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Happy Birthday to You Dieter!
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Aim of this talk

CORRELATION

• What is it?

• How to quantify it?



Correlation

• Correlation [lat.]: con+relatio (“with relation”)

• Mathematics, Statistics, Natural Science:

〈xy〉 6= 〈x〉〈y〉

The term correlation stems from mathematical statistics and means that two
distribution functions, f(x) and g(y), are not independent of each other.

• In many body physics: correlations are effects beyond factorizing approximations

〈ρ(r, t)ρ(r′, t′)〉 ≈ 〈ρ(r, t)〉〈ρ(r′, t′)〉,

as in Weiss or Hartree-Fock mean-field theories



Quantifying correlations

How many correlation is there
in correlated electron systems?

Correlation functions (double occupancy, effective mass, Z- factor, conductance(vity),
susceptibilities, ...) are very useful for particular cases when we know what to look at:
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6135 (1999),

A.D. Gottlieb and N.J. Mauser, Phys. Rev. Lett. 95, 123003 (2005),

J.E. Harriman, Phys. Rev. A 75, 032513 (2007),

...........................

However, we need information theory tools to address this issue in general.



Information theory

C. Shannon, 1916-2001

I(a) = − ln p(a) - surprise

S(a) = 〈I(a)〉 = −〈ln p(a)〉 = −
∑

a p(a) ln p(a) - average surprise, information

abstraction from the real (human) meaning of the messages

Information entropy

positive, monotonic, additive, convex, ...



Information theory - correlation

Two sources of messages with distribution p(a, b), total information
S(a, b) = −〈ln p(a, b)〉
marginal distributions - p(a) =

∑

b p(a, b), etc.

Messages are correlated (not independent)

p(a, b) 6= p(a)p(b),

i.e.
〈ab〉 6= 〈a〉〈b〉

Total correlation

∆S(a||b) = S(a, b)− S(a)− S(b) = −

{

∑

ab

p(a, b) [ln p(a, b)− ln p(a)p(b)]

}

Relative entropy (Kullback - Leibler divergence) vanishes in the absence of
correlations (product distribution)



Classical vs. Quantum Information Theory

Probability distribution vs. Density operator

pk ←→ ρ̂ =
∑

k

pk|k〉〈k|

Shannon entropy vs. von Neumann entropy

S = −〈log2 pk〉 = −
∑

k

pk log2 pk ←→ S(ρ̂) = −〈ln ρ̂〉 = −Tr[ρ̂ ln ρ̂]

Two correlated (sub)systems have relative entropy

S = S1 + S2 −∆S ←→ S = S1 + S2 −∆S

∆S(pkl||pkpl) = −
∑

kl

pkl[log2
pkl

pkpl
]←→ ∆S(ρ̂||ρ̂1 ⊗ ρ̂2) = −Tr[ρ̂(ln ρ̂− ln ρ̂1 ⊗ ρ̂2)]



Asymptotic distinguishability

Quantum version of Sanov’s theorem:
Let ρ̂ and σ̂ are two states of quantum system Q, and we are provided with N

identically prepared copies of Q. A measurement is made to determine if the prepared
state is ρ̂. The probability that the state σ̂ passes this test (i.e. is confused with ρ̂) is

PN ≈ e−N∆S(ρ̂||σ̂).

as N →∞ and the optimal strategy is known and depend only on ρ̂.
Relative entropy ∆S(ρ̂||σ̂) as a ’distance’ between quantum states.

Correlation measure

relative entropy between correlated |corr〉 and uncorrelated (product) |prod〉 states

∆corr−>prod = ∆S(corr||prod)



Application: DMFT for lattice fermions

Replace (map) full many-body lattice problem by a single-site coupled to dynamical
reservoir and solve such problem self-consistently

All local dynamical correlations included exactly

Space correlations neglected - mean-field approximation



Reduced Entropy and Reduced Relative Entropy

Reduced density operator:
ρ̂i = Trj 6=iρ̂

S(ρ̂i) = −
n
∑

k=1

pk ln pk, ∆S(ρ̂i||ρ̂
prod
i ) = −

n
∑

k=1

pk(ln pk − ln pprodk )

where, e.g. for 1s orbitals

p1 = 〈(1−ni↑)(1−ni↓)〉, p2 = 〈ni↑(1−ni↓)〉, p3 = 〈(1−ni↑)ni↓〉, p4 = 〈ni↑ni↓〉.

A.Rycerz, Eur. Phys. J B 52, 291 (2006);

D. Larsson and H. Johannesson, Phys. Rev. A 73, 042320 (2006)

Generalized equations for reduced relative entropy
KB, W. Hofstetter, J. Kuneš, D. Vollhardt, (2011)

Expectation values for correlated states are determined from DMFT solution and for
uncorrelated states from product solutions.



Example 1: Correlation and Mott Transition

Hubbard model, n = 1, T = 0, d = 3, PM

Uncorrelated product states:

|free〉 =
∏kF

kσ a
†
kσ|v〉 - U = 0 Hartree-Fock limit

|LM〉 =
∏NL

i a
†
iσi
|v〉 - local moment limit



Example 2: Correlation and Antiferromagnetic LRO

Hubbard model, n = 1, T = 0, d = 3, AF
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Uncorrelated product states:

|Slat〉 =
∏kF

k∈(A,B) a
†
kA↑a

†
kB↓|v〉 - Slater limit

|Heis〉 =
∏NL

i∈(A,B) a
†
iA↑a

†
iB↓|v〉 - Heisenberg limit



Example 3: Correlation in Transition Metal-Oxides

MnO FeO CoO NiO

[Ar]3d5s2 [Ar]3d6s2; [Ar]3d7s2; [Ar]3d8s2

LDA entropy represents number of local states - maximum at d5

Interaction reduces this number and it becomes almost the same

Non-interacting system chemistry decides how much it is correlated



Summary

• We used relative entropy to quantify in numbers correlation in interacting
many-electron systems.

• Examples for Hubbard model.

• Different correlations in paramagnetic and in antiferromagnetic cases.

• Different amount of correlation in transition metal oxides, e.g., MnO is 3 times
more correlated then NiO.


