Natural Dark Matter: A Window on the GUT scale

Jonathan Roberts

February 18, 2007

Jonathan Roberts

Image: A start
Image:

1 Introduction: SUSY Dark Matter

Naturalness

3 The Constrained MSSM (CMSSM)

The MSSM

Beyond the MSSM 5

Natural Dark Matter: A Window on the GUT scale

A B > A B >

In R-parity conserving supersymmetry the lightest particle is stable.

In R-parity conserving supersymmetry the lightest particle is stable. Due to R-parity, decays of the form:

sparticle \rightarrow particle + particle

are not allowed.

In R-parity conserving supersymmetry the lightest particle is stable. Due to R-parity, decays of the form:

sparticle \rightarrow particle + particle

are not allowed.

R-parity conserving supersymmetry requires a relic density of sparticles.

In R-parity conserving supersymmetry the lightest particle is stable. Due to R-parity, decays of the form:

sparticle \rightarrow particle + particle

are not allowed.

R-parity conserving supersymmetry requires a relic density of sparticles.

Is this a natural explanation for dark matter?

Neutralinos, $\tilde{\chi}_i^0$, are formed from a mixture of the neutral Wino, neutral Bino and two neutral higgsinos

イロン 不同 とくほう イロン Natural Dark Matter: A Window on the GUT scale

Neutralinos, $\tilde{\chi}_i^0$, are formed from a mixture of the neutral Wino, neutral Bino and two neutral higgsinos via the mass matrix:

Neutralinos, $\tilde{\chi}_i^0$, are formed from a mixture of the neutral Wino, neutral Bino and two neutral higgsinos via the mass matrix:

$$\begin{pmatrix} M_1 & 0 & -m_Z \cos\beta \sin\theta_w & m_Z \sin\beta \sin\theta_w \\ 0 & M_2 & m_Z \cos\beta \cos\theta_w & -m_Z \sin\beta \cos\theta_w \\ -m_Z \cos\beta \sin\theta_w & m_Z \cos\beta \cos\theta_w & 0 & -\mu \\ m_Z \sin\beta \sin\theta_w & -m_Z \sin\beta \cos\theta_w & -\mu & 0 \end{pmatrix}$$

Neutralinos, $\tilde{\chi}_i^0$, are formed from a mixture of the neutral Wino, neutral Bino and two neutral higgsinos via the mass matrix:

 $\begin{pmatrix} M_1 & 0 & -m_Z \cos\beta\sin\theta_w & m_Z \sin\beta\sin\theta_w \\ 0 & M_2 & m_Z \cos\beta\cos\theta_w & -m_Z \sin\beta\cos\theta_w \\ -m_Z \cos\beta\sin\theta_w & m_Z \cos\beta\cos\theta_w & 0 & -\mu \\ m_Z \sin\beta\sin\theta_w & -m_Z \sin\beta\cos\theta_w & -\mu & 0 \end{pmatrix}$

• If one of M_1 , M_2 or μ is much lighter than the others, the LSP will be predominantly of this form.

Neutralinos, $\tilde{\chi}_i^0$, are formed from a mixture of the neutral Wino, neutral Bino and two neutral higgsinos via the mass matrix:

 $\begin{pmatrix} M_1 & 0 & -m_Z \cos\beta\sin\theta_w & m_Z \sin\beta\sin\theta_w \\ 0 & M_2 & m_Z \cos\beta\cos\theta_w & -m_Z \sin\beta\cos\theta_w \\ -m_Z \cos\beta\sin\theta_w & m_Z \cos\beta\cos\theta_w & 0 & -\mu \\ m_Z \sin\beta\sin\theta_w & -m_Z \sin\beta\cos\theta_w & -\mu & 0 \end{pmatrix}$

• If one of M_1 , M_2 or μ is much lighter than the others, the LSP will be predominantly of this form.

• Therefore we would expect the neutralino to be either Bino, Wino or Higgsino.

We have a problem.

Jonathan Roberts

・ロト ・回ト ・ヨト ・ヨト Natural Dark Matter: A Window on the GUT scale

Ξ.

We have a problem.

• Bino Dark Matter: Generally gives $\Omega_{CDM} h^2 \gg \Omega_{CDM}^{WMAP} h^2$

Natural Dark Matter: A Window on the GUT scale

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

We have a problem.

- Bino Dark Matter: Generally gives $\Omega_{CDM} h^2 \gg \Omega_{CDM}^{WMAP} h^2$
- Wino/Higgsino Dark Matter: Generally gives $\Omega_{CDM}h^2 \ll \Omega_{CDM}^{WMAP}h^2$

イロト 不得 トイヨト イヨト 二日

We have a problem.

- Bino Dark Matter: Generally gives $\Omega_{CDM} h^2 \gg \Omega_{CDM}^{WMAP} h^2$
- Wino/Higgsino Dark Matter: Generally gives $\Omega_{CDM}h^2 \ll \Omega_{CDM}^{WMAP}h^2$

Therefore SUSY naturally gives the wrong dark matter density!

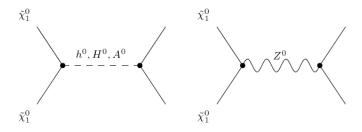
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト - - ヨ

To account for the observed dark matter density, we need different annihilation channels.

イロン 不同 とくほう イロン Natural Dark Matter: A Window on the GUT scale

To account for the observed dark matter density, we need different annihilation channels. Firstly if:

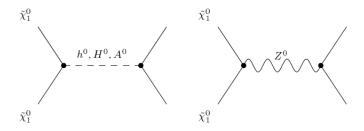
 $2m_{\tilde{\chi}_1^0} \approx m_{h^0,H^0,A^0,Z^0}$


Natural Dark Matter: A Window on the GUT scale

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

To account for the observed dark matter density, we need different annihilation channels. Firstly if:

 $2m_{ ilde{\chi}^0_1}pprox m_{h^0,H^0,A^0,Z^0}$


then we get a significant boost to the annihilation cross-section through processes of the form:

To account for the observed dark matter density, we need different annihilation channels. Firstly if:

 $2m_{\tilde{\chi}^0_1} \approx m_{h^0,H^0,A^0,Z^0}$

then we get a significant boost to the annihilation cross-section through processes of the form:

In this case, annihilation is usually **too efficient**: $\Omega_{CDM}h^2 \ll \Omega_{CDM}^{WMAP}h^2$ except on the edges of the resonance.

Jonathan Roberts

Natural Dark Matter: A Window on the GUT scale

Coannihilation

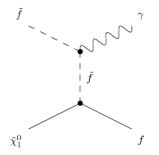

A second exception is if there is another sparticle close in mass to the LSP, then we must adapt our calculation of the dark matter density as there will be a significant number density of these particles at freeze-out.

Image: A window on the GUT scale

Coannihilation

A second exception is if there is another sparticle close in mass to the LSP, then we must adapt our calculation of the dark matter density as there will be a significant number density of these particles at freeze-out.

In this case we must take into account processes of the form:

We have a problem.

- Bino Dark Matter: Generally gives $\Omega_{CDM} h^2 \gg \Omega_{CDM}^{WMAP} h^2$
- Wino/Higgsino Dark Matter: Generally gives $\Omega_{CDM}h^2 \ll \Omega_{CDM}^{WMAP}h^2$

Therefore SUSY naturally gives the wrong dark matter density!

There are 2 possible solutions:

イロト 不得 トイヨト イヨト 二日

We have a problem.

- Bino Dark Matter: Generally gives $\Omega_{CDM} h^2 \gg \Omega_{CDM}^{WMAP} h^2$
- Wino/Higgsino Dark Matter: Generally gives $\Omega_{CDM}h^2 \ll \Omega_{CDM}^{WMAP}h^2$

Therefore SUSY naturally gives the wrong dark matter density!

There are 2 possible solutions:

• Add **just enough** Wino or Higgsino into Bino dark matter.

We have a problem.

- Bino Dark Matter: Generally gives $\Omega_{CDM} h^2 \gg \Omega_{CDM}^{WMAP} h^2$
- Wino/Higgsino Dark Matter: Generally gives $\Omega_{CDM}h^2 \ll \Omega_{CDM}^{WMAP}h^2$

Therefore SUSY naturally gives the wrong dark matter density!

There are 2 possible solutions:

- Add **just enough** Wino or Higgsino into Bino dark matter.
- Enhance an annihilation channel just enough to allow Bino dark matter to account for the observed relic density.

We have a problem.

- Bino Dark Matter: Generally gives $\Omega_{CDM} h^2 \gg \Omega_{CDM}^{WMAP} h^2$
- Wino/Higgsino Dark Matter: Generally gives $\Omega_{CDM}h^2 \ll \Omega_{CDM}^{WMAP}h^2$

Therefore SUSY naturally gives the wrong dark matter density!

There are 2 possible solutions:

- Add **just enough** Wino or Higgsino into Bino dark matter.
- Enhance an annihilation channel just enough to allow Bino dark matter to account for the observed relic density.

This sounds like fine-tuning.

Is SUSY Dark Matter fine-tuned?

Jonathan Roberts

イロト イポト イヨト イヨト Natural Dark Matter: A Window on the GUT scale

Is SUSY Dark Matter fine-tuned?

We need a quantitative measure of fine-tuning.

Jonathan Roberts

Natural Dark Matter: A Window on the GUT scale

(人間) (人) (人) (人) (人) (人)

э

Is SUSY Dark Matter fine-tuned?

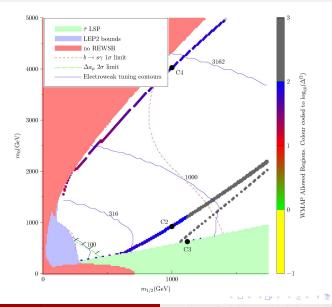
We need a quantitative measure of fine-tuning.

Ellis and Olive introduced an analagous measure to the one used to measure the fine-tuning required for electroweak symmetry breaking:

$$\Delta_{a}^{\Omega} = \left| \frac{\partial \ln \left(\Omega_{CDM} h^{2} \right)}{\partial \ln \left(a \right)} \right|$$

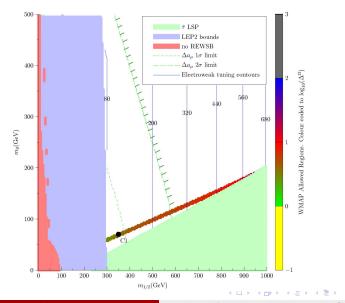
Jonathan Roberts

Is SUSY Dark Matter fine-tuned?


We need a quantitative measure of fine-tuning.

Ellis and Olive introduced an analagous measure to the one used to measure the fine-tuning required for electroweak symmetry breaking:

$$\Delta_{a}^{\Omega} = \left| \frac{\partial \ln \left(\Omega_{CDM} h^{2} \right)}{\partial \ln \left(a \right)} \right|$$


With these tools we can quantify the naturalness of SUSY dark matter.

The CMSSM Parameter Space

Natural Dark Matter: A Window on the GUT scale

The CMSSM - Take 2

Jonathan Roberts

Natural Dark Matter: A Window on the GUT scale

Studying the full MSSM

By relaxing our constraints we can find typical tuning scales for all dark matter annihilation channels.

Natural Dark Matter: A Window on the GUT scale

Studying the full MSSM

By relaxing our constraints we can find typical tuning scales for all dark matter annihilation channels.

Region	Typical Δ^{Ω}
Mixed bino/wino	~ 30
Mixed bino/higgsino	30 - 60
maximally mixed bino/wino/higgsino	4 - 60
Bulk region (t-channel \tilde{f} exchange)	< 1
slepton coannihilation (low M_1 , m_0)	3 - 15
slepton coannihilation (large M_1 , m_0)	~ 50
Z-resonant annihilation	~ 10
h ⁰ -resonant annihilation	10 - 1000
A^0 -resonant annihilation	80 - 300

- 4 同 2 4 日 2 4 日 2

Studying the full MSSM

By relaxing our constraints we can find typical tuning scales for all dark matter annihilation channels.

Region	Typical Δ^{Ω}
Mixed bino/wino	~ 30
Mixed bino/higgsino	30 - 60
maximally mixed bino/wino/higgsino	4 - 60
Bulk region (t-channel \tilde{f} exchange)	< 1
slepton coannihilation (low M_1 , m_0)	3 - 15
slepton coannihilation (large M_1 , m_0)	~ 50
Z-resonant annihilation	~ 10
h ⁰ -resonant annihilation	10 - 1000
A^0 -resonant annihilation	80 - 300

Therefore the MSSM allows for natural dark matter.

When dealing with the MSSM we have the inputs:

 $a_{MSSM} \in \{m_i, M_i, A_i, \tan \beta\}$

Natural Dark Matter: A Window on the GUT scale

When dealing with the MSSM we have the inputs:

```
a_{MSSM} \in \{m_i, M_i, A_i, \tan\beta\}
```

In some explicit model of SUSY breaking we will have a smaller set of parameters that determine the SUSY breaking masses:

a_{string}

Jonathan Roberts

Natural Dark Matter: A Window on the GUT scale

イロト 不得 トイヨト イヨト 二日

When dealing with the MSSM we have the inputs:

$$a_{MSSM} \in \{m_i, M_i, A_i, \tan \beta\}$$

In some explicit model of SUSY breaking we will have a smaller set of parameters that determine the SUSY breaking masses:

astring

The dark matter tuning with respect to a_{string} , $\Delta^{\Omega}_{a_{string}}$ is directly related to $\Delta^{\Omega}_{a_{MSSM}}$ via the relation:

$$\Delta^{\Omega}_{a_{string}} = \sum_{a_{MSSM}} \frac{a_{string}}{a_{MSSM}} \frac{\partial a_{MSSM}}{\partial a_{string}} \Delta^{\Omega}_{a_{MSSM}}$$

Natural Dark Matter: A Window on the GUT scale

When dealing with the MSSM we have the inputs:

$$a_{MSSM} \in \{m_i, M_i, A_i, \tan \beta\}$$

In some explicit model of SUSY breaking we will have a smaller set of parameters that determine the SUSY breaking masses:

astring

The dark matter tuning with respect to a_{string} , $\Delta^{\Omega}_{a_{string}}$ is directly related to $\Delta^{\Omega}_{a_{MSSM}}$ via the relation:

$$\Delta^{\Omega}_{a_{string}} = \sum_{a_{MSSM}} \frac{a_{string}}{a_{MSSM}} \frac{\partial a_{MSSM}}{\partial a_{string}} \Delta^{\Omega}_{a_{MSSM}}$$

Therefore if we minimise the coefficients, we minimise the dark matter tuning.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = シののの

• If SUSY exists in some form, the LHC should be able to pin down a large number of the parameters at the low energy scale.

- If SUSY exists in some form, the LHC should be able to pin down a large number of the parameters at the low energy scale.
- By combining this with other data, we will get an idea of the GUT scale values.

- If SUSY exists in some form, the LHC should be able to pin down a large number of the parameters at the low energy scale.
- By combining this with other data, we will get an idea of the GUT scale values.
- A large number of models will fit this data.

- If SUSY exists in some form, the LHC should be able to pin down a large number of the parameters at the low energy scale.
- By combining this with other data, we will get an idea of the GUT scale values.
- A large number of models will fit this data.

Via fine-tuning considerations we can go further.

- If SUSY exists in some form, the LHC should be able to pin down a large number of the parameters at the low energy scale.
- By combining this with other data, we will get an idea of the GUT scale values.
- A large number of models will fit this data.
- Via fine-tuning considerations we can go further.
 - Dark matter fine-tuning allows us to weigh up the different GUT models.

- If SUSY exists in some form, the LHC should be able to pin down a large number of the parameters at the low energy scale.
- By combining this with other data, we will get an idea of the GUT scale values.
- A large number of models will fit this data.
- Via fine-tuning considerations we can go further.
 - Dark matter fine-tuning allows us to weigh up the different GUT models.
 - We can identify models that provide the most natural explanation of the observed phenomena.

- If SUSY exists in some form, the LHC should be able to pin down a large number of the parameters at the low energy scale.
- By combining this with other data, we will get an idea of the GUT scale values.
- A large number of models will fit this data.
- Via fine-tuning considerations we can go further.
 - Dark matter fine-tuning allows us to weigh up the different GUT models.
 - We can identify models that provide the most natural explanation of the observed phenomena.
 - We can then make novel predictions for both the LHC, ILC and dark matter detection experiments to test the theory.