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THE GROUP SU(2) SU(2) AS A TOPOLOGICAL GROUP

@ SU(2) is the group of unitary 2 x 2 matrices with determinant 1.
@ We have

SU(2) = {{Ccl —ac] ‘a,ce C, |al® + |c* = 1}.

e Writing a = x; + ixp and ¢ = x3 + ix4, we immediately find that SU(2) = S® as
topological spaces (even as differential manifolds).

@ Clearly the group operations

(¢ <He Z])—
I

are continuous (in fact smooth).

aa’ —¢c — (ca’ +ac’)
ca +ac aa’ —c¢c

and
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THE GROUP SU(2) SU(2) AS A TOPOLOGICAL GROUP

It is known that a compact space (like SU(2)) can be completely described by
its Banach =x-algebra of continuous functions (with pointwise multiplication,
supremum norm and involution f — f).

@ Thus the study of SU(2) is equivalent to the study of the Banach algebra

C(SU(2)).
Let o and ~ be the elements of C(SU(2)) defined by
a —c¢ a —c¢
a: SU(Z)S{C a}»—»ae(c, v SU(2)9[C a]%ce(c.

Furthermore let Pol(SU(2)) be the x-subalgebra of C(SU(2)) generated by «
and ~.

@ Pol(SU(2)) contains the unit because a*« + y*y = 1.
@ By the Stone-Weierstrass theorem Pol(SU(2)) is dense in C(SU(2)).

P.M. SOLTAN (KMMF) COMPACT AND DISCRETE QUANTUM GROUPS SEPTEMBER 2, 2024 4/31



THE GROUP SU(2) SU(2) AS A TOPOLOGICAL GROUP

@ The multiplication map SU(2) x SU(2) — SU(2) can be transferred to C(SU(2))
like this
C(SU(2)) af — A(f) € C(SU(2) x SU(2)),

where
A(f)(A,B) = f(AB), A, Be SU(2).

e Since C(SU(2) x SU(2)) = C(SU(2)) ® C(SU(2)) (completed tensor product) we
obtain A: C(SU(2)) — C(SU(2)) ® C(SU(2)).

o It is easy to see that A is a unital *-homomorphism of Banach algebras (in
fact it is isometric).

@ Associativity of multiplication in SU(2) implies the coassociativity of A:
(A®id) o A = (Id® A) o A.

@ A is called the comultiplication.
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THE GROUP SU(2) SU(2) AS A TOPOLOGICAL GROUP

@ Since for

a -¢ a —-c
A:[c a] and B:[c’ E]

B [aa’ —¢c —(cd + ac’)}
- 9

we have
ca'+ac  aa’ —cc
the functions A(a) and A(y) (of two variables) are equal

Ala) =a®a—-7"®y and A@y)=7@a+a’®7.

Ak
o If we set u = [3 7* then u is a unitary element of

Mato (C(SU(2))) = Mato(C) ® C(SU(2)). Moreover, for any i,j we have

Aul,J Zu1k®uk_]
k=1
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THE GROUP SU(2) SU(2) AS A TOPOLOGICAL GROUP

@ The fact that SU(2) is a group (every element is invertible) can be encoded in
a slightly counter-intuitive way: the multiplication obeys cancellation laws
from both sides:

(ABzAC =>(B=C) and (BA=CA)=><B=C>

for any A, B, C e SU(2).
@ On the level of C(SU(2)) and A this translates to the fact that the sets

{A(f1®g)|f.ge C(SU2))} and {(f®1)A(g)|f,g¢e C(SU2))}

are linearly dense in C(SU(2)) ® C(SU(2)).
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@ How to see the density of {A(f)(1®g)|f,ge C(SU(2))}?
@ Let us again consider the unitary matrix

w— [?y‘ ‘QZ*] & Mata(C(SU(2))) = Mata(C) ® C(SU(2)).

@ Equation () says that (id ® A)u = ujouy3, where

Uy = [a@]l -1

1I®a —1®~v*
V@1 a*®]1] and ulg—[ ]

1®y 1®a*

e Thus elements of the matrix u;5 = ((id ® A)u)uj, belong to
{ANH(1®g)|f,ge C(SUQ2))}.
o It follows that for any f € C(SU(2)) the elements

a®f,7f,a* ®f, v ®f
belong to {A(f)(1®g)|f,g¢e C(SU2))}.
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THE GROUP SU(2) SU(2) AS A TOPOLOGICAL GROUP

@ We can try the same game with the matrix

a2 —04’7* —’Y*Oé 7*2

oy aa’ —’Y*’Y _,y*a*
HOU= e —y* afa —aty
72 o a*,y a*z

to find that

a2 ®f7 _a’y* ®f’ —’y*a ®f7 7*2 ®f7 ary ®f7 aa* ®f7 _’Y*/y ®f7 —’Y*O[* ®f7
Yo ®fa _77* ®f7 Oé*Oé ®f? _a*fy* ®f? '72 ®f7 o ®f7 a*7 ®fa a*z ®f

belong to {A(f)(1®g)|f,g € C(SU(2))} for any f.

e Continuing along these lines we can show that for any P € Pol(SU(2)) and for
any f € C(SU(2)) we have P® f € {A(f)(1®g)|f,g¢e C(SU(2))}.
P.M. SOLTAN (KMMF)
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THE GROUP SU(2) DEFORMATION

QUESTION

Can SU(2) be “deformed” in the sense that there exists other compact groups
which are “close” to SU(2) in some sense (perhaps forming a continuous family -
again — in some sense)?

@ One way to ask this more precisely is to choose a basis in the Lie algebra of
SU(2) and consider other compact Lie groups with a choice of basis in their
Lie algebras whose structure constants are within ¢ of the ones for SU(2).

e Unfortunately any compact Lie group which is close to SU(2) in this sense is
isomorphic to SU(2).
@ It remains to look for other ways to deform SU(2).
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THE QUANTUM GROUP SU(2) DEFINITION

@ Recall that C(SU(2)) is the Banach =-algebra generated by two elements «
and v such that a*a + y*y =1 and «, v, o* and v* commute.

@ Moreover the norm and involution of C(SU(2)) are related by

IS5fl =117, feC(SU2)
which we abbreviate by saying that C(SU(2)) is a C*-algebra.

DEFINITION

Fix g e [-1,1[\{0} and let C(SU4(2)) be the C*-algebra generated by two elements
a and ~ satisfying
afa+'y =1, ay=qy,

ac* + @y =1, =",
@ C(SUgy(2)) is not commutative! In particular there does not exist a space X

such that C(SUg(2)) = C(X) and “C(SUq4(2))” is only a notational convention.
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THE QUANTUM GROUP SU(2) DEFINITION

THEOREM

@ There exists a unique unital *-homomorphism
A: C(SUg(2)) — C(SU4(2)) ® C(SUg(2)) such that

Ald)=a®a—q1*®y and A(y) =7Qa+a*®7,

© A is coassociative: (A®id)o A = (Id® A) o A,

@ the sets {A(a)(1®b)|a,be C(SU4(2))} and {(a® 1)A(b) |a,be C(SU4(2))}
are linearly dense in C(SUgy(2)) ® C(SUq(2)).

@ We say that C(SU4(2)) is the algebra of continuous functions on the
quantum group SU,(2).

@ As we already mentioned, this is an abuse of language — there does not exist
a space X such that C(SUy(2)) is isomorphic to the algebra of functions on X
(because C(SUgy(2)) is not commutative).
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THE QUANTUM GROUP SU(2) EBQUSIEsIoi:¥syvclifenni):io}

REMARK

If G is a compact group then the integration with respect to the Haar measure
h: C(G)>f — §fdueCis a positive functional of norm 1 (a state) with the

property that ¢
(h®id)A(f) = h(H)1 = (id ® h)A(S)

for any f € C(G).

THEOREM
There exists a unique state h on C(SU4(2)) such that

(h®id)A(a) = h(a)l = (id® h)A(a)
for any a € C(SUq4(2)).

e The functional h is called the Haar measure of SU4(2).
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THE QUANTUM GROUP SU(2) FURTHER STRUCTURE

@ Let o and v be operators on (2(Z, x Z) defined by

/ n
Qen = 1- qznen—l,ka Yenik =4 €nk+1

where {ep i} nez, Kez 1S the standard basis of 2(Z, x 7).

o There exists a unique *-homomorphism 7: C(SU4(2)) — B(¢?(Z4 x Z)) such
that 7(a) = @ and 7 (y) = 7.
@ We have

h(a) = (1 - q2) Z q2n<en,0‘7r(a)en,0>
n=0

for all a € C(SUg4(2)).
@ Moreover 7 is injective.
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THE QUANTUM GROUP SU(2) FURTHER STRUCTURE

DEFINITION
A matrix U € Mat,(C) ® C(SU4(2)) is a unitary representation of SU4(2) if
@ U is unitary,

© we have (id ® A)U = U;oU; 3, where
U2 = U®1 € Mat,(C) ® C(SUq(2)) ® C(SUq4(2)) and Uz = (id @ flip) Us .

@ Condition @ is equivalent to

AUl,J ZUlk®UkJ
k=1

for all i,j.
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THE QUANTUM GROUP SU(2) EBQUSIEsIoi:¥syvclifenni):io}

@ Let U € Mat,(C) ® C(SUq(2)) and V € Matn(C) ® C(SUq4(2)) be unitary
representations of SUg(2).

@ We say that T € B(C",C™) intertwines U and V if (T® 1)U = V(T®1).
@ U and V are equivalent if there is a unitary intertwining U and V.

@ U is irreducible if any projection P intertwining U with itself is either 1 or O.
@ The representation

UeV - [U V] € Matrsm(C) ® C(SUq(2))

is called the direct sum of U and V.
@ The representation

U® V = Up3Vas € Matn(C) ® Matm(C) ® C(SUq(2)) = Matnn(C) ® C(SU4(2))

(with Vo3 = 1 ® V and U;s = (flip ® id) Us3) is called the tensor product of U
and V.
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THE QUANTUM GROUP SU(2) EBQUSIEsIoi:¥syvclifenni):io}

EXAMPLE

_ *
The matrix u = [: O(Z;y ] is a two-dimensional irreducible representation of

SUq4(2). Its tensor square

aZ —qa’y* —Q’Y*a q2’Y*2

|y a® —qy'y —qyta®

i ya —gqyy*  oa*a  —ga*y*
,YZ Yo oz*'y 04*2

is equivalent to the direct sum of the one-dimensional trivial representation

1 e C(SU4(2)) = Mat; (C) ® C(SUq(2)) and the irreducible three-dimensional
representation

a? —/1+ q2av* *?
VI+@ya 1—(1+@*)v*y —/1+g*y*a*

fyz 1 + q2a*y a*?
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THE QUANTUM GROUP SU(2) FURTHER STRUCTURE

THEOREM

The equivalence classes of irreducible representations of SU4(2) are labeled by
PN

1Z.. We can choose representatives {US} _ 17, so that U =1, Uz = : gz ]

and
US® US ~ yls—sl D yls—s'l+1 DD US+S/.

forall s,s' € 1Z,.
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THE QUANTUM PERMUTATION GROUP A PICTURE OF THE CLASSICAL Sp

o A permutation matrix is an element U of Mat,(C) such that
Q@ U;;€{0,1} forall i,j,
n
© for each i we have ) U; ;= 1,
j=1
n
@ for each j we have ) U; ;= 1.
i=1
@ The symmetric group S, can be interpreted as the set of all n x n
permutation matrices.
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THE QUANTUM PERMUTATION GROUP THE QUANTUM GROUP STT

DEFINITION

We define C(S;}) as the C*-algebra generated by {Uj j};j1,. n satisfying the
following relations:

Q for all i,j the element U; ; is a projection (self-adjoint idempotent),

n
@ for each i we have ) U;; =1,
Jj=1

n
© for each jwe have ] U;; = 1.
i=1

L

@ The abelianization of C(S;}) coincides with the finite-dimensional algebra of
all functions on the group S;.
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THE QUANTUM PERMUTATION GROUP THE QUANTUM GROUP STT

THEOREM

© There exists a unique *-homomorphism A: C(S;;) — C(S}) ® C(S;) such that
fo all i,j

n
AU ) = 2 Ui ® Uk, j,
k=1
@ A is coassociative,

@ the sets {A(a)(1®b)|a,be C(S})} and {(a®@1)A(b)|a,be C(S};)} are
linearly dense in C(S;;) ® C(S;}).

DEFINITION
We call S}; the quantum permutation group of n points.

e For n=1,2,3 we have C(S}}) = C(Sp).

e For n > 4 the C*-algebra C(S;)) is non-commutative and
infinite-dimensional.

P.M. SOLTAN (KMMF) COMPACT AND DISCRETE QUANTUM GROUPS SEPTEMBER 2, 2024 21/31



THE QUANTUM PERMUTATION GROUP REPRESENTATIONS AND HAAR MEASURE

@ Notice that
U1 -+ Un

i

P=| : .. i | eMaty(C)®C(Sy)
Uﬂl to Uhn

is a unitary representation of S;'.
@ Clearly P is not irreducible.

THEOREM

The irreducible representations of S}, are {V"},ez, with V0 =1, P = V° 4+ V! and

Vipgvt=vilgyvrgyn1 neN.

@ There is also a combinatorial formula for the Haar measure of any

polynomial in the matrix entries of {V"},cz, .

P.M. SOLTAN (KMMF) COMPACT AND DISCRETE QUANTUM GROUPS SEPTEMBER 2, 2024



COMPACT QUANTUM GROUPS DEFINITION, HAAR MEASURE

DEFINITION

A compact quantum group G is described by a unital C*-algebra denoted by
C(G) together with a coassociative unital *-homomorphism
A: C(G) — C(G) ® C(G) such that the sets

{A(a)(1®Db)|a,be C(G)} and {(a®1)A(b)|a,be C(G)}
are linearly dense in C(G) ® C(G).

THEOREM (S.L. WORONOWICZ)

Let G be a compact quantum group. Then there exists a unique state h on C(G)
such that
(h®id)A(a) = h(a)l = (id® h)A(a)

for all a € C(G).
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COMPACT QUANTUM GROUPS CO-COMMUTATIVE EXAMPLES

EXAMPLE

Let T be a discrete group and let A: I' — B(¢?(T")) be the left regular
representation of I':

(A(s)¥) (t) = (s '), s,tel, e 2().
Let C(T') be the reduced group C*-algebra of I, i.e. the C*-subalgebra of B(¢2(T))
generated by the range of \. It follows that
e there exists a unique *-homomorphism A: C(I') - C(I') ® C(T') such that
A(N(s)) = A(s)®A(s) forall seT,
e A is coassociative and T is a compact quantum group.
e the Haar measure of I is the von Neumann trace:

~

C(T) 3 ar—> (be|ade) € C.

Note that the range of A is contained in the space of symmetric tensors (we say
that I is co-commutative). Irreducible representations of I' are {A(S)}ser.
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DuALITY FIRST REMARKS

@ Compact quantum groups generalize compact groups.
@ Any discrete group I' gives rise to the compact quantum group r.
@ A simple example of this interplay is I' = Z, [=T.

DEFINITION

Let G be a compact quantum group and let Irr G denote the set of equivalence
classes of irreducible unitary representations of G. Let {u®},cir ¢ be a choice
representatives and for each « let n, be the dimension of u® (i.e. n such that

~

u® € Mat,(C) ® C(G)). We define co(G) to be the the cyp-direct sum

co(G) = @ Maty, (C).

aclrr G
and

W= P u™

aelrr G
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DuALITY THE DUAL QUANTUM GROUP

~

e Since [u®| =1 for all «, in general W ¢ co(G) ® C(G). However W belongs to

the multiplier algebra M(co(G) ® C(G)) of cp(G) ® C(G).
o In particular, it makes sense to state the following theorem:

THEOREM

~ ~

There exists a unique A: co(G) — M(co(G) ® co(G)) such that
(A®id)W = Was W3,
where Was = 1@ W € M(co(G) ® co(G) ® C(G)) and W3 = (flip ® id) Was.

@ The object G is an example of what is known as a locally compact quantum
group.

e G is in fact discrete which simply means that the corresponding C*-algebra
is a direct sum of matrix algebras.

@ There is a perfect duality between compact and discrete quantum groups —
in a sense these are two pictures of the same class of objects.
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VON NEUMANN ALGEBRAS OF DISCRETE QUANTUM GROUPS DEFINITION OF L (G)

@ Let G be a compact quantum group.

@ The Haar measure h of G gives rise to a pre-Hilbert space structure on
C(G)/N, where N = {a € C(G)| h(a*a) = 0}, via {(a + N|b+ N) = h(a*b).

e Let L?(G) be the completion of this pre-Hilbert space.

@ We note that often N' = {0}, but not always.

e C(G) is represented on L?(G) via \ as follows:

Ma)(b+ N)=ab+ N, a,be C(G).

e In case G =T, the range of this map is the reduced group C*-algebra of of T'.

@ We define L*(G) as the strong closure of the range of \. In case G = [ this is
the group von Neumann algebra of I" (often denoted by L(I")).

@ The comultiplication A passes to the image of A and can then be extended to
L*(G).
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VON NEUMANN ALGEBRAS OF DISCRETE QUANTUM GROUPS FACTORIALITY IN THE CO-COMMUTATIVE CASE

@ The most important von Neumann algebras the factors, i.e. those whose
center is trivial (equal to the set of scalar multiplies of 1).

PROPOSITION

The group von Neumann algebra of a discrete group I is a factor if and only if '
is i.c.c. (all the non-trivial conjugacy classes in I' are infinite).

Proof: The map n: L(I") 3 a — ad. € £2(T) is injective and maps multiplies of 1 to
functions with support {e}. Assume that I is i.c.c., a is a non-zero central
element of L(I") and take s,t € I'. Denoting by p the right regular representation

of I' we have
n(a)(s~ts) = <6s_1ts\aée> <)\ £)0s aée> _ <5S A(t’ls)a56> _ <5s
s‘lt)aée> - <p(t_ls)5s > = (5| ade) = n(a)(t).

s =

A non-zero square integrable function cannot be constant on an infinite set.
Conversely, if C c I is a finite conjugacy class then C1 3 >, A(s) is central. O

seC
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THE n-1.C.C. CONDITION AND SOME OPEN QUESTIONS
e In the next proposition A is (A®id®---®id)o---o (A®id) o A.
_
n—1
@ For a set of operators A on a Hilbert space the symbol A’ denotes the
commutant of A, i.e. the set of all operators which commute with all
operators from the set A.

PROPOSITION

Let T" be a discrete group and let A be the comultiplication on L*(T"). Then the
following are equivalent:

Q lisi.c.c.,

@ L(I) is a factor,

Q@ AM (L)) L(I)®:--®L(I') = C1 for some ne N,
nll

Q@ AM(LT)) L(I®:--®L(I') = Cl for all n e N.
n+1
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VON NEUMANN ALGEBRAS OF DISCRETE QUANTUM GROUPS THE n-1.C.C. CONDITION AND SOME OPEN QUESTIONS

DEFINITION

Let G be a compact quantum group. We say that the discrete quantum group G

is n-i.c.c. if
AM(LT) A LID)®---QL(T) = C1.

n+1

e It is known that if G is n-i.c.c. then L*(G) is a factor.
o It is also known that if G is n-i.c.c. for some n then it is m-i.c.c. for all m < n.

QUESTIONS
©@ Which discrete quantum groups are n-i.c.c. and for what n?
© Are all i.c.c. conditions equivalent?
© What are other consequences of i.c.c. conditions?
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Thank you for your attention
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