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Aim of this talk

CORRELATION

• What is it?

• How to quantify it?



Correlation

• Correlation [lat.]: con+relatio (“with relation”)

– Two or more objects needed
– Grammar: either ... or, look for, deal with, ...
– Many-body physics:

dp1

dt
= F1 + F12, p1 = m1

dx1

dt

dp2

dt
= F2 + F21, p2 = m2

dx2

dt



Spatial and temporal correlations everywhere

car traffic

air traffic

human traffic

electron traffic

more .....



Correlations in quantum mechanics

Einstein, Podolsky, Rosen (1935)

π ee +− 0

π0 → e+ + e−

Stot = 0 and Sz = 0 - singlet state (Bohm 1954)

|Ψ〉 = [| ↑〉− ⊗ | ↓〉+ − | ↓〉− ⊗ | ↑〉+]/
√
2

H = H+ ⊗H−

Orthodox (Copenhagen) view:

neither particle had either spin up or spin down until the act of measurement intervented:

your measurment of e− collapsed the wave function, and instanteneusly “produced”

the spin of e+ 20 light years far away

spooky action at a distance, hidden variable, ghost field, ..., to keep locallity



Bipartite pure entanglement

Let {|i〉A ⊗ |j〉B} ∈ H = HA ⊗HB and AB distinguishable.

Any state

|Ψ〉 =
∑

ij

γij|i〉A ⊗ |j〉B

that cannot be represented as a product state is called an entangled state.

• Entanglement is a quantum correlation which does not have a classical counterpart

• Any entangled state cannot be prepared from a product state by local operations
(acting on one subsystem) and classical communications (LOCC).



Bell states

• classical two level system (0 or 1) codes one bit of information

• in QM two level system can be both 0 and 1 (spin, polarization, vortex, energy
structure, ...)

• it was proposed to call it quantum bit or qbit (read: qiubit) in general -
Schumacher (1995)

Bell states - maximally entangled states of two qbits

|Ψ−〉 = 1√
2
[|01〉 − |10〉]

|Ψ+〉 = 1√
2
[|01〉+ |10〉]

|Φ−〉 = 1√
2
[|00〉 − |11〉]

|Φ+〉 = 1√
2
[|00〉+ |11〉]



Quantum teleportation

Bennett et al. (1993), photons (1998-2005), atoms (2004)

Alice and Bob share one entangled state, e.g. |Φ+〉. Alice wants to send to Bob all
necessary information about the unknown quantum state |Φ〉 = a|0〉+ b|1〉 she has
got such that Bob could recreate this state using a particle he has at hand. This is a
task of quantum teleportation. The state at Alice will be destroyed. What about the
entangled state they share?

|Φ〉|Φ+〉 ∼ [|Φ+〉(a|0〉+ b|1〉) + |Φ−〉(a|0〉 − b|1〉) + |Ψ+〉(a|1〉+ b|0〉) + |Ψ−〉(a|1〉 − b|0〉)]

A: performs projective measurement on her 2 qbits - LO

A: call Bob and tells her result (one of 4) - CC

B: depending on A info performs 1 or σx or/and σz - LO

cost: one Bell state is eatten up



Detecting correlation



Detecting correlation

uncorrelated

correlated

Many trials and statistical analysis



Correlation

• Mathematics, Statistics, Natural Science: ”In statistics, dependence refers to any
statistical relationship between two random variables or two sets of data.
Correlation refers to any of a broad class of statistical relationships involving
dependence.” (Wikipedia)

• Formally: Two random variables are not independent (are dependent) if

P (x, y) 6= p(x)p(y),

and are correlated if
〈xy〉 6= 〈x〉〈y〉,

p(x) =
∫

dyP (x, y).

• In many body physics: correlations are effects beyond factorizing approximations

〈ρ(r, t)ρ(r′, t′)〉 ≈ 〈ρ(r, t)〉〈ρ(r′, t′)〉,

as in Weiss or Hartree-Fock mean-field theories.



Spatial and temporal correlations neglected

time/space average insufficient

〈ρ(r, t)ρ(r′, t′)〉 ≈ 〈ρ(r, t)〉〈ρ(r′, t′)〉 = disaster!



Spatial and temporal correlations neglected

Local density approximation (LDA) disaster in HTC
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LaCuO4 Mott (correlated) insulator predicted to be a metal

Partially curred by (AF) long-range order ... but correlations are still missed



Correlated electrons

Narrow d,f-orbitals/bands → strong electronic correlations



Electronic bands in solids
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Band insulators, e.g. NaCl

Correlated metals, e.g. Ni, V2O3, Ce

Simple metals, e.g. Na, Al

Atomic levels, localized electrons |Riσ〉

Narrow bands, |Riσ〉 ↔ |kσ〉

Broad bands, extended Bloch waves |kσ〉

Wave function overlap ∼ tij = 〈i|T̂ |j〉 → |Ek| ∼ bandwidth W



Electronic bands in solids

Mean time τ spent by the electron on an atom in a solid
depends on the band width W

group velocity vk ≈
lattice spacing

mean time
=

a

τ

Heisenberg principle Wτ ∼ ~

a

τ
∼ aW

~
=⇒ τ ∼ ~

W

Small W means longer interaction with another electron on the same atom
Strong electronic correlations



Optical lattices filled with bosons or fermions
Greiner et al. 02, and other works

atomic trap and standing waves of light create optical lattices a ∼ 400− 500nm

alkali atoms with ns1 electronic state J = S = 1/2

F = J+ I
87Rb, 23Na, 7Li - I = 3/2: effective bosons
6Li - I = 1, 40K - I = 4: effective fermions

dipol interaction − hopping 

atom scattering − Hubbard U

Esolid
int ∼ 1− 4eV ∼ 104K, Esolid

kin ∼ 1− 10eV ∼ 105K

Eoptical
kin ∼ Eoptical

int ∼ 10kHz ∼ 10−6K



Quantifying correlations

How many correlations is there
in correlated electron systems?

Correlation functions (double occupancy, effective mass, Z- factor, conductance(vity),
susceptibilities, ...) are very useful for particular cases when we know what to look at:

R. Grobe, K. Rza̧żewski, and J.H. Eberly, J. Phys. B: At. Mol. Opt. Phys. 27, L503 (1994),

A.M. Oleś, F. Pfirsch, P. Fulde, and M.C. Böhm, Z. Phys. B - Condensed Matter 66, 359 (1987),

P. Ziesche, V.H. Smith, Jr. and M. Ho, S.P. Rudin, P. Gersdorf, and M. Taut, J. Chem. Phys.

110, 6135 (1999),

A.D. Gottlieb and N.J. Mauser, Phys. Rev. Lett. 95, 123003 (2005),

J.E. Harriman, Phys. Rev. A 75, 032513 (2007),

...........................
P(x) P(x)

x x

More information

in the left distribution

σ1
x > σ2

x

Information theory is needed to address ”How many correlations...?”



Information theory

C. Shannon, 1916-2001

I(a) = − ln p(a) - surprise

S(a) = 〈I(a)〉 = −〈ln p(a)〉 = −∑

a p(a) ln p(a) - average surprise, information

abstraction from the real (human) meaning of the messages

Information entropy

positive, monotonic, additive, convex, ...



Information theory - correlation

Two sources of messages with distribution p(a, b), total information
S(a, b) = −〈ln p(a, b)〉
marginal distributions - p(a) =

∑

b p(a, b), etc.

Messages are correlated (not independent)

p(a, b) 6= p(a)p(b),

i.e.
〈ab〉 6= 〈a〉〈b〉

Total correlation

∆S(a||b) = S(a, b)− S(a)− S(b) = −
{

∑

ab

p(a, b) [ln p(a, b)− ln p(a)p(b)]

}

Relative entropy (Kullback - Leibler divergence) vanishes in the absence of
correlations (product distribution)



Classical vs. Quantum Information Theory

Probability distribution vs. Density operator

pk ←→ ρ̂ =
∑

k

pk|k〉〈k|

Shannon entropy vs. von Neumann entropy

S = −〈log2 pk〉 = −
∑

k

pk log2 pk ←→ S(ρ̂) = −〈ln ρ̂〉 = −Tr[ρ̂ ln ρ̂]

Two correlated (sub)systems have relative entropy

S = S1 + S2 −∆S ←→ S = S1 + S2 −∆S

∆S(pkl||pkpl) = −
∑

kl

pkl[log2
pkl
pkpl

]←→ ∆S(ρ̂||ρ̂1 ⊗ ρ̂2) = −Tr[ρ̂(ln ρ̂− ln ρ̂1 ⊗ ρ̂2)]



Asymptotic distinguishability

Quantum version of Sanov’s theorem:
Let ρ̂ and σ̂ are two states of quantum system Q, and we are provided with N
identically prepared copies of Q. A measurement is made to determine if the prepared
state is ρ̂. The probability that the state σ̂ passes this test (i.e. is confused with ρ̂) is

PN ≈ e−N∆S(ρ̂||σ̂).

as N →∞ and the optimal strategy is known and depend only on ρ̂.
Relative entropy ∆S(ρ̂||σ̂) as a ’distance’ between quantum states.

Correlation measure

relative entropy between correlated |corr〉 and uncorrelated (product) |prod〉 states

∆corr−>prod = ∆S(corr||prod)



Correlated fermions on lattices

H = −
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓

t

U

t
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In
In

Out

TIME
|i, 0〉 → |i, ↑〉 → |i, 2〉 → |i, ↓〉

fermionic Hubbard model

P.W. Anderson, J. Hubbard, M. Gutzwiller, J. Kanamori, 1960-63

Local Hubbard physics



Application: DMFT for lattice fermions

Replace (map) full many-body lattice problem by a single-site coupled to dynamical
reservoir and solve such problem self-consistently

All local dynamical correlations included exactly

Space correlations neglected - mean-field approximation



Reduced Entropy and Reduced Relative Entropy

Reduced density operator:
ρ̂i = Trj 6=iρ̂

S(ρ̂i) = −
n
∑

k=1

pk ln pk, ∆S(ρ̂i||ρ̂prodi ) = −
n
∑

k=1

pk(ln pk − ln pprodk )

where, e.g. for 1s orbitals

p1 = 〈(1−ni↑)(1−ni↓)〉, p2 = 〈ni↑(1−ni↓)〉, p3 = 〈(1−ni↑)ni↓〉, p4 = 〈ni↑ni↓〉.

A.Rycerz, Eur. Phys. J B 52, 291 (2006);

D. Larsson and H. Johannesson, Phys. Rev. A 73, 042320 (2006)

Generalized equations for reduced relative entropy
KB, W. Hofstetter, J. Kuneš, D. Vollhardt, (2011)

Expectation values for correlated states are determined from DMFT solution and for
uncorrelated states from product solutions.



Example 1: Correlation and Mott Transition

Hubbard model, n = 1, T = 0, d = 3, PM

Uncorrelated product states:

|free〉 = ∏kF
kσ a

†
kσ|v〉 - U = 0 Hartree-Fock limit

|LM〉 = ∏NL
i a†iσi

|v〉 - local moment limit



Example 2: Correlation and Antiferromagnetic LRO

Hubbard model, n = 1, T = 0, d = 3, AF

0 0,5 1 1,5 2 2,5 3 3,5 4
Interaction, U

0
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U
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∆
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Relative Entropy
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m
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∆

Relative Entropy

Uncorrelated product states:

|Slat〉 = ∏kF
k∈(A,B) a

†
kA↑a

†
kB↓|v〉 - Slater limit

|Heis〉 = ∏NL

i∈(A,B) a
†
iA↑a

†
iB↓|v〉 - Heisenberg limit



Example 3: Correlation in Transition Metal-Oxides

MnO FeO CoO NiO

[Ar]3d5s2 [Ar]3d6s2; [Ar]3d7s2; [Ar]3d8s2

LDA entropy represents number of local states - maximum at d5

Interaction reduces this number and it becomes almost the same

Non-interacting system chemistry decides how much it is correlated



Summary

• We used relative entropy to quantify in numbers correlation in interacting
many-electron systems.

• Examples for Hubbard model.

• Different correlations in paramagnetic and in antiferromagnetic cases.

• Different amount of correlation in transition metal oxides, e.g., MnO is 3 times
more correlated then NiO.

• ”Quantification of correlations in quantum many-particle systems”, K. Byczuk, J.
Kunes, W. Hofstetter, D. Vollhardt, arXiv:1110.3214.



Happy New Year!



Calculation details
Consider a pure state (maximal information)

|Ψ〉 =
∑

αβ

Ψαβ|α〉|β〉

of a system which is composed of two subsystems A = {|α〉} and B = {|β〉}.

Density operator (Schmidt decomposition)

ρ̂ =
∑

k

pk|k〉〈k| = |Ψ〉〈Ψ|.

Entropy

S(ρ̂) = −〈log ρ̂〉 = −Trρ̂ log ρ̂ = −
∑

k

pk log pk = 0,

because
pk = δk,Ψ.



Calculation details

Trace out the B subsystem, reduced density operator

ρ̂A = TrB|Ψ〉〈Ψ| =
∑

β

〈β|Ψ〉〈Ψ|β〉 =
∑

α1,α2

|α1〉
∑

β

Ψα1,βΨ
†
β,α2
〈α2| =

∑

α1,α2

|α1〉ρα1,α2〈α2|.

Subsystem A is in a mixed state (reduced information).

Introduce projector and transition operators

P̂i = |i〉〈i|, T̂ij = |i〉〈j|,

then
ρα1α2 =

∑

β

Ψα1,βΨ
†
β,α2

= 〈Ψ|P̂α1T̂α1,α2P̂α2|Ψ〉†.



Calculation details

Consider a single lattice site (DMFT) as the A subsystem

|α〉 = {|0〉, | ↑〉, | ↓〉, | ↑↓〉},

then

P̂α =















(1− n̂↑)(1− n̂↓)
n̂↑(1− n̂↓)
(1− n̂↑)n̂↓

n̂↑n̂↓,

and

T̂α1,α2 =











1 c↑ c↓ c↓c↑
c†↑ 1 c†↑c↓ −c↓
c†↓ c†↓c↑ 1 c↑

c†↑c
†
↓ −c†↓ c†↑ 1











.

Assuming absence of any off-diagonal order 〈Ψ|cσ|Ψ〉 = 〈Ψ|cσc−σ|Ψ〉 the reduced
density operator is diagonal

ρα1α2 = p1|0〉〈0|+ p2| ↑〉〈↑ |+ p3| ↓〉〈↓ |+ p4| ↑↓〉〈↑↓ |,



Calculation details

with matrix elements
pα = 〈Ψ|P̂α|Ψ〉

determined with an arbitrary pure state |Ψ〉 (exact, DMFT, HF, etc.) of the full
system.

It is straightforward to derive for an arbitrary mixed state ρ̂ of the full system.


