COMPACT AND DISCRETE QUANTUM GROUPS BABY STEPS 2024

Piotr M. Sołtan

Department of Mathematical Methods in Physics

September 2, 2024

- **2** The quantum group SU(2)
- **③** THE QUANTUM PERMUTATION GROUP
- 4 Compact quantum groups
- 5 DUALITY
- 6 Von Neumann algebras of discrete quantum groups

- $\bullet~{\rm SU}(2)$ is the group of unitary 2×2 matrices with determinant 1.
- We have

$$\mathrm{SU}(2) = igg\{ egin{bmatrix} a & -\overline{c} \ c & \overline{a} \end{bmatrix} igg| \, a,c \in \mathbb{C}, \ |a|^2 + |c|^2 = 1 igg\}.$$

- Writing $a = x_1 + ix_2$ and $c = x_3 + ix_4$ we immediately find that $SU(2) = S^3$ as topological spaces (even as differential manifolds).
- Clearly the group operations

$$\left(\begin{bmatrix} a & -\overline{c} \\ c & \overline{a} \end{bmatrix}, \begin{bmatrix} a' & -\overline{c'} \\ c' & \overline{a'} \end{bmatrix} \right) \longmapsto \begin{bmatrix} aa' - \overline{c}c' & -\left(\overline{ca' + \overline{a}c'}\right) \\ ca' + \overline{a}c' & \overline{aa' - \overline{c}c'} \end{bmatrix}$$

and

$$\begin{bmatrix} a & -\overline{c} \\ c & \overline{a} \end{bmatrix} \longmapsto \begin{bmatrix} \overline{a} & \overline{c} \\ -c & a \end{bmatrix}$$

are continuous (in fact smooth).

- It is known that a compact space (like SU(2)) can be completely described by its Banach *-algebra of continuous functions (with pointwise multiplication, supremum norm and involution $f \mapsto \overline{f}$).
- Thus the study of ${\rm SU}(2)$ is equivalent to the study of the Banach algebra ${\rm C}({\rm SU}(2)).$
- Let α and γ be the elements of C(SU(2)) defined by

$$\alpha\colon\operatorname{SU}(\mathbf{2})\ni \begin{bmatrix} a & -\overline{c} \\ c & \overline{a} \end{bmatrix}\longmapsto a\in\mathbb{C}, \qquad \gamma\colon\operatorname{SU}(\mathbf{2})\ni \begin{bmatrix} a & -\overline{c} \\ c & \overline{a} \end{bmatrix}\longmapsto c\in\mathbb{C}.$$

- Furthermore let Pol(SU(2)) be the *-subalgebra of C(SU(2)) generated by α and γ .
- Pol(SU(2)) contains the unit because $\alpha^* \alpha + \gamma^* \gamma = 1$.
- By the Stone-Weierstrass theorem $\operatorname{Pol}(\operatorname{SU}(2))$ is dense in $\operatorname{C}(\operatorname{SU}(2))$.

4/31

• The multiplication map ${\rm SU}(2)\times {\rm SU}(2)\to {\rm SU}(2)$ can be transferred to ${\rm C}({\rm SU}(2))$ like this

$$\mathbf{C}(\mathrm{SU}(\mathbf{2})) \ni f \longmapsto \Delta(f) \in \mathbf{C}(\mathrm{SU}(\mathbf{2}) \times \mathrm{SU}(\mathbf{2})),$$

where

$$\Delta(f)(A,B) = f(AB), \qquad A, B \in \mathrm{SU}(2).$$

- Since $C(SU(2) \times SU(2)) = C(SU(2)) \otimes C(SU(2))$ (completed tensor product) we obtain $\Delta: C(SU(2)) \rightarrow C(SU(2)) \otimes C(SU(2))$.
- It is easy to see that Δ is a unital *-homomorphism of Banach algebras (in fact it is isometric).
- Associativity of multiplication in SU(2) implies the **coassociativity** of Δ :

$$(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta.$$

• Δ is called the **comultiplication**.

• Since for

$$A = \begin{bmatrix} a & -\overline{c} \\ c & \overline{a} \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} a' & -\overline{c'} \\ c' & \overline{a'} \end{bmatrix}$$

we have

$$AB = egin{bmatrix} aa' - \overline{c}c' & - \left(\overline{ca' + \overline{a}c'}
ight) \ ca' + \overline{a}c' & \overline{aa' - \overline{c}c'} \end{bmatrix},$$

the functions $\Delta(\alpha)$ and $\Delta(\gamma)$ (of two variables) are equal

$$\Delta(\alpha) = \alpha \otimes \alpha - \gamma^* \otimes \gamma \quad \text{and} \quad \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

• If we set $u = \begin{bmatrix} \alpha & -\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$ then u is a unitary element of $\operatorname{Mat}_2(\operatorname{C}(\operatorname{SU}(2))) = \operatorname{Mat}_2(\mathbb{C}) \otimes \operatorname{C}(\operatorname{SU}(2)).$ Moreover, for any i, j we have

$$\Delta(u_{i,j}) = \sum_{k=1}^{2} u_{i,k} \otimes u_{k,j}.$$
(*)

• The fact that SU(2) is a group (every element is invertible) can be encoded in a slightly counter-intuitive way: the multiplication obeys cancellation laws from both sides:

$$(AB = AC) \Longrightarrow (B = C)$$
 and $(BA = CA) \Longrightarrow (B = C)$

for any $A, B, C \in SU(2)$.

• On the level of C(SU(2)) and Δ this translates to the fact that the sets

 $\left\{ \Delta(f)(\mathbb{1} \otimes g) \left| f, g \in \mathrm{C}(\mathrm{SU}(2)) \right\} \quad \text{and} \quad \left\{ (f \otimes \mathbb{1}) \Delta(g) \left| f, g \in \mathrm{C}(\mathrm{SU}(2)) \right\} \right\}$

are linearly dense in $C(SU(2)) \otimes C(SU(2))$.

- How to see the density of $\{\Delta(f)(\mathbb{1}\otimes g) | f, g \in C(SU(2))\}$?
- Let us again consider the unitary matrix

$$u = \begin{bmatrix} \alpha & -\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \in \operatorname{Mat}_2(\operatorname{C}(\operatorname{SU}(2))) = \operatorname{Mat}_2(\mathbb{C}) \otimes \operatorname{C}(\operatorname{SU}(2)).$$

• Equation (*) says that $(id \otimes \Delta)u = u_{12}u_{13}$, where

$$u_{12} = \begin{bmatrix} \alpha \otimes \mathbb{1} & -\gamma^* \otimes \mathbb{1} \\ \gamma \otimes \mathbb{1} & \alpha^* \otimes \mathbb{1} \end{bmatrix} \text{ and } u_{13} = \begin{bmatrix} \mathbb{1} \otimes \alpha & -\mathbb{1} \otimes \gamma^* \\ \mathbb{1} \otimes \gamma & \mathbb{1} \otimes \alpha^* \end{bmatrix}.$$

- Thus elements of the matrix $u_{12} = ((\operatorname{id} \otimes \Delta)u)u_{13}^*$ belong to $\{\Delta(f)(\mathbb{1} \otimes g) | f, g \in C(\operatorname{SU}(2))\}.$
- It follows that for any $f \in C(SU(2))$ the elements

 $\alpha \otimes f, \gamma \otimes f, \alpha^* \otimes f, \gamma^* \otimes f$

belong to $\{\Delta(f)(\mathbbm{1}\otimes g) \mid f,g\in \mathrm{C}(\mathrm{SU}(2))\}.$

• We can try the same game with the matrix

$$\boldsymbol{u} \oplus \boldsymbol{u} = \begin{bmatrix} \alpha^2 & -\alpha\gamma^* & -\gamma^*\alpha & \gamma^{*2} \\ \alpha\gamma & \alpha\alpha^* & -\gamma^*\gamma & -\gamma^*\alpha^* \\ \gamma\alpha & -\gamma\gamma^* & \alpha^*\alpha & -\alpha^*\gamma^* \\ \gamma^2 & \gamma\alpha & \alpha^*\gamma & \alpha^{*2} \end{bmatrix}$$

to find that

$$\begin{aligned} \alpha^{2} \otimes f, -\alpha\gamma^{*} \otimes f, -\gamma^{*}\alpha \otimes f, \gamma^{*2} \otimes f, \alpha\gamma \otimes f, \alpha\alpha^{*} \otimes f, -\gamma^{*}\gamma \otimes f, -\gamma^{*}\alpha^{*} \otimes f, \\ \gamma\alpha \otimes f, -\gamma\gamma^{*} \otimes f, \alpha^{*}\alpha \otimes f, -\alpha^{*}\gamma^{*} \otimes f, \gamma^{2} \otimes f, \gamma\alpha \otimes f, \alpha^{*}\gamma \otimes f, \alpha^{*2} \otimes f \end{aligned}$$

belong to $\{\Delta(f)(\mathbb{1}\otimes g) | f, g \in \mathcal{C}(\mathcal{SU}(2))\}$ for any f.

• Continuing along these lines we can show that for any $P \in Pol(SU(2))$ and for any $f \in C(SU(2))$ we have $P \otimes f \in \{\Delta(f)(\mathbb{1} \otimes g) | f, g \in C(SU(2))\}$.

QUESTION

Can SU(2) be "deformed" in the sense that there exists other compact groups which are "close" to SU(2) in some sense (perhaps forming a continuous family – again – in some sense)?

- One way to ask this more precisely is to choose a basis in the Lie algebra of SU(2) and consider other compact Lie groups with a choice of basis in their Lie algebras whose structure constants are within ε of the ones for SU(2).
- Unfortunately any compact Lie group which is close to $\mathrm{SU}(2)$ in this sense is isomorphic to $\mathrm{SU}(2)$.
- It remains to look for other ways to deform SU(2).

10/31

- Recall that C(SU(2)) is the Banach *-algebra generated by two elements α and γ such that $\alpha^* \alpha + \gamma^* \gamma = 1$ and α , γ , α^* and γ^* commute.
- $\bullet\,$ Moreover the norm and involution of $\mathrm{C}(\mathrm{SU}(2))$ are related by

$$||f^*f|| = ||f||^2, \qquad f \in C(SU(2))$$

which we abbreviate by saying that C(SU(2)) is a C*-algebra.

DEFINITION

Fix $q \in [-1, 1[\setminus \{0\} \text{ and let } C(SU_q(2)) \text{ be the C*-algebra generated by two elements } \alpha \text{ and } \gamma \text{ satisfying}$

$$\alpha^* \alpha + \gamma^* \gamma = \mathbb{1}, \quad \alpha \gamma = q \gamma \alpha,$$

$$\alpha \alpha^* + q^2 \gamma^* \gamma = \mathbb{1}, \quad \gamma \gamma^* = \gamma^* \gamma.$$

• $C(SU_q(2))$ is not commutative! In particular there does not exist a space X such that $C(SU_q(2)) \cong C(X)$ and " $C(SU_q(2))$ " is only a notational convention.

THEOREM

● There exists a unique unital *-homomorphism Δ : C(SU_q(2)) → C(SU_q(2)) ⊗ C(SU_q(2)) such that

 $\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma \quad \text{and} \quad \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma,$

- We say that $C(SU_q(2))$ is the algebra of continuous functions on the **quantum group** $SU_q(2)$.
- As we already mentioned, this is an abuse of language there does not exist a space X such that $C(SU_q(2))$ is isomorphic to the algebra of functions on X (because $C(SU_q(2))$ is not commutative).

Remark

If *G* is a compact group then the integration with respect to the Haar measure $h: C(G) \ni f \mapsto \int_{G} f d\mu \in \mathbb{C}$ is a positive functional of norm 1 (a **state**) with the property that

$$(h \otimes \mathrm{id})\Delta(f) = h(f)\mathbb{1} = (\mathrm{id} \otimes h)\Delta(f)$$

for any $f \in C(G)$.

THEOREM

There exists a unique state h on $C(SU_q(2))$ such that

$$(\mathbf{h} \otimes \mathrm{id})\Delta(a) = \mathbf{h}(a)\mathbb{1} = (\mathrm{id} \otimes \mathbf{h})\Delta(a)$$

for any $a \in C(SU_q(2))$.

• The functional h is called the **Haar measure** of $SU_q(2)$.

• Let α and γ be operators on $\ell^2(\mathbb{Z}_+ \times \mathbb{Z})$ defined by

$$lpha e_{n,k} = \sqrt{1-q^{2n}}e_{n-1,k}, \qquad \gamma e_{n,k} = q^n e_{n,k+1}$$

where $\{e_{n,k}\}_{n\in\mathbb{Z}_+,k\in\mathbb{Z}}$ is the standard basis of $\ell^2(\mathbb{Z}_+\times\mathbb{Z})$.

- There exists a unique *-homomorphism π : $C(SU_q(2)) \rightarrow B(\ell^2(\mathbb{Z}_+ \times \mathbb{Z}))$ such that $\pi(\alpha) = \alpha$ and $\pi(\gamma) = \gamma$.
- We have

$$oldsymbol{h}(a) = (1-q^2)\sum_{n=0}^{\infty}q^{2n}ig\langle e_{n,0}ig|\pi(a)e_{n,0}ig
angle$$

for all $a \in C(SU_q(2))$.

• Moreover π is injective.

DEFINITION

A matrix $U \in Mat_n(\mathbb{C}) \otimes C(SU_q(2))$ is a unitary representation of $SU_q(2)$ if

- U is unitary,
- 2 we have $(\operatorname{id} \otimes \Delta)U = U_{12}U_{13}$, where $U_{12} = U \otimes \mathbb{1} \in \operatorname{Mat}_n(\mathbb{C}) \otimes \operatorname{C}(\operatorname{SU}_q(2)) \otimes \operatorname{C}(\operatorname{SU}_q(2))$ and $U_{13} = (\operatorname{id} \otimes \operatorname{flip})U_{12}$.
- Condition 2 is equivalent to

$$\Delta(U_{i,j}) = \sum_{k=1}^{n} U_{i,k} \otimes U_{k,j}$$

for all i, j.

15/31

- Let $U \in Mat_n(\mathbb{C}) \otimes C(SU_q(2))$ and $V \in Mat_m(\mathbb{C}) \otimes C(SU_q(2))$ be unitary representations of $SU_q(2)$.
- We say that $T \in B(\mathbb{C}^n, \mathbb{C}^m)$ intertwines U and V if $(T \otimes 1)U = V(T \otimes 1)$.
- *U* and *V* are **equivalent** if there is a unitary intertwining *U* and *V*.
- *U* is **irreducible** if any projection *P* intertwining *U* with itself is either 1 or 0.
- The representation

$$U \oplus V = \begin{bmatrix} U & \\ & V \end{bmatrix} \in \operatorname{Mat}_{n+m}(\mathbb{C}) \otimes \operatorname{C}(\operatorname{SU}_q(2))$$

is called the **direct sum** of U and V.

• The representation

 $U \oplus V = U_{13}V_{23} \in \operatorname{Mat}_n(\mathbb{C}) \otimes \operatorname{Mat}_m(\mathbb{C}) \otimes \operatorname{C}(\operatorname{SU}_q(2)) = \operatorname{Mat}_{nm}(\mathbb{C}) \otimes \operatorname{C}(\operatorname{SU}_q(2))$

(with $V_{23} = \mathbb{1} \otimes V$ and $U_{13} = (\text{flip} \otimes \text{id})U_{23}$) is called the **tensor product** of U and V.

EXAMPLE

The matrix $u = \begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix}$ is a two-dimensional irreducible representation of $SU_q(2)$. Its tensor square

$$u \oplus u = \begin{bmatrix} \alpha^2 & -q\alpha\gamma^* & -q\gamma^*\alpha & q^2\gamma^{*2} \\ \alpha\gamma & \alpha\alpha^* & -q\gamma^*\gamma & -q\gamma^*\alpha^* \\ \gamma\alpha & -q\gamma\gamma^* & \alpha^*\alpha & -q\alpha^*\gamma^* \\ \gamma^2 & \gamma\alpha & \alpha^*\gamma & \alpha^{*2} \end{bmatrix}$$

is equivalent to the direct sum of the one-dimensional **trivial representation** $\mathbb{1} \in C(SU_q(2)) = Mat_1(\mathbb{C}) \otimes C(SU_q(2))$ and the irreducible three-dimensional representation

$$\begin{bmatrix} \alpha^2 & -\sqrt{1+q^2}\alpha\gamma^* & q^2\gamma^{*2} \\ \sqrt{1+q^2}\gamma\alpha & \mathbb{1} - (1+q^2)\gamma^*\gamma & -\sqrt{1+q^2}\gamma^*\alpha^* \\ \gamma^2 & \sqrt{1+q^2}\alpha^*\gamma & \alpha^{*2} \end{bmatrix}$$

THEOREM

The equivalence classes of irreducible representations of $\operatorname{SU}_q(2)$ are labeled by $\frac{1}{2}\mathbb{Z}_+$. We can choose representatives $\{U^s\}_{s\in\frac{1}{2}\mathbb{Z}_+}$ so that $U^0 = \mathbb{1}$, $U^{\frac{1}{2}} = \begin{bmatrix} \alpha & -q\gamma^*\\ \gamma & \alpha^* \end{bmatrix}$ and $U^s \oplus U^{s'} \approx U^{|s-s'|} \oplus U^{|s-s'|+1} \oplus \cdots \oplus U^{s+s'}$.

for all $s, s' \in \frac{1}{2}\mathbb{Z}_+$.

• A **permutation matrix** is an element U of $Mat_n(\mathbb{C})$ such that

- **1** $U_{i,j} \in \{0, 1\}$ for all i, j,
- 2 for each *i* we have $\sum_{j=1}^{n} U_{i,j} = 1$,

3 for each *j* we have
$$\sum_{i=1}^{n} U_{i,j} = 1$$
.

• The symmetric group S_n can be interpreted as the set of all $n \times n$ permutation matrices.

DEFINITION

We define $C(S_n^+)$ as the C*-algebra generated by $\{U_{i,j}\}_{i,j=1,...,n}$ satisfying the following relations:

• for all i, j the element $U_{i,j}$ is a projection (self-adjoint idempotent),

• for each *i* we have
$$\sum_{i=1}^{n} U_{i,j} = 1$$

3 for each *j* we have
$$\sum_{i=1}^{n} U_{i,j} = \mathbb{1}$$
.

• The abelianization of $C(S_n^+)$ coincides with the finite-dimensional algebra of all functions on the group S_n .

THEOREM

• There exists a unique *-homomorphism Δ : $C(S_n^+) \rightarrow C(S_n^+) \otimes C(S_n^+)$ such that fo all i, j

$$\Delta(U_{i,j}) = \sum_{k=1}^{n} U_{i,k} \otimes U_{k,j},$$

2 Δ is coassociative,

③ the sets $\{\Delta(a)(\mathbb{1} \otimes b) | a, b \in C(S_n^+)\}$ and $\{(a \otimes \mathbb{1})\Delta(b) | a, b \in C(S_n^+)\}$ are linearly dense in $C(S_n^+) \otimes C(S_n^+)$.

DEFINITION

We call S_n^+ the **quantum permutation group** of *n* points.

- For n = 1, 2, 3 we have $C(S_n^+) = C(S_n)$.
- For *n* ≥ 4 the C*-algebra C(S⁺_n) is non-commutative and infinite-dimensional.

• Notice that

$$P = \begin{bmatrix} U_{1,1} & \cdots & U_{1,n} \\ \vdots & \ddots & \vdots \\ U_{n,1} & \cdots & U_{n,n} \end{bmatrix} \in \operatorname{Mat}_n(\mathbb{C}) \otimes \operatorname{C}(\mathbf{S}_n^+)$$

is a unitary representation of S_n^+ .

• Clearly *P* is not irreducible.

THEOREM

The irreducible representations of S_n^+ are $\{V^n\}_{n\in\mathbb{Z}_+}$ with $V^0 = 1$, $P = V^0 + V^1$ and

$$V^1 \oplus V^n = V^{n+1} \oplus V^n \oplus V^{n-1}, \qquad n \in \mathbb{N}.$$

• There is also a combinatorial formula for the Haar measure of any polynomial in the matrix entries of $\{V^n\}_{n\in\mathbb{Z}_+}$.

DEFINITION

A **compact quantum group** \mathbb{G} is described by a unital C*-algebra denoted by $C(\mathbb{G})$ together with a coassociative unital *-homomorphism $\Delta \colon C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ such that the sets

 $\left\{\Delta(a)(\mathbb{1}\otimes b) \, \middle| \, a, b \in \mathrm{C}(\mathbb{G}) \right\}$ and $\left\{(a \otimes \mathbb{1})\Delta(b) \, \middle| \, a, b \in \mathrm{C}(\mathbb{G}) \right\}$

are linearly dense in $C(\mathbb{G}) \otimes C(\mathbb{G})$.

THEOREM (S.L. WORONOWICZ)

Let $\mathbb G$ be a compact quantum group. Then there exists a unique state \pmb{h} on $\mathrm{C}(\mathbb G)$ such that

$$(\mathbf{h} \otimes \mathrm{id})\Delta(a) = \mathbf{h}(a)\mathbb{1} = (\mathrm{id} \otimes \mathbf{h})\Delta(a)$$

for all $a \in C(\mathbb{G})$.

EXAMPLE

Let Γ be a discrete group and let $\lambda \colon \Gamma \to B(\ell^2(\Gamma))$ be the left regular representation of Γ :

$$(\lambda(s)\psi)(t) = \psi(s^{-1}t), \qquad s, t \in \Gamma, \ \psi \in \ell^2(\Gamma).$$

Let $C(\widehat{\Gamma})$ be the **reduced group** C*-algebra of Γ , i.e. the C*-subalgebra of $B(\ell^2(\Gamma))$ generated by the range of λ . It follows that

- there exists a unique *-homomorphism Δ: C(Γ̂) → C(Γ̂) ⊗ C(Γ̂) such that Δ(λ(s)) = λ(s) ⊗ λ(s) for all s ∈ Γ,
- Δ is coassociative and $\widehat{\Gamma}$ is a compact quantum group.
- the Haar measure of $\widehat{\Gamma}$ is the **von Neumann trace**:

$$C(\widehat{\Gamma}) \ni a \longmapsto \langle \delta_e | a \delta_e \rangle \in \mathbb{C}.$$

Note that the range of Δ is contained in the space of symmetric tensors (we say that $\widehat{\Gamma}$ is **co-commutative**). Irreducible representations of $\widehat{\Gamma}$ are $\{\lambda(s)\}_{s\in\Gamma}$.

24/31

- Compact quantum groups generalize compact groups.
- Any discrete group Γ gives rise to the compact quantum group $\widehat{\Gamma}$.
- A simple example of this interplay is $\Gamma = \mathbb{Z}$, $\hat{\Gamma} = \mathbb{T}$.

DEFINITION

Let \mathbb{G} be a compact quantum group and let $\operatorname{Irr} \mathbb{G}$ denote the set of equivalence classes of irreducible unitary representations of \mathbb{G} . Let $\{u^{\alpha}\}_{\alpha \in \operatorname{Irr} \mathbb{G}}$ be a choice representatives and for each α let n_{α} be the dimension of u^{α} (i.e. n such that $u^{\alpha} \in \operatorname{Mat}_{n}(\mathbb{C}) \otimes \operatorname{C}(\mathbb{G})$). We define $\operatorname{c}_{0}(\widehat{\mathbb{G}})$ to be the the c_{0} -direct sum

$$\mathbf{c_0}(\widehat{\mathbb{G}}) = \bigoplus_{\alpha \in \operatorname{Irr} \mathbb{G}} \operatorname{Mat}_{n_\alpha}(\mathbb{C}).$$

and

$$W = \bigoplus_{\alpha \in \operatorname{Irr} \mathbb{G}} u^{\alpha}.$$

Since ||u^α|| = 1 for all α, in general W ∉ c₀(Ĝ) ⊗ C(G). However W belongs to the multiplier algebra M(c₀(Ĝ) ⊗ C(G)) of c₀(Ĝ) ⊗ C(G).

• In particular, it makes sense to state the following theorem:

THEOREM

There exists a unique $\widehat{\Delta}\colon c_0(\widehat{\mathbb{G}})\to \mathrm{M}(c_0(\widehat{\mathbb{G}})\otimes c_0(\widehat{\mathbb{G}}))$ such that

 $(\widehat{\Delta}\otimes \mathrm{id})W=W_{23}W_{13},$

where $W_{23} = \mathbb{1} \otimes W \in M(c_0(\widehat{\mathbb{G}}) \otimes c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G}))$ and $W_{13} = (\operatorname{flip} \otimes \operatorname{id})W_{23}$.

- The object $\widehat{\mathbb{G}}$ is an example of what is known as a locally compact quantum group.
- $\widehat{\mathbb{G}}$ is in fact **discrete** which simply means that the corresponding C*-algebra is a direct sum of matrix algebras.
- There is a perfect duality between compact and discrete quantum groups in a sense these are two pictures of the same class of objects.

P.M. SOŁTAN (KMMF)

- Let \mathbb{G} be a compact quantum group.
- The Haar measure \boldsymbol{h} of \mathbb{G} gives rise to a pre-Hilbert space structure on $C(\mathbb{G})/\mathcal{N}$, where $\mathcal{N} = \{ a \in C(\mathbb{G}) \mid \boldsymbol{h}(a^*a) = 0 \}$, via $\langle a + \mathcal{N} \mid b + \mathcal{N} \rangle = \boldsymbol{h}(a^*b)$.
- Let $L^2(\mathbb{G})$ be the completion of this pre-Hilbert space.
- We note that often $\mathcal{N} = \{0\}$, but not always.
- $C(\mathbb{G})$ is represented on $L^2(\mathbb{G})$ via λ as follows:

$$\lambda(a)(b + N) = ab + N, \qquad a, b \in C(\mathbb{G}).$$

- In case $\mathbb{G} = \widehat{\Gamma}$, the range of this map is the reduced group C*-algebra of of Γ .
- We define L[∞](G) as the strong closure of the range of λ. In case G = Γ this is the group von Neumann algebra of Γ (often denoted by L(Γ)).
- The comultiplication Δ passes to the image of λ and can then be extended to $L^{\infty}(\mathbb{G})$.

• The most important von Neumann algebras the **factors**, i.e. those whose center is trivial (equal to the set of scalar multiplies of 1).

PROPOSITION

The group von Neumann algebra of a discrete group Γ is a factor if and only if Γ is i.c.c. (all the non-trivial conjugacy classes in Γ are infinite).

<u>Proof:</u> The map $\eta: L(\Gamma) \ni a \mapsto a\delta_e \in \ell^2(\Gamma)$ is injective and maps multiplies of $\mathbb{1}$ to functions with support $\{e\}$. Assume that Γ is i.c.c., *a* is a non-zero central element of $L(\Gamma)$ and take $s, t \in \Gamma$. Denoting by ρ the right regular representation of Γ we have

$$\begin{split} \eta(a)(s^{-1}ts) &= \langle \delta_{s^{-1}ts} | a\delta_e \rangle = \left\langle \lambda(s^{-1}t)\delta_s \Big| a\delta_e \right\rangle = \left\langle \delta_s \Big| \lambda(t^{-1}s)a\delta_e \right\rangle = \left\langle \delta_s \Big| a\lambda(t^{-1}s)\delta_e \right\rangle \\ &= \left\langle \delta_s \Big| a\rho(s^{-1}t)\delta_e \right\rangle = \left\langle \delta_s \Big| \rho(s^{-1}t)a\delta_e \right\rangle = \left\langle \rho(t^{-1}s)\delta_s \Big| a\delta_e \right\rangle = \left\langle \delta_t | a\delta_e \right\rangle = \eta(a)(t). \end{split}$$

A non-zero square integrable function cannot be constant on an infinite set. Conversely, if $C \subset \Gamma$ is a finite conjugacy class then $\mathbb{C}1 \notin \sum_{s \in C} \lambda(s)$ is central.

- In the next proposition $\Delta^{(n)}$ is $(\Delta \otimes \underbrace{id \otimes \cdots \otimes id}_{n-1}) \circ \cdots \circ (\Delta \otimes id) \circ \Delta$.
- For a set of operators *A* on a Hilbert space the symbol *A*' denotes the **commutant** of *A*, i.e. the set of all operators which commute with all operators from the set *A*.

PROPOSITION

Let Γ be a discrete group and let Δ be the comultiplication on $L^{\infty}(\widehat{\Gamma})$. Then the following are equivalent:

1
$$\Gamma$$
 is i.c.c.

DEFINITION

Let $\mathbb G$ be a compact quantum group. We say that the discrete quantum group $\widehat{\mathbb G}$ is n-i.c.c. if

$$\Delta^{(n)}(L(\Gamma))' \cap \underbrace{L(\Gamma) \bar{\otimes} \cdots \bar{\otimes} L(\Gamma)}_{n+1} = \mathbb{C}\mathbb{1}.$$

- It is known that if $\widehat{\mathbb{G}}$ is *n*-i.c.c. then $L^{\infty}(\mathbb{G})$ is a factor.
- It is also known that if \mathbb{G} is *n*-i.c.c. for some *n* then it is *m*-i.c.c. for all m < n.

QUESTIONS

- **()** Which discrete quantum groups are *n*-i.c.c. and for what *n*?
- Are all i.c.c. conditions equivalent?
- What are other consequences of i.c.c. conditions?

Thank you for your attention