, b; ¢; 2)+aF(a+1,b; ¢ 2) o=l b =10
—bF(, b41; ¢ =0 | 52T

15.2.15 de—1—(2e—a—b—1)3]Fg, b; ; 2)

+(e—a) (e—b)aF(a, b; c+1; )

(c—a—b)F(a,.b; & 2)+a(1—a)Fla+1, b ¢; 2)
—ele—1)(1—2)F(a, b; e—1; 9)=0

—(e—b)Fla, b—1; ¢; 2)=0
15.2.16
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The hypergeometric equation

Lie algebraic parameters

Let us introduce another set of parameters: )
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The hypergeometric equation Hypergeometric operator using Lie-algebraic parameters
or in th f

Lie algebraic parameters

Let us introduce another set of parameters: )

@ —a =1— ¢, being the index at 0
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The hypergeometric equation braic parameters
H e

Lie algebraic parameters

Let us introduce another set of parameters:

@ —a =1— ¢, being the index at 0

@ —f3 = c— a— b, being the index at 1
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The hypergeometric equation

Lie algebraic parameters

Let us introduce another set of parameters: )

@ —a =1— ¢, being the index at 0
@ —f3 = c— a— b, being the index at 1

@ 1 = b — a, the difference between the indices at infinity
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The hypergeometric equation

Lie algebraic parameters

Let us introduce another set of parameters: )

@ —a =1— ¢, being the index at 0
@ —f3 = c— a— b, being the index at 1
@ 1 = b — a, the difference between the indices at infinity

@ Inverse relations are

(11)
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The hypergeometric equation

Lie algebraic parameters

Let us introduce another set of parameters: )

@ —a =1— ¢, being the index at 0
@ —f3 = c— a— b, being the index at 1
@ 1 = b — a, the difference between the indices at infinity

@ Inverse relations are

a= T+a+ptp) (11)
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The hypergeometric equation

Lie algebraic parameters

Let us introduce another set of parameters: )

@ —a =1— ¢, being the index at 0
@ —f3 = c— a— b, being the index at 1
@ 1 = b — a, the difference between the indices at infinity

@ Inverse relations are

a:%(l—i—a—&-ﬂ-ﬁ-,u) b=%(1+a+ﬁ—u) (11)
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The hypergeometric equation

Lie algebraic parameters

Let us introduce another set of parameters: )

@ —a =1— ¢, being the index at 0
@ —f3 = c— a— b, being the index at 1
@ 1 = b — a, the difference between the indices at infinity

@ Inverse relations are

a:%(l—i—a—&-ﬂ—i—,u) bZ%(l-I-OH-ﬁ—M) c=1l+a (11)
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The hypergeometric equation Hypergeometric operator using Lie-algebraic parameters
or in th f

Hypergeometric operator F,

Once we employ Lie-algebraic parameters into action we get

(12)
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The hypergeometric equation

Hypergeometric operator F, g ,(z, 0;)

Once we employ Lie-algebraic parameters into action we get

yo, - Atath) —u
(12)

Fopu =2(1=2)8:" + (L +a)(1-2) — (1+ )z
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The hypergeometric equation

Hypergeometric operator F, g ,(z, 0;)

Once we employ Lie-algebraic parameters into action we get

(L+a+p)® —p
(12)

Fapp=2(1-2)0"+((1+a)(1—-2)—(1+p)z)d, —

@ Its symmetries are becoming a lot more visible
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The hypergeometric equation

Hypergeometric operator F, 5 ,.(z, 0;)

Once we employ Lie-algebraic parameters into action we get

(L+a+p)® —p
(12)

Fapp=2(1-2)0"+((1+a)(1—-2)—(1+p)z)d, —

@ Its symmetries are becoming a lot more visible

@ We will see that the parameters really do have Lie-algebraic interpretation
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The hypergeometric equation ypergeometric operator using Lie-a 3
Hypergeometric operator in the balanced form
Hom. hies and discrete symmetries

.8.u(2, 0z) in balanced form
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The hypergeometric equation

Homograph

(z, 0,) in balanced form

Balanced form and Schrodinger form
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The hypergeometric equation
Hypergeometric operator in the balanced form
Homographies and y s

Fa,8,u(2, 0z) in balanced form

Balanced form and Schrodinger form

It is known that any ODE of our type can be shown in the form of a Schrédinger
operator by simple substitutions. Similarily a so-called balanced form can always
be obtained
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The hypergeometric equation

Fo8,u(2, 0z) in balanced form

Balanced form and Schrodinger form

It is known that any ODE of our type can be shown in the form of a Schrédinger
operator by simple substitutions. Similarily a so-called balanced form can always

be obtained )
Canonical form of the hypergeometric case
‘Fanﬁvl“‘(z’ 82) =
2 2
=z %(1-2)"08,22"(1-2)* o, — Ata+f) —u (13)

4

V.
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The hypergeometric equation

Fo8,u(2, 0z) in balanced form

Balanced form and Schrodinger form

It is known that any ODE of our type can be shown in the form of a Schrédinger
operator by simple substitutions. Similarily a so-called balanced form can always
be obtained

v

Balanced form of the hypergeometric operator

25(1—2)2 Fapu(z,8:) 2 3 (1—2)"% =
o2 32 12
7822(172)81*E*W*T (13)

4
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The hypergeometric equation

Fo8,u(2, 0z) in balanced form

Balanced form and Schrodinger form

It is known that any ODE of our type can be shown in the form of a Schrédinger
operator by simple substitutions. Similarily a so-called balanced form can always
be obtained

v

Balanced form of the hypergeometric operator

25(1—2)2 Fapu(z,8:) 2 3 (1—2)"% =
o2 32 12
7822(172)81*E*W*T (13)

4

The symmetries are becoming even more v-i-s-i-b-I-e.
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The hypergeometric equation
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tting
The hypergeometric equation

Hyp

Hom.

Permutations of singular points
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The hypergeometric equation

Permutations of singular points

Let us take the functions J

Przemek Majewski, KMMF, Wars: ergeometric-type functions



The hypergeometric equation

Permutations of singular points

Let us take the functions J

h(z)=1-z (14)
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The hypergeometric equation

Permutations of singular points

Let us take the functions J
°
h(z)=1-z (14)
°
ha(z) = = (15)
2 oz
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tric dif
The hypergeometric equation metric op
Hy C
Homographies and discrete symmetries

Permutations of singular points

Let us take the functions J
°
h(z)=1-z (14)
°
ha(z) = = (15)
2 oz

These are enough to generate all possible permutations of the three singular
points! There are six of those. J
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tting
The hypergeometric equation

Hyp

Hom.

Index shifting and parameter interchange
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The hypergeometric equation

Index shifting and parameter interchange

@ Now it is almost obvious that
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The hypergeometric equation

Index shifting and parameter interchange

@ Now it is almost obvious that

fa’g#(z, 9;) = Z_a}-,a,g,,u(z, (92)Za (16)
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ntial
The hypergeometric equation metric operator usir
Hyr metric o
Homographies and discrete symmetries

Index shifting and parameter interchan

@ Now it is almost obvious that

Fopul2z, 02) =2 “Foa,p,—u(z, 02)2°%

o By symmetry

(16)




tric dif
The hypergeometric equation metric op
Hy C
Homographies and discrete symmetries

Index shifting and parameter interchange

@ Now it is almost obvious that

fa’g#(z, 9;) = Z_a}-,a,g,,u(z, (92)Za (16)

o By symmetry

Fopulz 0z) = (1 =2) " Fop,—u(z, 8:)(1 - 2)° (17)
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The hypergeometric equation

Homographies and discrete symmetries

Index shifting and parameter interchange

@ Now it is almost obvious that

fa’g#(z, 9;) = Z_a}-,a,g,,u(z, (92)Za (16)

o By symmetry

Fopulz 0z) = (1 =2) " Fop,—u(z, 8:)(1 - 2)° (17)

@ One can compose both, we have four forms of the hypergeometric
operator.
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The hypergeometric equation

Index shifting and parameter interchange

@ Now it is almost obvious that

fa’g#(z, 9;) = Z_a}-,a,g,,u(z, (92)Za (16)

o By symmetry
Fopu(z, 0:) = (1 =2) " Fa—p-u(z, 8:)(1 - 2) (17)

@ One can compose both, we have four forms of the hypergeometric
operator.
e It turns out that changing z into 1 changes o with x (and gives a factor)

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



The hypergeometric equation

Index shifting and parameter interchange

@ Now it is almost obvious that

fa’g#(z, 9;) = Z_a}-,a,g,,u(z, (92)Za (16)

o By symmetry

Fopulz 0z) = (1 =2) " Fop,—u(z, 8:)(1 - 2)° (17)

@ One can compose both, we have four forms of the hypergeometric
operator.

It turns out that changing z into % changes « with 1 (and gives a factor)

@ Three simple building blocks are enough for all of that!
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y metric diffe
The hypergeometric equation ype metric operator using Lie
y e or in th
Homographles and discrete symmetries

A less nightmarish zoo from JD — Kummer table — again
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The hypergeometric equation

smetric operator in the bala
Homographies and discrete symmetries

It is now clear that 23 - 31 = 8.2-3 = 2. 24 is the order of the Weyl group for
50(6,C). We have briefly described the action of the discrete Weyl group on
hypergeometric operators. Let us discover quickly how the whole group acts.
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S0(6, C) conformal action on hypergeometric funtions
ators in the hand picked coordinates

Reduction of linear action on C"t2 to conformal action on C”
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Conformal reduction from n + 2 to n complex dimensions
ebra
50(6, C) conformal action on hypergeometric funtions

tors in the hand picked coordinates

Reduction of linear action on C"t2 to conformal action on C”

o Take C""2 equipped with a bilinear form Q(Z) and with a natural action of
50(n+2,C)
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Conformal reduction from n + 2 to n complex dimensions
ebra
50(6, C) conformal action on hypergeometric funtions

tors in the hand picked coordinates

Reduction of linear action on C"t2 to conformal action on C”

o Take C""2 equipped with a bilinear form Q(Z) and with a natural action of
50(n+2,C)
@ As next step consider the quadric V = {Z € C"™™: Q(Z) =0}
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SO(6, C) conformal action on hypergeometric funtions

in the hand picked coordinates

Reduction of linear action on C"t2 to conformal action on C”

o Take C""2 equipped with a bilinear form Q(Z) and with a natural action of
50(n+2,C)

@ As next step consider the quadric V = {Z € C"™™: Q(Z) =0}

@ One can reduce V by the action of the multiplicative group of the complex
numbers, C* := C\ {0}, i.e. ,,projectivize”
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Conformal reduction from n + 2 to n complex dimensions
(6, C) ebra

SO(6, C) conformal action on hypergeometric funtions

operators in the hand picked coordinates

Reduction of linear action on C"t2 to conformal action on C”

Take C"*2 equipped with a bilinear form @Q(Z) and with a natural action of
50(n+2,C)

@ As next step consider the quadric V = {Z € C"™™: Q(Z) =0}

One can reduce V by the action of the multiplicative group of the complex
numbers, C* := C\ {0}, i.e. ,,projectivize”

o We have

V/cx «+C" (18)
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Conformal reduction from n + 2 to n complex dimensions
(6, C) ebra
50(6, C) conformal action on hypergeometric funtions
operators in the hand picked coordinates

Reduction of linear action on C"t2 to conformal action on C”

Take C"*2 equipped with a bilinear form @Q(Z) and with a natural action of
50(n+2,C)

@ As next step consider the quadric V = {Z € C"™™: Q(Z) =0}

One can reduce V by the action of the multiplicative group of the complex
numbers, C* := C\ {0}, i.e. ,,projectivize”

@ We have
V/cx +C" (18)
o Note that V /cx is preserved by the action of SO(n + 2,C)
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Conformal reduction from n + 2 to n complex dimensions
(6, C) L a
50(6, C) conformal action on hypergeometric funtions
operators in the hand picked coordinates

Reduction of linear action on C"t2 to conformal action on C”

Take C"*2 equipped with a bilinear form @Q(Z) and with a natural action of
50(n+2,C)

@ As next step consider the quadric V = {Z € C"™™: Q(Z) =0}

One can reduce V by the action of the multiplicative group of the complex
numbers, C* := C\ {0}, i.e. ,,projectivize”

@ We have
V/cx +C" (18)
o Note that V /cx is preserved by the action of SO(n + 2,C)

Thus we have constructed the conformal action of SO(n+ 2,C) on C” J
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Conformal reduction from n + 2 to n complex dimensions
(6, C) ebra

SO(6, C) conformal action on hypergeometric funtions

operators in the hand picked co ates

Reduction of linear action on C"t2 to conformal action on C”

Take C"*2 equipped with a bilinear form @Q(Z) and with a natural action of
50(n+2,C)

@ As next step consider the quadric V = {Z € C"™™: Q(Z) =0}

One can reduce V by the action of the multiplicative group of the complex
numbers, C* := C\ {0}, i.e. ,,projectivize”

o We have

V/cx «=C" (18)
o Note that V /cx is preserved by the action of SO(n + 2, C)

Thus we have constructed the conformal action of SO(n+ 2,C) on C” )

It is not obvious that one can also ,,push forward” the Laplace operator. In fact
it descends to the quotient space when one considers homogeneous functions of
order 1 — 7 on the quadric.
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Conformal reduction from n + 2 to n complex dimen
so(6, C) Lie algebra
S0(6, C) conformal action on hypergeometric funtions Coordinat
operators in the hand picked coordinates

so(6,C) Lie algebra
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nformal reduction from n + 2 to n comple
so(6, C) Lie algebra
S0(6, C) conformal action on hypergeometric funtions 3
s in the hand picked coordinates

so(6,C) Lie algebra

o Take C® equipped with the bilinear form

Q(2) =2(z-121 + 2222 + 2_323) (19)
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Conformal reduction from n + 2 to n complex di
so(6, C) Lie algebra
S0(6, C) conformal action on hypergeometric funtions
s in the hand picked coordinates

so(6,C) Lie algebra

o Take C® equipped with the bilinear form
Q(f) =2 (2_121 +z 220 + 2_323) (19)

@ Then
NA=2 (6271 0z + 0; , 0z + 0, 823) (20)
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Conforma uction from n + 2 to
so(6, C) Lie algebra
S0(6, C) conformal action on hypergeometric funtions
tors in the hand picked coordinates

so(6,C) Lie algebra

o Take C® equipped with the bilinear form
Q(f) =2 (2_121 +z 220 + 2_323) (19)

@ Then
NA=2 (6271 0z + 0; , 0z + 0, 823) (20)

@ S0(6,C) Lie algebra is generated by twelve root operators

B;j =Z_j 6Z]. —Z_j 82’. = —Bj,' . (21)
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SO(6, C) conformal action on hypergeometric funtions

so(6,C) Lie algebra

Conforma uction from n + 2 to

1
so(6, C) Lie algebra

tors in the hand picked coordinates

Take C® equipped with the bilinear form

Q(Z) =2(z-1z1 + z_220 + z_323)

Then

A=2(0._,0,+ 0., 0, + 0-_,0z)

S0(6,C) Lie algebra is generated by twelve root operators

B;j = Z_,'az]. — Z_jaz,. = —Bj,' .

...and three Cartan operators

Ni:=B_ ;i=-B_i=20;—2_i0;_;
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Conformal reduction from n + 2 to n complex dimensions
so(6, C) Lie algebra

S50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Suitable choice of coordinates remembering that 6 = 4 + 2
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Conformal reduction from n + 2 to n complex dimen:

S0(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Suitable choice of coordinates remembering that 6 = 4 + 2

Let us take the following coordinates:
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Conformal reduction from n + 2 to n complex di
so(6, C) Li

S50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Suitable choice of coordinates remembering that 6 = 4 + 2

Let us take the following coordinates:

r = 2 (Z,].Z]. + 27222)

Z1

u = —
zZ3
22

Uy = —_—
zZ

Z 121

zZ1z1+ 2z 22
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S50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Suitable choice of coordinates remembering that 6 = 4 + 2

Let us take the following coordinates:

r = 2 (Z,].Z]. + 27222)

Z1

u = —
zZ3
22

Uy = —_—
zZ

Z 121

zZ1z1+ 2z 22

and
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Conformal reduction from n + 2 to n complex di
so(6, C) Li

S50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Suitable choice of coordinates remembering that 6 = 4 + 2

Let us take the following coordinates:

r = 2 (Z,].Z]. + 27222)

Z1

u = —
zZ3
22

Uy = —_—
zZ

Z 121

zZ1z1+ 2z 22

and

P = /22323,

23
usz = -
Z-3
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uction from n + 2 to n complex dimensions
ebra
S50(6, C) conformal action on hypergeometric funtions Coordinates

Root operators in the hand picked coordinates

Suitable choice of coordinates remembering that 6 = 4 + 2

Let us take the following coordinates:

r = 2 (Z,].Z]. + 27222)

Z1

u = —
zZ3
22

Uy = —_—
zZ

Z 121

zZ1z1+ 2z 22

and

P = /22323,

usz = -
Z-3

In this coordinates the bilinear form is Q(Z) = r*+ p>. Therefore the reduction
to the quadric will be given by p = ir.
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Conformal reduction from n + 2 to n complex dimensions
so(6, C) L
50(6, C) conformal action on hypergeometric funtions Coordinates

Root operators in the hand picked coordinz

Laplace operator or hypergeometric operator in the balanced form?
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a n from n + 2 to n complex di
so(6 Lie algebra
50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand pickec rdinates

Laplace operator or hypergeometric operator in the balanced form?

Then the Laplace operator is Age = Ags + Ag2, where

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



S0(6, C) conformal action on hypergeometric funtions
in the hand picked coordinates

Laplace operator or hypergeometric operator in the balanced form?

Then the Laplace operator is Age = Ags + Ag2, where

3, 4 1
Des = 07+~ 0+ — | Quw(l = w) O + 7= (11 0u)* + 7 (120,

ST
(1-w)
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S0(6, C) conformal action on hypergeometric funtions
in the hand picked coordinates

Laplace operator or hypergeometric operator in the balanced form?

Then the Laplace operator is Age = Ags + Ag2, where

3, 4 1
Des = 07+~ 0+ — | Quw(l = w) O + 7= (11 0u)* + 7 (120,

_ 1
(1-w)
and
2 1 U:% 2
A[;Z — 282362_3 — 8,, + Bap* ?8,8 .
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tion from n + 2 to n complex
ebra
S0(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Laplace operator or hypergeometric operator in the balanced form?

Then the Laplace operator is Age = Ags + Ag2, where

3 4 1
Nes = 3%+ Z0r+ — [ Quw(l—w) 0w+ (i D)’ + (2 Dy )

4(1 — w)
and
2 1 U% 2
AEZ — 282382_3 — 3,, + Bap* ?a% .

The four dimensional part with respect to coordinates w, ui, uz, uz gives the
hypergeometric equation provided one makes a certain ansatz (roughly — the
details of the reduction, even though most interesting, have been skipped for
simplicity of this presentation)!

F(w,uy, u2, uz) = ufufuﬁ”F(w) (23)
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50(6, C) conformal action on hypergeometric funtions
Root operators in the hand picked coordinates

Cartan operators
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50(6, C) conformal action on hypergeometric funtions
Root operators in the hand picked coordinates

Cartan operators

Obviously in the new coordinates the three Cartan operators look like
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50(6, C) conformal action on hypergeometric funtions
Root operators in the hand picked coordinates

Cartan operators

Obviously in the new coordinates the three Cartan operators look like

N1 = u 8111 (24)
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50(6, C) conformal action on hypergeometric funtions ate
Root operators in the hand picked coordinates

Cartan operators

Obviously in the new coordinates the three Cartan operators look like

Nl = up 8111 (24)
N2 = uz 8112 (25)
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Conformal r tion from n + 2 to
0(6, C) Lie algebra
50(6, C) conformal action on hypergeometric funtions rdina
Root operators in the hand picked coordinates

Cartan operators

Obviously in the new coordinates the three Cartan operators look like

Nl = up 8111 (24)
N2 = uz 8112 (25)
N3 = us 8U3 (26)

Further we will frequently use those operators as the hypergeometric functions
are their eigenvectors.
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50(6, C) conformal action on hypergeometric funtions
Root operators in the hand picked coordinates

Root operators 1
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Conformal reduction from n + 2 to n complex dimensions
so(6, C) Lie al

50(6, C) conformal action on hypergeometric funtions ordinates
Root operators in the hand picked coordinates

Root operators 1

The root operators not involving coordinate 3 or —3 are
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Conformal reduction from n + 2 to n comple
so(6, C) Lie algebra

50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Root operators 1

The root operators not involving coordinate 3 or —3 are

87271 = uius W(l — W) 6w - 7W =
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Conformal reduction from n + 2 to n comple
so(6, C) Lie algebra

50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Root operators 1

The root operators not involving coordinate 3 or —3 are

Bz = wwVwl=w) 0= o0+ 55
up N N
B2 = —Vw(l- YT ow T 2(1—w)
21 ur w( W) | Ow + 2w + 2(1—w)
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(6, C) Lie a
50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Root operators 1

The root operators not involving coordinate 3 or —3 are

N N
B2 1 = uiuy/ W(].*W) 6W771+2(17—2W)

2w
_ u» Nl N2
B, = m w(l— w) (9W+2W—|—2(1_W)
u N1 N2
B, _ = — 1— y— — — ———————
2t up w(l—w) 9 2w 2(1—w)
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7(h,C) Lie a

SO(6, C) conformal action on hypergeometric funtions Coordinates

Root operators 1

Root operators in the hand picked coordinates

The root operators not involving coordinate 3 or —3 are

B_>_1

/=) [0 = 3+ |

u> Nl N2

m w(l—w) {3W+ﬂ+72(1_w)]

u N1 N2

™ W(l_w){aw_ﬁ_72(l—w)]
1 Ny N,

uiup w(l=w) {6W+ﬁ_2(1fw)]
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(6,C) L a
50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Root operators 1

The root operators not involving coordinate 3 or —3 are

Booi = tniny/w(l—w) {aw M L]

2w | 2(1—w)
B o1 = Z—i W(l_W){aw—FéVT‘l/—Fﬁ]
B = u11u2 W(1—w){aw+%_ﬁ]

Note how obvious and ellegant the action of the Weyl group of SO(6,C) looks
using the above shown forms!
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50(6, C) conformal action on hypergeometric funtions
Root operators in the hand picked coordinates

Root operators 2

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



n from n + 2 to n complex di
a
50(6, C) conformal action on hypergeometric funtions
Root operators in the hand picked coordinates

Root operators 2

The root operators involving coordinate 3 or —3, after taking p = ir and
reducing to homogeneous functions of order \ in coordinate r, equal J
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Conformal r n from n 4 2 to n complex dimensions
so(6, C) Li r

50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Root operators 2

The root operators involving coordinate 3 or —3, after taking p = ir and
reducing to homogeneous functions of order \ in coordinate r, equal

B3_1:iﬂ\/W /\+2(17W)8W7M+N3
2 u3 L w |

B31=li\/w )\+2(1—W)8W+M+N3
2U1U3 L w |

i [ N, 7
373—1=§U3U1\/W )\+2(1_W)6W_W_N3
iU3 I N1 1
8731:77 w >\+2(17W)aw+7*/\l3
2U1 L w |
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Conformal r n from n 4 2 to n complex dimensions
so(6, C) Li r

50(6, C) conformal action on hypergeometric funtions Coordinates
Root operators in the hand picked coordinates

Root operators 2

The root operators involving coordinate 3 or —3, after taking p = ir and
reducing to homogeneous functions of order \ in coordinate r, equal
B3_2=i£ 1—w )\—2W8W—L+N3
2 u3 L 1-—w |
i 1 [ N, T
B3> = = Vi—-w|A=-2w oy + —— + N3
2 uus L 1-w ]
57372:lU2U3\/17W A*2W8W*£7N3
2 I 1—w |
B_32:l£ 1—w A—2W8W—|—L—N3
2 u L 1—w ]
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ion from n + 2 to n complex dimensions
ra

S50(6, C) conformal action on hypergeometric funtions Co nate
Root operators in the hand picked coordinates

Root operators 2

The root operators involving coordinate 3 or —3, after taking p = ir and
reducing to homogeneous functions of order \ in coordinate r, equal
B3_2=i£ 1—w )\—2W8W—£—|—N3
2 u3 L 1—w
i 1 [ N, T
B3o=——V1—-—w{A=2w o, + —— + N3
2 wus L 1—w
87372:lU2U3\/17W /\72w8W7L7N3
2 I 1—w |
B_32:l£ 1—wiX—2w 0y + N — Ns
2 u L 1—w ]

The symmetries and relations for hypergeometric-type operators are visible here
in the simplest way. Also this algebra can easily generate all possible formulae
which arise through that construction! Please remember that the change of 1
into 2 involves the change of w into 1 — w and that is all!
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Endnotes Thanks

A short outline of my PhD's work

@ We have studied Gell-Mann — Low adiabatic limit approach to scattering,
and calculated rigorously a time-ordered exponential for a non-commu-
tative family of operators
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Applications to my work
References

Endnotes Thanks

A short outline of my PhD's work

@ We have studied Gell-Mann — Low adiabatic limit approach to scattering,
and calculated rigorously a time-ordered exponential for a non-commu-
tative family of operators

@ The solution was involving hypergeometric-type functions

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Endnotes

A short outline of my PhD's work

@ We have studied Gell-Mann — Low adiabatic limit approach to scattering,
and calculated rigorously a time-ordered exponential for a non-commu-
tative family of operators

@ The solution was involving hypergeometric-type functions

@ We looked at the geometric interpretation of the six exactly solvable Schro-
dinger potentials (by means of hypergeometric functions)
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A short outline of my PhD's work

@ We have studied Gell-Mann — Low adiabatic limit approach to scattering,
and calculated rigorously a time-ordered exponential for a non-commu-
tative family of operators

@ The solution was involving hypergeometric-type functions

@ We looked at the geometric interpretation of the six exactly solvable Schro-
dinger potentials (by means of hypergeometric functions)

@ That gave us interpretation, that Schrodinger operators, which are also
special cases of the hypergeometric operator, are in fact Laplace-Beltrami
operators on certain 3d surfaces embedded in 4d real subspaces of C*
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Applications to my work
References

Endnotes Thanks

A short outline of my PhD's work

@ We have studied Gell-Mann — Low adiabatic limit approach to scattering,
and calculated rigorously a time-ordered exponential for a non-commu-
tative family of operators

@ The solution was involving hypergeometric-type functions

@ We looked at the geometric interpretation of the six exactly solvable Schro-
dinger potentials (by means of hypergeometric functions)

@ That gave us interpretation, that Schrodinger operators, which are also
special cases of the hypergeometric operator, are in fact Laplace-Beltrami
operators on certain 3d surfaces embedded in 4d real subspaces of C*

@ Jan introduced me to the global picture of the Lie group of symmetries
for the hypergeometric equation which | liked very much and which finally
helped me to understand the real beauty of the great plurality of possibilities.
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Applications to
References

Endnotes Thanks

A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present
a long list here. For a condensed, full presentation, involving Lie groups of
symmetries, | will show references to works of Jan Dereziriski and recently also
PM.
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There is a great lot of literature on this subject. It would not be wise to present
a long list here. For a condensed, full presentation, involving Lie groups of

symmetries, | will show references to works of Jan Dereziriski and recently also
PM.

o Jan Dereziriski, Hypergeometric type functions and their symmetries, has
been sent to AHP
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We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present
a long list here. For a condensed, full presentation, involving Lie groups of

symmetries, | will show references to works of Jan Dereziriski and recently also
PM.

o Jan Dereziriski, Hypergeometric type functions and their symmetries, has
been sent to AHP

@ Jan Dereziniski, Michat Wrochna, Exactly solvable Schrédinger operators,
Annales Henri Poincare 12 (2011) 397-418
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a long list here. For a condensed, full presentation, involving Lie groups of
symmetries, | will show references to works of Jan Dereziriski and recently also
PM.

o Jan Dereziriski, Hypergeometric type functions and their symmetries, has
been sent to AHP

@ Jan Dereziniski, Michat Wrochna, Exactly solvable Schrédinger operators,
Annales Henri Poincare 12 (2011) 397-418

@ Jan Dereziriski, PM, From the confromal group to symmetries of the hyper-
geometric operators, under construction
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A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present
a long list here. For a condensed, full presentation, involving Lie groups of
symmetries, | will show references to works of Jan Dereziriski and recently also
PM.

o Jan Dereziriski, Hypergeometric type functions and their symmetries, has
been sent to AHP

@ Jan Dereziniski, Michat Wrochna, Exactly solvable Schrédinger operators,
Annales Henri Poincare 12 (2011) 397-418

@ Jan Dereziriski, PM, From the confromal group to symmetries of the hyper-
geometric operators, under construction

Not discussed here was the reduction from 5d to 3d giving conformal represen-
tations of SO(5, C) on solutions of the Gegenbauer equation
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Applications to my wo
References

Endnotes HENLS

A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present
a long list here. For a condensed, full presentation, involving Lie groups of
symmetries, | will show references to works of Jan Dereziriski and recently also
PM.

o Jan Dereziriski, Hypergeometric type functions and their symmetries, has
been sent to AHP

@ Jan Dereziniski, Michat Wrochna, Exactly solvable Schrédinger operators,
Annales Henri Poincare 12 (2011) 397-418

@ Jan Dereziriski, PM, From the confromal group to symmetries of the hyper-
geometric operators, under construction

Not discussed here was the reduction from 5d to 3d giving conformal represen-
tations of SO(5, C) on solutions of the Gegenbauer equation

o
o M. Abramowitz, |. Stegun, Handbook of Mathematical Fucntions, multiple
editions, i.e. tenth printing, December 1972
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Endnotes

Thank you for your attention!

It was a pleasure to give a talk to such an audience. ®
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