Viscous Fingering Patterns

 in Rectangular Grid GeometryAgnieszka Budek
Piotr Garstecki
Adam Samborski
Piotr Szymczak

Introduction

Viscous fingering experiments were performed by injecting a less viscous liquid to displace a more viscous one in a regular, rectangular network of channels. This geometry promotes the formation of anisotropic, dendrite-like structures, which then compete with each other for the available flow. This may lead to the appearance of a scale-free, hierarchical growth patterns. We analyze this system both experimentally (in polycarbonate microfluidic channels) and numerically (using a a resistor-network model) for miscible and immiscible fluids, identifying different growth regimes.

Interactions Between
Fingers

flow through horizontal channels

Shorter fingers are deprived of flow by longer one which grows faster. Positive feedback occurs and longer fingers are privileged. On the othe hand we observe a change in the direction of flow in horizontal channels, which may cause tearing off of longer finger and forma tion of a SPEAR-like head which moves separately.
flow through vertical channels

