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VON NEUMANN ALGEBRAS OF DISCRETE GROUPS

o Let I be a discrete group and let I' 5 v — \, € B(£2(T")) be the regular
representation of I'.

e The von Neumann algebra generated by {\, ‘ v €T} is the group von
Neumann algebra of I'.

@ Notation: L(T"), vN(T'), ...

@ The group von Neumann algebra of I is a factor iff I is a i.c.c. group, i.e. all
of its non-trivial conjugacy classes are infinite.

@ The group von Neumann algebra always admits a faithful tracial state:
X — {Je|Xde).

@ In particular group von Neumann algebras of i.c.c. groups are always factors

of type II;.
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e If I happens to be abelian, the group von Neumann algebra of I is naturally
isomorphic to L*(I"), where I is the Pontriagin dual of I":

L(T) = L*(D).

@ In other words the von Neumann algebras of discrete groups are all of the
form L*(G) with G a compact quantum group which additionally is
cocommutative.

@ As we already mentioned, the possible factors we can obtain this way are all
of type II;.

@ How about more general compact quantum groups?
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COMPACT (AND DISCRETE) QUANTUM GROUPS MAP OF THE REALM OF QUANTUM GROUPS

Pontriagin duality

Dag = Discrete abelian, D¢y, = Discrete classical, Dg = Discrete quantum,
Fap = Finite abelian, F¢;, = Finite classical, Fg = Finite quantum,

LCQG = Locally compact quantum, Cyg = Compact abelian,

CcrL = Compact classical, Cg = Compact quantum.
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COMPACT (AND DISCRETE) QUANTUM GROUPS DEFINITION AND EXAMPLES

DEFINITION
A compact quantum group is an object G described by
@ a unital C*-algebra C(G) (usually non-abelian)
@ a unital *-homomorphism A: C(G) - C(G)®C(G) s.t. (A®id)oA = (Id® A)oA
and A(C(G))(1 ® C(G)) and (C(G) ® 1)A(C(G)) are dense in C(G) ® C(G).

EXAMPLES

@ Every compact group G is a compact quantum group G = G in the sense that
C(G) =C(G)and A: C(G) - C(G)®C(G) =C(G x G)is A(f)(x,y) = f(xy).

(2) Every discrete group I' gives rise to a compact quantum group I:
C(I') = CLy(T) with A(A,) = Ay @ A,.

red

@ Fix ge [-1,1[\{0} and let C(SU4(2)) be the C*-algebra generated by «,~ s.t.
ay=qra, a*a+yty=1=aa"+ 7"y, vy =97"
Then define A(a) =a®a—qy*®yand A(y) =7® a + a* ® 1.
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COMPACT (AND DISCRETE) QUANTUM GROUPS THE HAAR MEASURE

THEOREM (S.L. WORONOWICZ)

Let G be a compact quantum group. Then there exists a unique state h on C(G)
such that

(h®id)A(a) = (id® h)A(a) = h(a)l
for all a € C(G).

e If G = G with G a compact group then h on is given by integration with
respect to the normalized Haar measure.

@ In general we call h the Haar measure or the Haar state of G.
e If I' is a discrete group then h on [ is the trace mentioned earlier.

@ The von Neumann algebra L*(G) is defined to be the strong closure of the
image of C(G) in the GNS representation defined by h.
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COMPACT (AND DISCRETE) QUANTUM GROUPS EXAMPLES YIELDING TYPE III FACTORS

THEOREM (J. KrRAJCZOK & P.M.S.)

@ For each ) € |0, 1] there exist uncountably many pairwise non-isomorphic
compact quantum groups G such that L*(G) is the injective factor of type
I,

© There exists uncountably many compact quantum groups G such that
L*(G) are pairwise non-isomorphic injective factors of type Ill,.

© There exists uncountably many pairwise non-isomorphic compact quantum
groups G such that L*(G) is the injective factor of type III;.

© There does not exist a compact quantum group G with L*(G) = N @ B(¢?),
where N is any von Neumann algebra or the zero vector space.
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COMPACT (AND DISCRETE) QUANTUM GROUPS EXAMPLES YIELDING TYPE III FACTORS

e In order to explain our constructions we need to introduce more structure.

@ On L*(G) we have the modular group o" of the Haar measure h.

e Furthermore there exists another one parameter group 7% of automorphisms
of L*(G) called the scaling group.

@ An exact description of this group requires a deeper dive into the theory, but
for our present purposes the following information suffices:
o the scaling group acts by quantum group automorphisms: Aot = (1 @ 7¢)0A,
e the scaling and modular automorphisms commute,
o the Haar measure is tracial iff TF’ = id for all t (in this case we say that G is of
Kac type).
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COMPACT (AND DISCRETE) QUANTUM GROUPS EXAMPLES YIELDING TYPE III FACTORS

@ We begin with the following theorem:

THEOREM (J. KRAJCZOK, M. WASILEWSKI)
Fix v € R\{0}, ge |-1,1[\{O0} and let r € Q act on L*(SUq4(2)) by 7, SU“(Z) . Then the
compact quantum group H, 4 = Q = SUy4(2) satisfies

e L*(H, q) is injective (because H), 4 is co-amenable),

e if vlog|q| ¢ 7Q then L*(H, 4) is a factor,

e since there is a tracial weight on L*(SU4(2)) invariant under the scaling
group, the algebra L*(H, ) is not of type III.

Furthermore, assuming v log |q| ¢ 7Q, we have
) TiHIVq is trivial iff ¢ €1 | ‘Z so H, 4 is not of Kac type,

e consequently L* (HMQ) is a factor of type Il.
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COMPACT (AND DISCRETE) QUANTUM GROUPS EXAMPLES YIELDING TYPE III FACTORS

@ Our examples are constructed as infinite products
0

G = >< HCInyVn

n=1
for certain sequences of parameters (gn)neny and (vp)nen S.t. vnlog|gn| ¢ 7Q.
@ Assume that one pair (gn, vn) is repeated infinitely many times.
@ Then L*(G) is an injective factor of type IIl and the invariant T(L*(G)) is

given by
L p1
T(L*(G)) = {teR‘ > (1- M}%) < ~|—oo}.
n=1

o If (vn,gn) = (v, q) for all n and some (v, q) € (R\{0}) x (]—1,1[\{0}) then L*(G)
is the injective factor of type III 2.

e Assume that there are two subsequences (gn,)peny and (gm,)peny such that
{ny|pe N} n {my|peN} = & and gp, qu M. Gm, = T2 for some
ri,ro € |—1,1[\{0} such that Z N = {0}. Then L*(G) is the
injective factor of type III;.

1g\r| loglr\
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COMPACT (AND DISCRETE) QUANTUM GROUPS EXAMPLES YIELDING TYPE III FACTORS

@ Now for s€ |0, 1] let

M8

p:
where | x| denotes the integer part of x € R>o.

@ Define
b = [exp(27rk!)k23_lj, keN.

@ Let (gn)nen be the sequence

(exp(—m1!),... exp(—71!),exp(—72!),... exp(—72!),...)

,; times I, times

and for each n choose v, € R\{0} such that v, log |qn| ¢ Q.
@ Then, with G as before, L*(G) is an injective factor of type Illp and its
invariant T satisfies
o Q< T(L*(G)),
o ty € T(L*(G)) if and only if s’ > s.
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COMPACT (AND DISCRETE) QUANTUM GROUPS SLIGHTLY MORE ELABORATE EXAMPLES

@ We also analyzed examples of the form K =I' < G, with G constructed as an
infinite tensor product as before and I' a countable subgroup of R (with
discrete topology) acting via the scaling automorphisms.

e This way we can control which scaling automorphisms of the resulting
quantum group are inner.

@ We then used the set
Ti(K) = {t e R|7{ € Inn(L*(K))}

to distinguish between the different examples.

ee}
o WithG= X H, 5 (@ande.g. v = 1(2>g2>\) the algebra L*(K) is the injective factor
n=1 ’

of type IIL, and 77, (K) = T + 25Z.
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h

INVARIANTS RELATED TO 7C AND o

@ For general locally compact quantum groups we worked with the following

invariants:
DEFINITION
T7(G) = {te R| 77 =id},
Ti(G) = {t e R|7f e Inn(L*(G))},
TI(G) = {te R|7f e Inn(L*(G))},
T°(G) = {te R|oy =id},
T5n(G) = {te R|of e Inn(L*(G))},
7-(G) = {te]R‘at e Inn(L*(G))},
Mod(G) = {te R|§" =1},

where § is the modular element of G.
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U EXAMPLES

INVARIANTS RELATED TO 7C AND o

EXAMPLE: THE QUANTUM E(2) GROUP
Let G = E4(2) for some g € ]0, 1[. Then we have

T(G) = Tful(G) = T5(G) = T9(G) = T"(G) = T°(G) = Mod(G) = Z:Z,
T5u(G) = TZ(G) = Tf(G) = TE—(G) = T5,(G) = T2-(G) = Mod(G) = R.
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INVARIANTS RELATED TO 7& AND O‘h EXAMPLES

EXAMPLE: QUANTUM “az + b” GROUPS
Let G be the quantum “az + b” group for the deformation parameter q in one of
the three cases:

Q g=e¥ withN=86,8,...,

g q € ]07 1[,
Q@ g=e"”withRep <0, Imp = % with N = +2, +4,....
Then
T7n(G) = T (G) = Thu(G) = T (G) = TEW(G) = TZ(G) = T5,(G) = T2 (G) =R,
~ N . 0 i d
T7(G) = T7(6) = T%(G) = T7(@) = Mod(G) = Mod(G) = {W} In cases @and @
loqu in case @
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o SOME PROPERTIES OF THE INVARIANTS

INVARIANTS RELATED TO 7C AND o

@ The sets TJ(G) are subgroups of R and are isomorphism invariants of the
quantum group G.

o T7(G) = T™(G).

o T%G), T3—(G), and Mod(G) are closed.

o 77(G), T1,,(G), and T7—(G) are the same regardless of which Haar measure
we choose.

e 17 (G) is equal to the Connes’ invariant T(L*(G)). Consequently, 77 (G)
depends only on the von Neumann algebra L*(G). It is also the case for

T2 (G).

Inn
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INVARIANTS RELATED TO 7& AND o‘h

SOME PROPERTIES OF THE INVARIANTS

PROPOSITION

For any locally compact quantum group G we have

T°(G) = T™(G) n Mod(G),
T5u(G) 0 Mod(G) = T7,,(G) n Mod(G)
TZ(G) n Mod(G) = TE—(G) n Mod(G)

Mod(G) A Mod(G) = s T7(G).

e The first equality above together with 77(G) = TT(@) reduces the list to 11
(invariants 779(G), T"(G) and TT(G) are determined by the remaining ones).
o If G is compact then Mod(G) = T},(G) = T3, (G) = TZ(G) = TZ(G) = R.

e If additionally L*(G) is semifinite then 77 (G) = TZ-(G) = R.
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o SOME PROPERTIES OF THE INVARIANTS

INVARIANTS RELATED TO 7C AND o

EXAMPLE: Uf

Let G be the quantum group Uj. Then L®(G) is a full factor, so
Inn(L*(G)) = Inn(L*®(G)) (Vaes).
e G is compact, so Mod(G) = 17,

Inn

o If G is not of Kac type (A\F*F # 1) then

(G)=T° (G) =R.

Inn

(G) =T7_(G) =T¢,

Inn

- p T 27
TT(G) = T(G) = T7(G) = N Tou() 2
AeSp(F* FQ(F*F)~1)\{1}
. ~ F*F
while MOd(G) = ﬂ WZ where \ = —(T(r(F*l)ﬂ‘) )

AESp(F*F)\{A~1}
e If G is not of Kac type then L*(G) is a type III,, factor for some p € |0, 1] and
17 (G) = T1,(G) = 37, Z (otherwise T7_(G) = TI‘I’m( ) =R).

Inn

log B
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INVARIANTS OF -DEFORMATIONS

e Given a semisimple compact connected Lie group G one can form a family of
compact quantum groups {Gg}ejo,1( (this procedure generalizes the passage
SU(2) — SU4(2)).

@ Since Gy is compact we again have
MOd(Gq) = TITnn(Gq) = TIZTH(Gq) = Tﬁm(Gq) = Tf:Tn(Gq) =R.

e Furthermore Ty (Gq) = T7—(Gq) = R because C(Gq) is a C*-algebra of type I.

e We have T7(Gq) = 535Z and

—

Tﬂm(Gq) = Tﬂl—n(Gq) = MOd(Gq) = T¢71roqu’

where T4 is a positive integer determined by the root system & of the
complexified Lie algebra of G (see next two slides).
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INVARIANTS OF -DEFORMATIONS

o Let o =P, u--- U P; be the decomposition of ¢ into irreducible parts. Then

@ We have

T@ = ng(Tq)l, ey Tq;.l).
type group range of n | Vo | 17 (Gq)
2 T
An | SUm+1 [R=lodd | 1] g
n>1leven | 2 ﬁgq
2 s
B, |Spin@n+ 1) [ [1=20dd | 1| gz
n>2even | 2 21(7)qu
C, Sp(2n) n=3 2 Togd
n=>4 odd 2 s
D Spin(2 ~ 2logq
n pin(2) n>4even | 1 =
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INVARIANTS RELATED TO 7& AND o‘h INVARIANTS OF g-DEFORMATIONS

@ And for the exceptional cases we have

o type Es: To = 2 and T7,,(Gq) = 355%:
e type E7: Yo = 1 and T (Gq) = Toag L
o type Eg: To = 2 and T1,(Gq) = 51552
o type Fy: To =2 and 17, (Gq) = #ng’
o type Go: To = 2 and 17, (Gq) = 570.52-
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INVARIANTS OF -DEFORMATIONS

e Consider the compact quantum group SUg4(3).
@ Then T¢ = 2, so
TI:m(SUq(S)) = ﬁ]z7

while T7(SUq(3)) = 1542
e This means that there are non-trivial inner scaling automorphisms.

@ SU4(3) does not have non-trivial one-dimensional representations, so these
scaling automorphisms are not implemented by a group-like element.

PROPOSITION

Let G be such that T¢ = 2. Then a unitary implementing the scaling
automorphism for t = 57— 7 does not belong to C(Ggq). In particular, the
restriction of this automorphlsm to C(Gy) is not inner.
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CONJECTURE ON THE CHARACTERIZATION OF THE KAC PROPERTY STATEMENT OF THE CONJECTURE

@ We saw that we do not always have the equality
TT(G) = CTIZm(G')

e However, all compact quantum groups we considered so far (e.g. Gq or Uj)
belong to the class for which the following statement is true:

CONJECTURE ()

If G is a second countable compact quantum group and 77, (G) = R then G is of
Kac type.

@ In other words, if 77 (G) = R then 77(G) = R.

@ We were able to prove this conjecture for several classes of compact
quantum groups.

P.M. SorTaN (KMMF) ALGEBRAS OF DISCRETE QUANTUM GROUPS, ETC. JuULy 8-12, 2024 24 /35



‘WHEN DOES THE CONJECTURE HOLD? QUANTUM GROUPS WITH SPECIAL REPRESENTATIONS

THEOREM
Let G be a compact quantum group which has a two-dimensional representation

whose quantum dimension is strictly larger then 2. Then conjecture (x) holds for
G.

@ This is done by proving that 77 (G) # R.

e This is achieved by first constructing a sequence of irreps {U"} ey of G such

that wn)
n . 1 INQ
) T TP and T%g <7(Un) dimq U™ diqu"> >0,

where I'(U™) and v(U") are the largest and smallest eigenvalue of the
modular matrix py» of U* and dim,U“ is its quantum dimension:
dim, U™ = Tr(pyn).

e Out of matrix elements of U™ we construct certain elements of

L*(G)® L*(G) which help prove that it is impossible that all scaling
automorphisms of G are inner.
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@ Let [ be a discrete quantum group.

@ Thus [ is the dual (in the sense of Pontriagin duality for locally compact
quantum groups) of a compact quantum group [.

@ We say that [ is type I if C“(f) is a C*-algebra of type I.

e Using the direct integral decomposition of Loo(f) and a corresponding
expression for h we can prove the following:

THEOREM

Let [ be a type I discrete quantum group. Then conjecture (x) holds for r.

e In fact we were able to show that if [ is not of Kac type then Tﬂm(f) is at most
countable.
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I.c.C.-TYPE CONDITIONS CLASSICAL VERSION

PROPOSITION

Let I' be a discrete group. Then the following are equivalent:
Q@ l'isi.c.c.,
Q@ L(T) is a factor,
@ AY(LI) A LI)® -+ ® L(I') = C1 for some neN,

nIl
Q@ AM(LI) A LN® -+ ® L(I) = C1 for all ne N,
nil
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I.c.C.-TYPE CONDITIONS QUANTUM VERSION

PROPOSITION
Let G be a locally compact quantum group and assume that

AM(L*(@G) " L*(G)® - ® L®(G) = C1

~ v

nIl
for some n € N. Then L*(G) is a factor.

DEFINITION
Let [ be a discrete quantum group. We say that [ is n-i.c.c. if

AY(LAD) A LD ® - ® L(T) = CL.
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I.c.C.-TYPE CONDITIONS BACK TO THE CONJECTURE

PROPOSITION

Let I be a discrete quantum group. If [ is n-i.c.c. for some n then [ is m-i.c.c. for
all natural m < n.

THEOREM
Let G be a second countable compact quantum group whose dual is 1-i.c.c. then
conjecture () holds for G.
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THEOREM

Let G be a second countable compact quantum group whose dual is 1-i.c.c. and
such that 77, (G) = R. Then G is of Kac type.

e We have 7° = Ad(b'!) for some positive self-adjoint operator b (Kallman).
@ Furthermore, for any x € L*(G) and any t € R

(b @b ") Ag(b")Ac(x)Ac(b™)(B" @ b') = (75, ® 75) A (7 (%)) = A(x),

so (bt @ b A(B) € Ag(L#(G)) ~ L?(G)® L?(G) = C1.
@ Thus (b~ ® b )A(b'!) = 21 for some scalars z;. Moreover t — z is a
continuous homomorphism, so z = Al for some \ > 0.

e Put B = \b. Then still 7¥ = Ad(B") and, additionally, Ag(B) = Bi* ® B! for
all teR.
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I.c.C.-TYPE CONDITIONS BACK TO THE CONJECTURE

THEOREM

Let G be a second countable compact quantum group whose dual is 1-i.c.c. and
such that 77, (G) = R. Then G is of Kac type.

@ Next we calculate

t+5 tra t+l
(h®id)Ag jBiSds _ (h®id) f (B @ B'S) ds — f h(B'*)B' ds
t— t-1 t-1

° Multiplying by 2n and taking lim we obtain h(BY)1 = h(BY)B!, so B = 1.
e It follows that 7 = id for all t.
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I.c.C.-TYPE CONDITIONS EXAMPLE: U;

@ Recall that Irr U}, = Z, * Z, with the two copies of Z, generated by the class

« of the defining representation and § = @.
@ For xeZ, ~Z, put

[ox [>T —1
Doy — 1P ¥ e 1
7 O pxz]].

@ Let Dn = max{DaB,n, D,Boz,n: DaZ,B,n}'

THEOREM

IfD,<1-— \/_ and 2(7=4Dn)Dn

2 2(1— Dn)21<\/—thenUFlSTllcc
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I.c.C.-TYPE CONDITIONS

THEOREM

Take n € N and write ¢ = max{“)\F*F — 1,

Tr((F*F)~!
A=/ B 1

((AF*F)~! — 1

} , Where

van+1e2+c)(1+ )t < L

then U} is n-i.c.c.
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I.c.C.-TYPE CONDITIONS QUESTIONS

© Are the n-i.c.c. conditions really different?

© Does the conjecture hold for all second countable compact quantum groups?
© Which type Il factors do we obtain?

© In particular are they the ITPFIy?
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I.C.C.-TYPE CONDITIONS QUESTIONS

Thank you for your attention
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