VON NEUMANN ALGEBRAS OF DISCRETE QUANTUM GROUPS, THEIR INVARIANTS AND THE I.C.C. CONDITION BANACH ALGEBRAS AND OPERATOR ALGEBRAS 2024

> Piotr M. Sołtan (based on joint work with **Jacek Krajczok**)

Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw

July 8-12, 2024

- 1 Von Neumann algebras of discrete groups
- 2 Compact (and discrete) guantum groups
- **3** Invariants related to $\tau^{\mathbb{G}}$ and $\sigma^{\mathbf{h}}$
- ONJECTURE ON THE CHARACTERIZATION OF THE KAC PROPERTY
- **5** When does the conjecture hold?
- **6** I.C.C.-TYPE CONDITIONS

- Let Γ be a discrete group and let $\Gamma \ni \gamma \mapsto \lambda_{\gamma} \in B(\ell^{2}(\Gamma))$ be the regular representation of Γ .
- The von Neumann algebra generated by $\{\lambda_{\gamma} \mid \gamma \in \Gamma\}$ is the **group von** Neumann algebra of Γ .
- Notation: $L(\Gamma)$, $vN(\Gamma)$, ...
- The group von Neumann algebra of Γ is a factor iff Γ is a **i.c.c. group**, i.e. all of its non-trivial conjugacy classes are infinite.
- The group von Neumann algebra always admits a faithful tracial state:

$$x \longmapsto \langle \delta_e | x \delta_e \rangle.$$

 $\bullet\,$ In particular group von Neumann algebras of i.c.c. groups are always factors of type II_1.

• If Γ happens to be abelian, the group von Neumann algebra of Γ is naturally isomorphic to $L^{\infty}(\widehat{\Gamma})$, where $\widehat{\Gamma}$ is the Pontriagin dual of Γ :

$$L(\Gamma) = L^{\infty}(\widehat{\Gamma}).$$

- In other words the von Neumann algebras of discrete groups are all of the form $L^{\infty}(\mathbb{G})$ with \mathbb{G} a compact quantum group which additionally is **cocommutative**.
- \bullet As we already mentioned, the possible factors we can obtain this way are all of type $II_1.$
- How about more general compact quantum groups?

 $\begin{array}{l} D_{AB} = \text{Discrete abelian, } D_{CL} = \text{Discrete classical, } D_Q = \text{Discrete quantum, } \\ F_{AB} = \text{Finite abelian, } F_{CL} = \text{Finite classical, } F_Q = \text{Finite quantum, } \\ \text{LCQG} = \text{Locally compact quantum, } C_{AB} = \text{Compact abelian, } \\ C_{CL} = \text{Compact classical, } C_Q = \text{Compact quantum.} \end{array}$

DEFINITION

A compact quantum group is an object $\mathbb G$ described by

- \bullet a unital C*-algebra $\mathrm{C}(\mathbb{G})$ (usually non-abelian)
- a unital *-homomorphism $\Delta \colon C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ s.t. $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$ and $\Delta(C(\mathbb{G}))(\mathbb{1} \otimes C(\mathbb{G}))$ and $(C(\mathbb{G}) \otimes \mathbb{1})\Delta(C(\mathbb{G}))$ are dense in $C(\mathbb{G}) \otimes C(\mathbb{G})$.

EXAMPLES

- Every compact group *G* is a compact quantum group $\mathbb{G} = G$ in the sense that $C(\mathbb{G}) = C(G)$ and $\Delta \colon C(G) \to C(G) \otimes C(G) = C(G \times G)$ is $\Delta(f)(x, y) = f(xy)$.
- **2** Every discrete group Γ gives rise to a compact quantum group $\widehat{\Gamma}$: $C(\widehat{\Gamma}) = C^*_{red}(\Gamma)$ with $\Delta(\lambda_{\gamma}) = \lambda_{\gamma} \otimes \lambda_{\gamma}$.

So Fix $q \in [-1, 1[\setminus \{0\} \text{ and let } C(SU_q(2)) \text{ be the } C^*\text{-algebra generated by } \alpha, \gamma \text{ s.t.}$

$$\alpha\gamma = q\gamma\alpha, \quad \alpha^*\alpha + \gamma^*\gamma = \mathbb{1} = \alpha\alpha^* + q^2\gamma^*\gamma, \quad \gamma^*\gamma = \gamma\gamma^*.$$

Then define $\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma$ and $\Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma$.

THEOREM (S.L. WORONOWICZ)

Let \mathbb{G} be a compact quantum group. Then there exists a unique state **h** on $C(\mathbb{G})$ such that

$$(\mathbf{h} \otimes \mathrm{id})\Delta(a) = (\mathrm{id} \otimes \mathbf{h})\Delta(a) = \mathbf{h}(a)\mathbb{1}$$

for all $a \in C(\mathbb{G})$.

- If $\mathbb{G} = G$ with G a compact group then **h** on is given by integration with respect to the normalized Haar measure.
- In general we call **h** the **Haar measure** or the **Haar state** of G.
- If Γ is a discrete group then **h** on $\hat{\Gamma}$ is the trace mentioned earlier.
- The von Neumann algebra $L^{\infty}(\mathbb{G})$ is defined to be the strong closure of the image of $C(\mathbb{G})$ in the GNS representation defined by **h**.

THEOREM (J. KRAJCZOK & P.M.S.)

- For each λ ∈]0, 1[there exist uncountably many pairwise non-isomorphic compact quantum groups G such that L[∞](G) is the injective factor of type III_λ.
- **2** There exists uncountably many compact quantum groups \mathbb{G} such that $L^{\infty}(\mathbb{G})$ are pairwise non-isomorphic injective factors of type III₀.
- **③** There exists uncountably many pairwise non-isomorphic compact quantum groups \mathbb{G} such that $L^{\infty}(\mathbb{G})$ is the injective factor of type III₁.
- There does not exist a compact quantum group \mathbb{G} with $L^{\infty}(\mathbb{G}) = N \oplus B(\ell^2)$, where *N* is any von Neumann algebra or the zero vector space.

- In order to explain our constructions we need to introduce more structure.
- On $L^{\infty}(\mathbb{G})$ we have the modular group σ^{h} of the Haar measure h.
- Furthermore there exists another one parameter group τ^G of automorphisms of L[∞](G) called the scaling group.
- An exact description of this group requires a deeper dive into the theory, but for our present purposes the following information suffices:
 - the scaling group acts by quantum group automorphisms: $\Delta \circ \tau_t^{\mathbb{G}} = (\tau_t^{\mathbb{G}} \otimes \tau_t^{\mathbb{G}}) \circ \Delta$,
 - the scaling and modular automorphisms commute,
 - the Haar measure is tracial iff $\tau_t^{\mathbb{G}} = \text{id}$ for all t (in this case we say that \mathbb{G} is of **Kac type**).

• We begin with the following theorem:

THEOREM (J. KRAJCZOK, M. WASILEWSKI)

Fix $\nu \in \mathbb{R} \setminus \{0\}$, $q \in]-1, 1[\setminus \{0\}$ and let $r \in \mathbb{Q}$ act on $L^{\infty}(SU_q(2))$ by $\tau_{\nu r}^{SU_q(2)}$. Then the compact quantum group $\mathbb{H}_{\nu,q} = \mathbb{Q} \bowtie SU_q(2)$ satisfies

- $L^{\infty}(\mathbb{H}_{\nu,q})$ is injective (because $\mathbb{H}_{\nu,q}$ is co-amenable),
- if $\nu \log |q| \notin \pi \mathbb{Q}$ then $L^{\infty}(\mathbb{H}_{\nu,q})$ is a factor,
- since there is a tracial weight on $L^{\infty}(SU_q(2))$ invariant under the scaling group, the algebra $L^{\infty}(\mathbb{H}_{\nu,q})$ is not of type III.

Furthermore, assuming $\nu \log |q| \notin \pi \mathbb{Q}$, we have

•
$$\tau_t^{\mathbb{H}_{\nu,q}}$$
 is trivial iff $t \in \frac{\pi}{\log |q|}\mathbb{Z}$, so $\mathbb{H}_{\nu,q}$ is not of Kac type,

• consequently $L^{\infty}(\mathbb{H}_{\nu,q})$ is a factor of type II_{∞} .

• Our examples are constructed as infinite products

$$\mathbb{G} = \bigotimes_{n=1}^{\infty} \mathbb{H}_{q_n,\nu_n}$$

for certain sequences of parameters $(q_n)_{n\in\mathbb{N}}$ and $(\nu_n)_{n\in\mathbb{N}}$ s.t. $\nu_n \log |q_n| \notin \pi \mathbb{Q}$.

- Assume that one pair (q_n, ν_n) is repeated infinitely many times.
- Then $L^{\infty}(\mathbb{G})$ is an injective factor of type III and the invariant $T(L^{\infty}(\mathbb{G}))$ is given by

$$T(L^{\infty}(\mathbb{G})) = \left\{ t \in \mathbb{R} \, \bigg| \, \sum_{n=1}^{\infty} \left(1 - \frac{1 - q_n^2}{\left| 1 - \left| q_n \right|^2 + 2it \right|} \right) < +\infty \right\}.$$

- If $(\nu_n, q_n) = (\nu, q)$ for all n and some $(\nu, q) \in (\mathbb{R} \setminus \{0\}) \times (]-1, 1[\setminus \{0\})$ then $L^{\infty}(\mathbb{G})$ is the injective factor of type $III_{|q|^2}$.
- Assume that there are two subsequences $(q_{n_p})_{p\in\mathbb{N}}$ and $(q_{m_p})_{p\in\mathbb{N}}$ such that $\{n_p \mid p \in \mathbb{N}\} \cap \{m_p \mid p \in \mathbb{N}\} = \emptyset$ and $q_{n_p} \xrightarrow[p \to \infty]{p \to \infty} r_1$, $q_{m_p} \xrightarrow[p \to \infty]{p \to \infty} r_2$ for some $r_1, r_2 \in]-1, 1[\setminus\{0\}$ such that $\frac{\pi}{\log |r_1|}\mathbb{Z} \cap \frac{\pi}{\log |r_2|}\mathbb{Z} = \{0\}$. Then $L^{\infty}(\mathbb{G})$ is the injective factor of type III_1.

• Now for $s \in]0, 1[$ let

$$t_s = \sum_{p=1}^{\infty} \frac{\lfloor p^{1-s} \rfloor}{p!},$$

where [x] denotes the integer part of $x \in \mathbb{R}_{\geq 0}$.

Define

$$l_k = \lfloor \exp(2\pi k!)k^{2s-1} \rfloor, \qquad k \in \mathbb{N}.$$

• Let $(q_n)_{n \in \mathbb{N}}$ be the sequence

$$(\underbrace{\exp(-\pi 1!),\ldots,\exp(-\pi 1!)}_{l_1 \text{ times}},\underbrace{\exp(-\pi 2!),\ldots,\exp(-\pi 2!)}_{l_2 \text{ times}},\ldots)$$

and for each *n* choose $\nu_n \in \mathbb{R} \setminus \{0\}$ such that $\nu_n \log |q_n| \notin \mathbb{Q}$.

- Then, with $\mathbb G$ as before, $L^\infty(\mathbb G)$ is an injective factor of type ${\rm III}_0$ and its invariant T satisfies
 - $\mathbb{Q} \subset T(L^{\infty}(\mathbb{G}))$,
 - $t_{s'} \in T(L^{\infty}(\mathbb{G}))$ if and only if s' > s.

- We also analyzed examples of the form $\mathbb{K} = \Gamma \bowtie \mathbb{G}$, with \mathbb{G} constructed as an infinite tensor product as before and Γ a countable subgroup of \mathbb{R} (with discrete topology) acting via the scaling automorphisms.
- This way we can control which scaling automorphisms of the resulting quantum group are inner.
- We then used the set

$$T^{\tau}_{\mathrm{Inn}}(\mathbb{K}) = \left\{ t \in \mathbb{R} \, \big| \, \tau^{\mathbb{K}}_t \in \mathrm{Inn}(L^{\infty}(\mathbb{K})) \right\}$$

to distinguish between the different examples.

• With $\mathbb{G} = \bigotimes_{n=1}^{\infty} \mathbb{H}_{\nu,\sqrt{\lambda}}$ (and e.g. $\nu = \frac{2\pi^2}{\log \lambda}$) the algebra $L^{\infty}(\mathbb{K})$ is the injective factor of type III_{λ} and $T_{\text{Inn}}^{\tau}(\mathbb{K}) = \Gamma + \frac{2\pi}{\log \lambda}\mathbb{Z}$.

• For general locally compact quantum groups we worked with the following invariants:

DEFINITION

$$\begin{split} T^{\tau}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} = \mathrm{id} \right\}, \\ T_{\mathrm{Inn}}^{\tau}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} \in \mathrm{Inn}\left(L^{\infty}(\mathbb{G})\right) \right\}, \\ T_{\overline{\mathrm{Inn}}}^{\tau}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \tau_t^{\mathbb{G}} \in \overline{\mathrm{Inn}}\left(L^{\infty}(\mathbb{G})\right) \right\}, \\ T^{\sigma}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \sigma_t^{\varphi} = \mathrm{id} \right\}, \\ T_{\mathrm{Inn}}^{\sigma}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \sigma_t^{\varphi} \in \mathrm{Inn}\left(L^{\infty}(\mathbb{G})\right) \right\}, \\ T_{\overline{\mathrm{Inn}}}^{\sigma}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \sigma_t^{\varphi} \in \overline{\mathrm{Inn}}\left(L^{\infty}(\mathbb{G})\right) \right\}, \\ \mathrm{Mod}(\mathbb{G}) &= \left\{ t \in \mathbb{R} \mid \delta^{\mathrm{i}t} = 1 \right\}, \end{split}$$

where δ is the modular element of \mathbb{G} .

EXAMPLE: THE QUANTUM E(2) GROUP

Let $\mathbb{G} = \mathbb{E}_q(2)$ for some $q \in]0, 1[$. Then we have

$$T^{\tau}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\sigma}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}) = T^{\sigma}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\widehat{\mathbb{G}}) = \frac{\pi}{\log q}\mathbb{Z},$$
$$T^{\sigma}_{\mathrm{Inn}}(\mathbb{G}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\mathrm{Inn}}}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\mathbb{G}) = \mathbb{R}.$$

Example: Quantum "az + b" groups

Let \mathbb{G} be the quantum "az + b" group for the deformation parameter q in one of the three cases:

1
$$q = e^{\frac{2\pi i}{N}}$$
 with $N = 6, 8, ...,$
2 $q \in]0, 1[,$
3 $q = e^{1/\rho}$ with $\operatorname{Re} \rho < 0$, $\operatorname{Im} \rho = \frac{N}{2\pi}$ with $N = \pm 2, \pm 4, ...$
Then

$$T_{\mathrm{Inn}}^{\tau}(\mathbb{G}) = T_{\overline{\mathrm{Inn}}}^{\tau}(\mathbb{G}) = T_{\mathrm{Inn}}^{\tau}(\widehat{\mathbb{G}}) = T_{\overline{\mathrm{Inn}}}^{\tau}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\sigma}(\mathbb{G}) = T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = T_{\mathrm{Inn}}^{\sigma}(\widehat{\mathbb{G}}) = \mathbb{R},$$
$$T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}) = T^{\sigma}(\mathbb{G}) = T^{\sigma}(\widehat{\mathbb{G}}) = \mathrm{Mod}(\mathbb{G}) = \mathrm{Mod}(\widehat{\mathbb{G}}) = \begin{cases} \{0\} & \text{in cases } \P \text{ and } \$}{\frac{\pi}{\log q}\mathbb{Z}} & \text{in case } \$ \end{cases}.$$

- The sets $T^{\circ}_{\bullet}(\mathbb{G})$ are subgroups of \mathbb{R} and are isomorphism invariants of the quantum group \mathbb{G} .
- $T^{\tau}(\mathbb{G}) = T^{\tau}(\widehat{\mathbb{G}}).$
- $T^{\bullet}(\mathbb{G}), T^{\bullet}_{\overline{\operatorname{Inn}}}(\mathbb{G}), \text{ and } \operatorname{Mod}(\mathbb{G}) \text{ are closed.}$
- $T^{\sigma}(\mathbb{G})$, $T^{\sigma}_{Inn}(\mathbb{G})$, and $T^{\sigma}_{\overline{Inn}}(\mathbb{G})$ are the same regardless of which Haar measure we choose.
- *T*^σ_{Inn}(𝔅) is equal to the Connes' invariant *T*(*L*[∞](𝔅)). Consequently, *T*^σ_{Inn}(𝔅) depends only on the von Neumann algebra *L*[∞](𝔅). It is also the case for *T*^σ_{Inn}(𝔅).

For any locally compact quantum group ${\mathbb G}$ we have

$$T^{\sigma}(\mathbb{G}) = T^{\tau}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$
$$T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\operatorname{Inn}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$
$$T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\operatorname{Inn}}}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}),$$
$$\operatorname{Mod}(\mathbb{G}) \cap \operatorname{Mod}(\widehat{\mathbb{G}}) \subset \frac{1}{2}T^{\tau}(\mathbb{G}).$$

- The first equality above together with T^τ(G) = T^τ(G) reduces the list to 11 (invariants T^σ(G), T^σ(G) and T^τ(G) are determined by the remaining ones).
- If \mathbb{G} is compact then $\operatorname{Mod}(\mathbb{G}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = \mathbb{R}.$
- If additionally $L^{\infty}(\mathbb{G})$ is semifinite then $T^{\sigma}_{\text{Inn}}(\mathbb{G}) = T^{\sigma}_{\overline{\text{Inn}}}(\mathbb{G}) = \mathbb{R}$.

EXAMPLE: U_F^+

Let \mathbb{G} be the quantum group U_F^+ . Then $L^{\infty}(\mathbb{G})$ is a full factor, so $\operatorname{Inn}(L^{\infty}(\mathbb{G})) = \overline{\operatorname{Inn}}(L^{\infty}(\mathbb{G}))$ (Vaes).

• \mathbb{G} is compact, so $\operatorname{Mod}(\mathbb{G}) = T^{\tau}_{\operatorname{Inn}}(\widehat{\mathbb{G}}) = T^{\tau}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = T^{\sigma}_{\overline{\operatorname{Inn}}}(\widehat{\mathbb{G}}) = \mathbb{R}.$

• If \mathbb{G} is not of Kac type ($\lambda F^*F \neq 1$) then

$$T^{\tau}_{\overline{\mathrm{Inn}}}(\mathbb{G}) = T^{\tau}_{\mathrm{Inn}}(\mathbb{G}) = T^{\tau}(\mathbb{G}) = \bigcap_{\Lambda \in \mathrm{Sp}(F^*F \otimes (F^*F)^{-1}) \setminus \{1\}} \frac{2\pi}{\log(\Lambda)} \mathbb{Z},$$

while
$$\operatorname{Mod}(\widehat{\mathbb{G}}) = \bigcap_{\Lambda \in \operatorname{Sp}(F^*F) \setminus \{\lambda^{-1}\}} \frac{2\pi}{\log \lambda + \log(\Lambda)} \mathbb{Z}$$
, where $\lambda = \sqrt{\frac{\operatorname{Tr}((F^*F)^{-1})}{\operatorname{Tr}(F^*F)}}$.

• If \mathbb{G} is not of Kac type then $L^{\infty}(\mathbb{G})$ is a type III_{μ} factor for some $\mu \in]0, 1]$ and $T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) = T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) = \frac{2\pi}{\log \mu}\mathbb{Z}$ (otherwise $T^{\sigma}_{\overline{\operatorname{Inn}}}(\mathbb{G}) = T^{\sigma}_{\operatorname{Inn}}(\mathbb{G}) = \mathbb{R}$).

- Given a semisimple compact connected Lie group *G* one can form a family of compact quantum groups $\{G_q\}_{q\in]0,1[}$ (this procedure generalizes the passage $SU(2) \mapsto SU_q(2)$).
- Since G_q is compact we again have

$$\mathrm{Mod}(G_q) = T_{\mathrm{Inn}}^{\tau}(\widehat{G_q}) = T_{\overline{\mathrm{Inn}}}^{\tau}(\widehat{G_q}) = T_{\mathrm{Inn}}^{\sigma}(\widehat{G_q}) = T_{\overline{\mathrm{Inn}}}^{\sigma}(\widehat{G_q}) = \mathbb{R}.$$

Furthermore T^σ_{Inn}(G_q) = T^σ_{Inn}(G_q) = ℝ because C(G_q) is a C*-algebra of type I.
We have T^τ(G_q) = π/(10g a) = π/(1

$$T_{\operatorname{Inn}}^{\tau}(G_q) = T_{\overline{\operatorname{Inn}}}^{\tau}(G_q) = \operatorname{Mod}(\widehat{G_q}) = \frac{\pi}{\Upsilon_{\Phi} \log q} \mathbb{Z},$$

where Υ_{Φ} is a positive integer determined by the root system Φ of the complexified Lie algebra of *G* (see next two slides).

• Let $\Phi = \Phi_1 \cup \cdots \cup \Phi_l$ be the decomposition of Φ into irreducible parts. Then

,

$$\Upsilon_{\Phi} = \gcd(\Upsilon_{\Phi_1}, \dots, \Upsilon_{\Phi_l}).$$

• We have

type	group	range of n	Υ_{Φ}	$T^{ au}_{\mathrm{Inn}}(G_{q})$
A_n	$\mathrm{SU}(n+1)$	$n \ge 1$ odd	1	$\frac{\pi}{\log q}\mathbb{Z}$
		$n \ge 1$ even	2	$\frac{\pi}{2\log q}\mathbb{Z}$
B_n	$\operatorname{Spin}(2n+1)$	$n \geqslant 2 \mathrm{odd}$	1	$\frac{\pi}{\log q}\mathbb{Z}$
		$n \ge 2$ even	2	$\frac{\pi}{2\log q}\mathbb{Z}$
C_n	$\operatorname{Sp}(2n)$	$n \ge 3$	2	$\frac{\pi}{2\log q}\mathbb{Z}$
D_n	$\operatorname{Spin}(2n)$	$n \ge 4$ odd	2	$\frac{\pi}{2\log q}\mathbb{Z}$
		$n \ge 4$ even	1	$\frac{\pi}{\log q}\mathbb{Z}$

• And for the exceptional cases we have

• type
$$E_6$$
: $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}$,

• type
$$E_7$$
: $\Upsilon_{\Phi} = 1$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{\log q}\mathbb{Z}$,

• type
$$E_8$$
: $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi}{2\log q}\mathbb{Z}$,

• type
$$F_4$$
: $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi^{-1}}{2\log q}\mathbb{Z}$,

• type
$$G_2$$
: $\Upsilon_{\Phi} = 2$ and $T_{\text{Inn}}^{\tau}(G_q) = \frac{\pi^{-1}}{2\log q}\mathbb{Z}$.

- Consider the compact quantum group $SU_q(3)$.
- Then $\Upsilon_{\Phi} = 2$, so

$$T_{\mathrm{Inn}}^{\tau}(\mathrm{SU}_q(3)) = \frac{\pi}{2\log q}\mathbb{Z},$$

while $T^{\tau}(SU_q(3)) = \frac{\pi}{\log q} \mathbb{Z}$.

- This means that there are non-trivial inner scaling automorphisms.
- $SU_q(3)$ does not have non-trivial one-dimensional representations, so these scaling automorphisms are not implemented by a group-like element.

PROPOSITION

Let *G* be such that $\Upsilon_{\Phi} = 2$. Then a unitary implementing the scaling automorphism for $t = \frac{\pi}{2 \log q}$ does not belong to $C(G_q)$. In particular, the restriction of this automorphism to $C(G_q)$ is not inner.

• We saw that we do not always have the equality

 $T^{\tau}(\mathbb{G}) = T^{\tau}_{\operatorname{Inn}}(\mathbb{G}).$

• However, all compact quantum groups we considered so far (e.g. G_q or U_F^+) belong to the class for which the following statement is true:

Conjecture (*)

If \mathbb{G} is a second countable compact quantum group and $T^{\tau}_{Inn}(\mathbb{G}) = \mathbb{R}$ then \mathbb{G} is of Kac type.

- In other words, if $T_{\text{Inn}}^{\tau}(\mathbb{G}) = \mathbb{R}$ then $T^{\tau}(\mathbb{G}) = \mathbb{R}$.
- We were able to prove this conjecture for several classes of compact quantum groups.

Let $\mathbb G$ be a compact quantum group which has a two-dimensional representation whose quantum dimension is strictly larger then 2. Then conjecture (*) holds for $\mathbb G.$

- This is done by proving that $T_{Inn}^{\tau}(\mathbb{G}) \neq \mathbb{R}$.
- This is achieved by first constructing a sequence of irreps $\{U^n\}_{n\in\mathbb{N}}$ of \mathbb{G} such that

$$\Gamma(U^n) \xrightarrow[n \to \infty]{} + \infty \quad \text{and} \quad \inf_{n \in \mathbb{N}} \left(\frac{1}{\gamma(U^n) \dim_q U^n} \frac{\Gamma(U^n)}{\dim_q U^n} \right) > 0,$$

where $\Gamma(U^n)$ and $\gamma(U^n)$ are the largest and smallest eigenvalue of the modular matrix ρ_{U^n} of U^{α} and $\dim_q U^{\alpha}$ is its quantum dimension: $\dim_q U^n = \operatorname{Tr}(\rho_{U^n})$.

Out of matrix elements of Uⁿ we construct certain elements of L[∞](G) ⊗ L[∞](G) which help prove that it is impossible that all scaling automorphisms of G are inner.

- Thus \mathbb{T} is the dual (in the sense of Pontriagin duality for locally compact quantum groups) of a compact quantum group $\widehat{\mathbb{T}}$.
- We say that Γ is **type** I if $C^u(\widehat{\Gamma})$ is a C*-algebra of type I.
- Using the direct integral decomposition of $L^{\infty}(\widehat{\Gamma})$ and a corresponding expression for *h* we can prove the following:

Let \mathbb{F} be a type I discrete quantum group. Then conjecture (*) holds for $\widehat{\mathbb{F}}$.

• In fact we were able to show that if $\hat{\mathbb{F}}$ is not of Kac type then $T_{\text{Inn}}^{\tau}(\hat{\mathbb{F}})$ is at most countable.

Let Γ be a discrete group. Then the following are equivalent:

- **Ο** Γ is i.c.c.,
- **2** $L(\Gamma)$ is a factor,

a
$$\Delta_{\widehat{\Gamma}}^{(n)}(L(\Gamma))' \cap \underbrace{L(\Gamma) \overline{\otimes} \cdots \overline{\otimes} L(\Gamma)}_{n+1} = \mathbb{C}\mathbb{1}$$
 for some $n \in \mathbb{N}$.
 a $\Delta_{\widehat{\Gamma}}^{(n)}(L(\Gamma))' \cap \underbrace{L(\Gamma) \overline{\otimes} \cdots \overline{\otimes} L(\Gamma)}_{n+1} = \mathbb{C}\mathbb{1}$ for all $n \in \mathbb{N}$.

Let $\ensuremath{\mathbb{G}}$ be a locally compact quantum group and assume that

$$\Delta^{(n)}_{\mathbb{G}} \big(L^{\infty}(\mathbb{G}) \big)' \cap \underbrace{L^{\infty}(\mathbb{G}) \overline{\otimes} \cdots \overline{\otimes} L^{\infty}(\mathbb{G})}_{n+1} = \mathbb{C}\mathbb{1}$$

for some $n \in \mathbb{N}$. Then $L^{\infty}(\mathbb{G})$ is a factor.

DEFINITION

Let \mathbb{F} be a discrete quantum group. We say that \mathbb{F} is *n*-i.c.c. if

$$\Delta_{\widehat{\mathbb{F}}}^{(n)} \left(L^{\infty}(\widehat{\mathbb{F}}) \right)' \cap \underbrace{L^{\infty}(\widehat{\mathbb{F}}) \overline{\otimes} \cdots \overline{\otimes} L^{\infty}(\widehat{\mathbb{F}})}_{n+1} = \mathbb{C}\mathbb{1}.$$

Let \mathbb{F} be a discrete quantum group. If \mathbb{F} is *n*-i.c.c. for some *n* then \mathbb{F} is *m*-i.c.c. for all natural $m \leq n$.

THEOREM

Let $\mathbb G$ be a second countable compact quantum group whose dual is 1-i.c.c. then conjecture (*) holds for $\mathbb G.$

Let \mathbb{G} be a second countable compact quantum group whose dual is 1-i.c.c. and such that $T_{\text{Inn}}^{\tau}(\mathbb{G}) = \mathbb{R}$. Then \mathbb{G} is of Kac type.

- We have $au_t^{\mathbb{G}} = \operatorname{Ad}(b^{\mathrm{i}t})$ for some positive self-adjoint operator b (Kallman).
- Furthermore, for any $x \in L^{\infty}(\mathbb{G})$ and any $t \in \mathbb{R}$

$$(\boldsymbol{b}^{-\mathrm{i}t}\otimes\boldsymbol{b}^{-\mathrm{i}t})\Delta_{\mathbb{G}}(\boldsymbol{b}^{\mathrm{i}t})\Delta_{\mathbb{G}}(\boldsymbol{x})\Delta_{\mathbb{G}}(\boldsymbol{b}^{-\mathrm{i}t})(\boldsymbol{b}^{\mathrm{i}t}\otimes\boldsymbol{b}^{\mathrm{i}t}) = (\tau_{-t}^{\mathbb{G}}\otimes\tau_{-t}^{\mathbb{G}})\Delta_{\mathbb{G}}(\tau_{t}^{\mathbb{G}}(\boldsymbol{x})) = \Delta(\boldsymbol{x}),$$

so $(\boldsymbol{b}^{-\mathrm{i}t} \otimes \boldsymbol{b}^{-\mathrm{i}t}) \Delta(\boldsymbol{b}^{\mathrm{i}t}) \in \Delta_{\mathbb{G}}(L^{\infty}(\mathbb{G}))' \cap L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G}) = \mathbb{C}\mathbb{1}.$

- Thus $(b^{-it} \otimes b^{-it})\Delta(b^{it}) = z_t \mathbb{1}$ for some scalars z_t . Moreover $t \mapsto z_t$ is a continuous homomorphism, so $z_t = \lambda^{it}$ for some $\lambda > 0$.
- Put $B = \lambda b$. Then still $\tau_t^{\mathbb{G}} = \operatorname{Ad}(B^{it})$ and, additionally, $\Delta_{\mathbb{G}}(B^{it}) = B^{it} \otimes B^{it}$ for all $t \in \mathbb{R}$.

Let \mathbb{G} be a second countable compact quantum group whose dual is 1-i.c.c. and such that $T_{\text{Inn}}^{\tau}(\mathbb{G}) = \mathbb{R}$. Then \mathbb{G} is of Kac type.

• Next we calculate

$$(\boldsymbol{h}\otimes\mathrm{id})\Delta_{\mathbb{G}}\begin{pmatrix}t+\frac{1}{n}\\\int\\t-\frac{1}{n}B^{\mathrm{i}s}\,\mathrm{d}s\end{pmatrix} = (\boldsymbol{h}\otimes\mathrm{id})\int_{t-\frac{1}{n}}^{t+\frac{1}{n}}(B^{\mathrm{i}s}\otimes B^{\mathrm{i}s})\,\mathrm{d}s = \int_{t-\frac{1}{n}}^{t+\frac{1}{n}}\boldsymbol{h}(B^{\mathrm{i}s})B^{\mathrm{i}s}\,\mathrm{d}s$$

- Multiplying by 2n and taking $\lim_{n\to\infty}$ we obtain $h(B^{it})\mathbb{1} = h(B^{it})B^{it}$, so $B = \mathbb{1}$.
- It follows that $\tau_t^{\mathbb{G}} = \text{id for all } t$.

- Recall that Irr U⁺_F = Z₊ ★ Z₊ with the two copies of Z₊ generated by the class *α* of the defining representation and β = *α*.
- For $x \in \mathbb{Z}_+ \star \mathbb{Z}_+$ put

$$D_{x,n} = egin{cases} \|
ho_x^2 - \mathbbm{1} \| rac{\|
ho_x \|^{2(n+1)} - 1}{\|
ho_x \|^2 - 1} &
ho_x
eq \mathbbm{1} \ 0 &
ho_x = \mathbbm{1} \end{cases}.$$

• Let
$$D_n = \max\{D_{\alpha\beta,n}, D_{\beta\alpha,n}, D_{\alpha^2\beta,n}\}.$$

If
$$D_n < 1 - \frac{1}{\sqrt{2}}$$
 and $\frac{2(7-4D_n)D_n}{2(1-D_n)^2-1} < \frac{1}{\sqrt{n+1}}$ then $\widehat{U_F^+}$ is *n*-i.c.c.

Take
$$n \in \mathbb{N}$$
 and write $c = \max\left\{\|\lambda F^*F - \mathbb{1}\|, \|(\lambda F^*F)^{-1} - \mathbb{1}\|\right\}$, where $\lambda = \sqrt{\frac{\operatorname{Tr}((F^*F)^{-1})}{\operatorname{Tr}(F^*F)}}$. If $\sqrt{n}(n+1)c(2+c)(1+c)^{4+6n} < \frac{1}{72}$ then $\widehat{U_F^+}$ is n-i.c.c.

P.M. SOŁTAN (KMMF)

- Are the *n*-i.c.c. conditions really different?
- ② Does the conjecture hold for all second countable compact quantum groups?
- **③** Which type III_0 factors do we obtain?
- **(4)** In particular are they the ITPFI_2 ?

Thank you for your attention