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How the action of the symmetry group SO(6,C) and the choice of a nice set of
parameters help one to understand and present logically a whole bunch of special
functions.
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History: early beginnings

Wikipedia
TM

says

The term ,,hypergeometric series” was first used by John Wallis in his 1655 book
Arithmetica Infinitorum. Hypergeometric series were studied by Leonhard Euler,
but the first full systematic treatment was given by Carl Friedrich Gauss (1813).
Studies in the nineteenth century included those of Ernst Kummer (1836), and
the fundamental characterisation by Bernhard Riemann of the hypergeometric
function by means of the differential equation it satisfies. Riemann showed that
the second-order differential equation for 2F1(z), examined in the complex plane,
could be characterised (on the Riemann sphere) by its three regular singularities.

Beware

I will try to follow the historical path on which the subject was being discovered.
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Euler Gamma function

Euler integral of the first kind

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
=

∫ 1

0

ta−1(1− t)b−1dt (1)

Euler integral of the second kind

Γ(z) =

∫ ∞
0

tz−1e−tdt (2)

Weierstrass product

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n (3)

The inverse of the Gamma function is an entire function!

1

Γ(z)
=

sinπz

π
Γ(1− z) (4)
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Hypergeometric series

Hypergeometric series of type 2F1(a, b; c; z)

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)nzn

(c)nn!
(5)

Easy to generalize, just put ,,k” parameters up and ,,m” parameters down

Easy to see where the series converges and thus defines an analytical
function

Hard to compute any special values or to see limiting cases

Due to problems with the denominator one should introduce

2F1(a, b; c; z) =
2F1(a, b; c; z)

Γ(c)
=
∞∑
n=0

(a)n(b)nzn

Γ(c + n)n!
(6)
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Hypergeometric-type 0F1

Hypergeometric series of type 0F1(c; z)

0F1(c; z) =
∞∑
n=0

zn

(c)nn!
(7)

The function defined by the series above is one of the solutions to(
z ∂z

2 + c ∂z − 1
)

f (z) = 0 (8)

In fact, it is a subclass of the confluent function 1F1

It is classically known as the modified Bessel function,

Iα(w) =
(w

2

)α
0F1

(
α + 1;

w 2

4

)
(9)
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Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

Hypergeometric equation

Hypergeometric operator F(a, b; c; z , ∂z)

F(a, b; c; z , ∂z) = z(1− z) ∂z
2 + (c − (a + b + 1)z) ∂z − ab (10)

It is easy to apply this operator to the hypergeometric series

This is the classical choice of parameters, a, b, c, which coincide well
with the series and the integral represenations, but not with the underlying
structure of symmetry with respect to SO(6,C)

The operator has three regular singular points on the Riemann sphere 0, 1
and ∞
Parameters a, b solve the index equation for z =∞. The indices at 0 and
1 are respectively 1− c and c − a− b

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

Hypergeometric equation

Hypergeometric operator F(a, b; c; z , ∂z)

F(a, b; c; z , ∂z) = z(1− z) ∂z
2 + (c − (a + b + 1)z) ∂z − ab (10)

It is easy to apply this operator to the hypergeometric series

This is the classical choice of parameters, a, b, c, which coincide well
with the series and the integral represenations, but not with the underlying
structure of symmetry with respect to SO(6,C)

The operator has three regular singular points on the Riemann sphere 0, 1
and ∞
Parameters a, b solve the index equation for z =∞. The indices at 0 and
1 are respectively 1− c and c − a− b

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

Hypergeometric equation

Hypergeometric operator F(a, b; c; z , ∂z)

F(a, b; c; z , ∂z) = z(1− z) ∂z
2 + (c − (a + b + 1)z) ∂z − ab (10)

It is easy to apply this operator to the hypergeometric series

This is the classical choice of parameters, a, b, c, which coincide well
with the series and the integral represenations, but not with the underlying
structure of symmetry with respect to SO(6,C)

The operator has three regular singular points on the Riemann sphere 0, 1
and ∞
Parameters a, b solve the index equation for z =∞. The indices at 0 and
1 are respectively 1− c and c − a− b

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

Hypergeometric equation

Hypergeometric operator F(a, b; c; z , ∂z)

F(a, b; c; z , ∂z) = z(1− z) ∂z
2 + (c − (a + b + 1)z) ∂z − ab (10)

It is easy to apply this operator to the hypergeometric series

This is the classical choice of parameters, a, b, c, which coincide well
with the series and the integral represenations, but not with the underlying
structure of symmetry with respect to SO(6,C)

The operator has three regular singular points on the Riemann sphere 0, 1
and ∞
Parameters a, b solve the index equation for z =∞. The indices at 0 and
1 are respectively 1− c and c − a− b

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

Hypergeometric equation

Hypergeometric operator F(a, b; c; z , ∂z)

F(a, b; c; z , ∂z) = z(1− z) ∂z
2 + (c − (a + b + 1)z) ∂z − ab (10)

It is easy to apply this operator to the hypergeometric series

This is the classical choice of parameters, a, b, c, which coincide well
with the series and the integral represenations, but not with the underlying
structure of symmetry with respect to SO(6,C)

The operator has three regular singular points on the Riemann sphere 0, 1
and ∞

Parameters a, b solve the index equation for z =∞. The indices at 0 and
1 are respectively 1− c and c − a− b

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

Hypergeometric equation

Hypergeometric operator F(a, b; c; z , ∂z)

F(a, b; c; z , ∂z) = z(1− z) ∂z
2 + (c − (a + b + 1)z) ∂z − ab (10)

It is easy to apply this operator to the hypergeometric series

This is the classical choice of parameters, a, b, c, which coincide well
with the series and the integral represenations, but not with the underlying
structure of symmetry with respect to SO(6,C)

The operator has three regular singular points on the Riemann sphere 0, 1
and ∞
Parameters a, b solve the index equation for z =∞. The indices at 0 and
1 are respectively 1− c and c − a− b

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

A nightmarish zoo from Abramowitz & Stegun

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

A nightmarish zoo from Abramowitz & Stegun

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

Lie algebraic parameters

Let us introduce another set of parameters:

−α = 1− c, being the index at 0

−β = c − a− b, being the index at 1

µ = b − a, the difference between the indices at infinity

Inverse relations are

a =
1

2
(1 + α + β + µ) b =

1

2
(1 + α + β − µ) c = 1 + α

(11)
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Hypergeometric operator Fα,β,µ(z , ∂z)

Once we employ Lie-algebraic parameters into action we get

Fα,β,µ = z(1− z) ∂z
2 + ((1 + α)(1− z)− (1 + β)z) ∂z −

(1 + α + β)2 − µ2

4

(12)

Its symmetries are becoming a lot more visible

We will see that the parameters really do have Lie-algebraic interpretation
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Fα,β,µ(z , ∂z) in balanced form

Balanced form and Schrödinger form

It is known that any ODE of our type can be shown in the form of a Schrödinger
operator by simple substitutions. Similarily a so-called balanced form can always
be obtained

Notice!

The symmetries are becoming even more v-i-s-i-b-l-e.
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Balanced form and Schrödinger form

It is known that any ODE of our type can be shown in the form of a Schrödinger
operator by simple substitutions. Similarily a so-called balanced form can always
be obtained

Canonical form of the hypergeometric case

Fα,β,µ(z , ∂z) =

= z−α(1− z)−β ∂zzα+1(1− z)β+1 ∂z −
(1 + α + β)2 − µ2

4
(13)

Notice!

The symmetries are becoming even more v-i-s-i-b-l-e.
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α
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β
2 Fα,β,µ(z , ∂z) z−

α
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β
2 =
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α2

4z
− β2

4(1− z)
− 1− µ2

4
(13)

Notice!

The symmetries are becoming even more v-i-s-i-b-l-e.
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A less nightmarish zoo from JD – Kummer table

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Hypergeometric differential operator in the classical setting
Hypergeometric operator using Lie-algebraic parameters
Hypergeometric operator in the balanced form
Homographies and discrete symmetries

Permutations of singular points

Let us take the functions

h1(z) = 1− z (14)

h2(z) =
1

z
(15)

These are enough to generate all possible permutations of the three singular
points! There are six of those.
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Index shifting and parameter interchange

Now it is almost obvious that

Fα,β,µ(z , ∂z) = z−αF−α,β,−µ(z , ∂z)zα (16)

By symmetry

Fα,β,µ(z , ∂z) = (1− z)−βFα,−β,−µ(z , ∂z)(1− z)β (17)

One can compose both, we have four forms of the hypergeometric
operator.

It turns out that changing z into 1
z

changes α with µ (and gives a factor)

Three simple building blocks are enough for all of that!
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A less nightmarish zoo from JD – Kummer table – again
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Try to multiply

It is now clear that 23 · 3! = 8 · 2 · 3 = 2 · 24 is the order of the Weyl group for
SO(6,C). We have briefly described the action of the discrete Weyl group on
hypergeometric operators. Let us discover quickly how the whole group acts.
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Conformal reduction from n + 2 to n complex dimensions
so(6,C) Lie algebra
Coordinates
Root operators in the hand picked coordinates

Reduction of linear action on Cn+2 to conformal action on Cn

Take Cn+2 equipped with a bilinear form Q(~z) and with a natural action of
SO(n + 2,C)

As next step consider the quadric V = {~z ∈ Cn+2 : Q(~z) = 0 }
One can reduce V by the action of the multiplicative group of the complex
numbers, C× := C \ {0}, i.e. ,,projectivize”

We have
V /C× ←↩ Cn (18)

Note that V /C× is preserved by the action of SO(n + 2,C)

Thus we have constructed the conformal action of SO(n + 2,C) on Cn

It is not obvious that one can also ,,push forward” the Laplace operator. In fact
it descends to the quotient space when one considers homogeneous functions of
order 1− n

2
on the quadric.
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Root operators in the hand picked coordinates

so(6,C) Lie algebra

Take C6 equipped with the bilinear form

Q(~z) = 2 (z−1z1 + z−2z2 + z−3z3) (19)

Then
4 = 2

(
∂z−1 ∂z1 + ∂z−2 ∂z2 + ∂z−3 ∂z3

)
(20)

SO(6,C) Lie algebra is generated by twelve root operators

Bij := z−i ∂zj − z−j ∂zi = −Bji . . . (21)

. . . and three Cartan operators

Ni := B−i i = −Bi −i = zi ∂zi − z−i ∂z−i (22)
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Conformal reduction from n + 2 to n complex dimensions
so(6,C) Lie algebra
Coordinates
Root operators in the hand picked coordinates

Suitable choice of coordinates remembering that 6 = 4 + 2

Let us take the following coordinates:

r =
√

2 (z−1z1 + z−2z2)

u1 =

√
z1

z−1

u2 =

√
z2

z−2

w =
z−1z1

z−1z1 + z−2z2

and

p =
√

2z3z−3,

u3 =

√
z3

z−3

In this coordinates the bilinear form is Q(~z) = r 2 + p2. Therefore the reduction
to the quadric will be given by p = ir .
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Laplace operator or hypergeometric operator in the balanced form?

Then the Laplace operator is 4C6 = 4C4 +4C2 , where

4C4 = ∂r
2 +

3

r
∂r +

4

r 2

[
∂w w(1− w) ∂w +

1

4w
(u1 ∂u1 )2 +

1

4(1− w)
(u2 ∂u2 )2

]
and

4C2 = 2 ∂z3 ∂z−3 = ∂p
2 +

1

p
∂p −

u2
3

p2
∂u3

2.

The four dimensional part with respect to coordinates w , u1, u2, u3 gives the
hypergeometric equation provided one makes a certain ansatz (roughly – the
details of the reduction, even though most interesting, have been skipped for
simplicity of this presentation)!

F (w , u1, u2, u3) = uα1 uβ2 uµ3 F (w) (23)
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Conformal reduction from n + 2 to n complex dimensions
so(6,C) Lie algebra
Coordinates
Root operators in the hand picked coordinates

Cartan operators

Obviously in the new coordinates the three Cartan operators look like

N1 = u1 ∂u1 (24)

N2 = u2 ∂u2 (25)

N3 = u3 ∂u3 (26)

Further we will frequently use those operators as the hypergeometric functions
are their eigenvectors.
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Root operators 1

The root operators not involving coordinate 3 or −3 are

B−2−1 = u1u2

√
w(1− w)

[
∂w −

N1

2w
+

N2

2(1− w)

]
B−2 1 =

u2

u1

√
w(1− w)

[
∂w +

N1

2w
+

N2

2(1− w)

]
B2−1 =

u1

u2

√
w(1− w)

[
∂w −

N1

2w
− N2

2(1− w)

]
B2 1 =

1

u1u2

√
w(1− w)

[
∂w +

N1

2w
− N2

2(1− w)

]
Note how obvious and ellegant the action of the Weyl group of SO(6,C) looks
using the above shown forms!
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using the above shown forms!
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Conformal reduction from n + 2 to n complex dimensions
so(6,C) Lie algebra
Coordinates
Root operators in the hand picked coordinates

Root operators 2

The root operators involving coordinate 3 or −3, after taking p = ir and
reducing to homogeneous functions of order λ in coordinate r , equal

The symmetries and relations for hypergeometric-type operators are visible here
in the simplest way. Also this algebra can easily generate all possible formulae
which arise through that construction! Please remember that the change of 1
into 2 involves the change of w into 1− w and that is all!
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Applications to my work
References
Thanks

A short outline of my PhD’s work

We have studied Gell-Mann – Low adiabatic limit approach to scattering,
and calculated rigorously a time-ordered exponential for a non-commu-
tative family of operators

The solution was involving hypergeometric-type functions

We looked at the geometric interpretation of the six exactly solvable Schrö-
dinger potentials (by means of hypergeometric functions)

That gave us interpretation, that Schrödinger operators, which are also
special cases of the hypergeometric operator, are in fact Laplace-Beltrami
operators on certain 3d surfaces embedded in 4d real subspaces of C4

Jan introduced me to the global picture of the Lie group of symmetries
for the hypergeometric equation which I liked very much and which finally
helped me to understand the real beauty of the great plurality of possibilities.

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Applications to my work
References
Thanks

A short outline of my PhD’s work

We have studied Gell-Mann – Low adiabatic limit approach to scattering,
and calculated rigorously a time-ordered exponential for a non-commu-
tative family of operators

The solution was involving hypergeometric-type functions

We looked at the geometric interpretation of the six exactly solvable Schrö-
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dinger potentials (by means of hypergeometric functions)

That gave us interpretation, that Schrödinger operators, which are also
special cases of the hypergeometric operator, are in fact Laplace-Beltrami
operators on certain 3d surfaces embedded in 4d real subspaces of C4

Jan introduced me to the global picture of the Lie group of symmetries
for the hypergeometric equation which I liked very much and which finally
helped me to understand the real beauty of the great plurality of possibilities.

Przemek Majewski, KMMF, Warszawa Hypergeometric-type functions



Introduction
The hypergeometric equation

SO(6,C) conformal action on hypergeometric funtions
Endnotes

Applications to my work
References
Thanks

A short outline of my PhD’s work

We have studied Gell-Mann – Low adiabatic limit approach to scattering,
and calculated rigorously a time-ordered exponential for a non-commu-
tative family of operators

The solution was involving hypergeometric-type functions

We looked at the geometric interpretation of the six exactly solvable Schrö-
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A little about literature

We do it the best way!

There is a great lot of literature on this subject. It would not be wise to present
a long list here. For a condensed, full presentation, involving Lie groups of
symmetries, I will show references to works of Jan Dereziński and recently also
PM.

Jan Dereziński, Hypergeometric type functions and their symmetries, has
been sent to AHP
Jan Dereziński, Micha l Wrochna, Exactly solvable Schrödinger operators,
Annales Henri Poincare 12 (2011) 397-418
Jan Dereziński, PM, From the confromal group to symmetries of the hyper-
geometric operators, under construction

Not discussed here was the reduction from 5d to 3d giving conformal represen-
tations of SO(5,C) on solutions of the Gegenbauer equation

M. Abramowitz, I. Stegun, Handbook of Mathematical Fucntions, multiple
editions, i.e. tenth printing, December 1972
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Jan Dereziński, Micha l Wrochna, Exactly solvable Schrödinger operators,
Annales Henri Poincare 12 (2011) 397-418
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Thank you for your attention!

It was a pleasure to give a talk to such an audience. ,
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