Erratum for the Book: S. Pokorski, Gauge Field Theories

(2nd Edition)

Cambridge University Press

Last update: March 25, 2008

Place:	Instead of:	Should be:
p.8, line 2 in eq. (0.9) :	$=\sum_{f}\Psi^{f}Q\gamma^{\mu}\bar{\Psi}^{f}$	$=\sum_{f} \bar{\Psi}^{f} Q \gamma^{\mu} \Psi^{f}$
p. 17, line 2 in eq. (1.35):	$= \mathcal{L}\delta x^{\mu} + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\Phi)}\delta_{0}\Phi + \delta\Lambda^{\mu} + \dots$	$= \partial_{\mu} [\mathcal{L}\delta x^{\mu} + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\Phi)}\delta_{0}\Phi + \delta\Lambda^{\mu}] + \dots]$
p. 69, last line:	$+\frac{2}{3}A_{\sigma}A_{\mu}A_{\nu}$	$-\frac{2}{3}A_{\sigma}A_{\mu}A_{\nu}$
p. 85, eq. $(2.56a)$ and next eq.	$-\mathrm{i}\delta(x-y)$	$-\mathrm{i}\hbar\delta(x-y)$
p. 109, lines below eq. (2.153):	It can be proved, for example, by induction, that	It can be proved that
line 1 below eq. (2.154):	The effective action	An easy way to prove eq. (2.154) is to consider the relation between the functionals $W[J]$ and $W'[J]$ for the fields Φ and $\overline{\Phi}$, respectively, and similarly $Z[J]$ and $Z'[J]^{\dagger}$. The effective action [†] I thank Yukinao Akamatsu, University of Tokyo, for pointing it to me.
p. 110,2 lines above eq. (2.156):	Also, we can prove, for example, by induction, that	Similarly to eq. (2.154) one can prove that
p. 111, line 3 from the bottom:	(2.155) and (2.156)	(2.163) and (2.164)
p. 113, eq. (2.168)	$h_I(t) = \dots$	$H_I(t) = \dots$
p. 133, eq. (3.38):	$gc^{\alpha\beta\gamma}A^{\mu}_{\gamma}(x)\partial_{\mu})(D_{\mu}\partial^{\mu})^{\alpha\beta}$	$gc^{\alpha\beta\gamma}\partial^{(x)}_{\mu}A^{\mu}_{\gamma}(x))(\partial_{\mu}D^{\mu})^{\alpha\beta}$

Place:	Instead of:	Should be:
p. 135, line 2 in eq. (3.46) : line 2 in eq. (3.48) :	$\begin{array}{l} A^{\mu}_{\gamma}(x)\partial_{\mu}]\\ gc_{\alpha\beta\gamma}A^{\gamma}_{\mu}\eta^{*\alpha}(\partial^{\mu}\eta^{\beta})] \end{array}$	$ \begin{array}{l} \partial_{\mu}A^{\mu}_{\gamma}(x)]\\ gc_{\alpha\beta\gamma}(A^{\gamma}_{\mu}\eta^{*\alpha}(\partial^{\mu}\eta^{\beta}) + (\partial^{\mu}A^{\gamma}_{\mu})\eta^{*\alpha}\eta^{\beta})] \end{array} $
p. 144, line 2 from the bottom:	$= (M\eta)^{\alpha}$	$=\frac{1}{lpha}(M\eta)^{lpha}$
p. 148, line 6 from the bottom:	mess	mass
p. 149, line 2 in eq. (4.3) : line 5 in eq. (4.3) :	$\frac{(y_0 - x_0)}{\frac{\mathrm{i}}{k_2 - m_F^2 + \mathrm{i}\varepsilon}}$	$ \Theta(y_0 - x_0) \\ \frac{\mathrm{i}}{k^2 - m_F^2 + \mathrm{i}\varepsilon} $
p. 168, eq. (4.50): eq. (4.53):	$\frac{dx \int [\dots]}{\frac{3}{16\pi^2\varepsilon} \frac{1}{\varepsilon}}$	$\frac{dx[]}{\frac{3}{16\pi^2}\frac{1}{\varepsilon}}$
p. 169, line 2 in eq. (4.55) : line 6 from the bottom:	$= I'_n + \frac{1}{2}(n-2)I_n 1 < n < 5$	$= -\frac{1}{2}I'_n - \frac{1}{2}(n-6)I_n$ 1 < n < 6
p. 170, line 2 in eq. (4.59):	$\frac{\lambda}{16\pi^2} = \frac{1}{\varepsilon}$	$=rac{\lambda}{16\pi^2}rac{1}{arepsilon}$
p. 171, last eq.:	$+\frac{1}{\varepsilon^2}[\ldots]$	$+\frac{1}{\varepsilon}[]$
p. 177, eq. (5.1):	$-\frac{1}{4}F^B_{\mu\nu} + F^{\mu\nu}_B + \dots$	$-\frac{1}{4}F^B_{\mu\nu}F^{\mu\nu}_B + \dots$
p. 180, line 2 in eq. (5.12):	$\alpha = \frac{\delta \Gamma}{\delta \Psi}$	$\alpha = -\frac{\delta\Gamma}{\delta\bar{\Psi}}$
p. 181, eq. above (5.18): line 2 in eq. (5.18):	04(2) 04(2)	$= -\frac{\delta}{\delta\alpha(z)} \frac{\delta}{\delta\bar{\alpha}(x)} \\ +iq\bar{e} \frac{\delta^2}{\delta\bar{\alpha}(x)\delta\alpha(y)} \delta(y-z)$
p. 185, line 1 below eq. (5.26):	reads	reads (see p. 266 for the discussion of the running $\alpha(q^2)$)
p. 188, eq. (5.47) :	$\frac{1}{(p+k)^2m^2}$	$\frac{1}{(p+k)^2 - m^2}$
р. 189.		

p. 189, line 1 in eq. (5.49): line 2 in eq. (5.49): $= \frac{2\alpha}{\pi} \frac{1}{\epsilon} = -\frac{2\alpha}{\pi} \frac{1}{\epsilon}$ $(Z_0 - 1)^{(1)} = \dots \qquad (Z_2 - 1)^{(1)} = \dots$

Place	Instead of:	Should be:
p.191, eq. (5.61):	$\dots \frac{1}{k^2} (Z_1 - 1)^{(1)} \gamma_\mu$	$\dots \frac{1}{k^2} + (Z_1 - 1)^{(1)} \gamma_\mu$
p. 193, eq. (5.68): eq. (5.70):	$\bar{u}(p')\gamma_{\mu}u(p)-\ldots$ $F_2(q^2)\ldots$	$\bar{u}(p')\gamma^{\mu}u(p) + \dots$ $F_2(q^2) = \dots$
p. 199, line 7 from the bottom:	$ \frac{\left[\Gamma(1+\frac{1}{2}\varepsilon)\Gamma(\frac{1}{2}\varepsilon)/\Gamma(1+\frac{1}{2}\varepsilon)\right.}{-\Gamma^2(1+\frac{1}{2}\varepsilon)/\Gamma(2+\varepsilon)] $	$\frac{[\Gamma(1+\frac{1}{2}\varepsilon)\Gamma(\frac{1}{2}\varepsilon)/\Gamma(1+\varepsilon)}{-2\Gamma^2(1+\frac{1}{2}\varepsilon)/\Gamma(2+\varepsilon)]}$
p. 200, line below eq. (5.100) : next formula:	Ze^2 $\dots \frac{1}{2 \mathbf{p} }$	$Ze \\ \dots = \frac{1}{2 \mathbf{p} }$
p. 201, line below eq. (5.102):	$=2 \mathbf{p} ^2\cos\theta$	$= \mathbf{p} ^2 \cos \theta$
p. 202, eq. (5.108):	$rac{d^3 \mathbf{p'}}{(2\pi)^3}$	$\frac{d^3 \mathbf{p'}}{2 p'_0 (2\pi)^3}$
p. 211, eq. (6.6):	$Z_3^3 Z_1^{-1}$	$\ln(Z_3^2 Z_1^{-1})$
p. 212, line 2 in eq. (6.11):	$\int_0^1 \dots$	\int_0^t
p. 213, eq. (6.16):	$\int_0^1 \dots$	\int_0^t
p. 214, line 2 below eq. (6.20):	the 1PI Green's function $\Gamma^{(n)}$ by	the 1PI Green's function $\Gamma^{(n)}$ (in a complete discussion one should include 1P reducible Green's functions as well; such an extension is straightforward) by
p. 216, line 2 in eq. (6.28): lines below eq. (6.28):	$\gamma_m(\alpha, a) = \lim_{\varepsilon \to 0} \dots$ $m_B = Z_m^{-1} m, \dots \alpha = Z_3^{-1} a_B$	$\gamma_m(\alpha, a) = -\lim_{\varepsilon \to 0} \dots$ $m_B = Z_m m, \dots a = Z_3^{-1} a_B$
p. 218, eq. (6.38) for Z_0 : eq. (6.38) for Z_3 : last equation:	$-\frac{\lambda^2}{2(16\pi^2)\varepsilon} \\ -\frac{\lambda^2}{12(16\pi^2)\varepsilon} \\ b_2 + \dots$	$-\frac{\lambda^2}{2(16\pi^2)^2\varepsilon} \\ -\frac{\lambda^2}{12(16\pi^2)^2\varepsilon} \\ \frac{b_2}{2\varepsilon} + \dots$
p. 225, eq. (6.61) and above it:	$b_0 \dots b_1$	$\beta_0 \dots \beta_1$

Place:	Instead of:	Should be:
p. 245, line 2 in eq. (7.60):	$=-rac{i}{4\pi^2}$	$=+rac{i}{4\pi^2}$
p. 291, line 2 in eq. (8.69):	$P = (zP + (p_\perp^2 + p_\perp^2)$	$p=(zP+(p_{\perp}^2+p^2)$
p. 319, line 3 in eq. (9.9):	Q^b_R	$Q^b_{R,L}$
p. 324, line in eq. (9.26):	$-\frac{1}{4}\gamma$	$-\frac{1}{4}\lambda$
p. 339 , eq. (9.87) :	$= v_3 \sigma^3$	$+v_3\sigma^3$
p. 345, line 1 above eq. (10.13): line 1 in eq. (10.13):		are defined as $-\partial_{\mu}\Theta^{a}(x) + \dots$
p. 346, eq. (10.15):	$+c^{abc}$	$-c^{abc}$
p. 362 , line 1 above eq. (10.80) and in eq. (10.80):	$Tj_{\mu}(x)j^{\mu}(x)$	$T j_{\mu}(x) j^{\mu}(0)$
p. 398, line 1 in eq. (12.34):	$M^{ab}_{LL}(x,y)\eta^a_L(y)$	$M^{ab}_{LL}(x,y)\eta^b_L(y)$
p. 400, line 4 from the top: eq. (12.41):	$ \begin{array}{c} M^{BA} \nu_L^{cA} \nu_L^{cB} \\ \hat{Y}_\nu \hat{M}^{-1} \hat{Y}_\nu^T \end{array} $	$\begin{array}{l} M^{AB}\nu_L^{cA}\nu_L^{cB} \\ \hat{Y}_{\nu}^T \hat{M}^{-1} \hat{Y}_{\nu} \end{array}$
p. 411, line 2 from the bottom:	and process-dependent corrections consisting	and corrections, often called process-dependent, consisting
p. 412, starting at line 5 under Fig. 12.5:	the splitting into universal and process-dependent parts is gauge-dependent and to get physical	the splitting into universal and so-called process-dependent parts is gauge-dependent: the vertex and box corrections contain also contributions which are independent of the external legs and cancel the gauge dependence of the corrections to the gauge boson propagators. To get physical

Place:	Instead of:	Should be:
p. 412, line 13 under Fig. 12.5:	of at least part of the process-dependent corrections	of the external leg independent vertex corrections
line 1 in the footnote ^{\ddagger} :	is cancelled by the vertex corrections	is cancelled by the external leg independent part of vertex corrections
p. 461, line 1 below eq. (13.9):	$p_{ u} \varepsilon_{ u\deltalphaeta} p^{lpha} q^{eta}$	$p_{\mu}arepsilon_{ u\deltalphaeta}p^{lpha}q^{eta}$
p. 541, eq. (A20):	$\begin{split} \bar{\chi}^{\dot{\alpha}} &= \bar{\chi}_{\dot{\beta}} \varepsilon^{\dot{\beta}\dot{\alpha}} \\ \bar{\chi}_{\dot{\alpha}} &= \bar{\chi}^{\dot{\beta}} \varepsilon_{\dot{\beta}\dot{\alpha}} \end{split}$	$\begin{split} \bar{\chi}^{\dot{\alpha}} &= \bar{\chi}_{\dot{\beta}} \varepsilon^{\dot{\alpha}\dot{\beta}} \\ \bar{\chi}_{\dot{\alpha}} &= \bar{\chi}^{\dot{\beta}} \varepsilon_{\dot{\alpha}\dot{\beta}} \end{split}$
p. 565, line 3 from the top:	$+is^2c^2M_Z^2Z_H(1-\frac{\delta v}{v})^2(1-Z_gZ_W^{-1})^2g^{\mu\nu}$	erase this line
p. 567, propagator of η_+ :	$\eta_+\eta_+$	$\eta_{\pm}\eta_{\pm}$
p. 579, vertex $G^{\pm}\eta_{\mp}\eta_{\gamma}$: vertex $G^{\pm}\eta_{Z}\eta_{\pm}$:	$-\mathrm{i}\xi M_W +\mathrm{i}rac{e}{2s}$	erase this line + $i\frac{e}{2sc}(c^2 - s^2)\xi M_W$
p. 581, line 19 from the bottom:	$ar{\psi}_j' \Gamma \psi_k'$	$ar{\psi}_j \Gamma \psi_k$
p.583, 584, eqs. (D.1), (D.8), (D.9):	$\frac{d^n k}{(4\pi)^n}$	$\frac{d^n k}{(2\pi)^n}$