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(D) IDEMPOTENT STATES
0 Quasi-subgroups
o Idempotent states, coideals & group-like projections
o Order on quasi-subgroups

@ LATTICE OPERATIONS
o Intersection
o Generation
o Modular law

(3 OPEN QUASI-SUBGROUPS
0 Duality
o Compact and discrete quantum groups
0 Operations on open quasi-subgroups
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o Let G be a locally compact quantum group.



IDEMPOTENT STATES QUASI-SUBGROUPS

o Let G be a locally compact quantum group. A state w on
Cy(G) is idempotent if

Ww*xw=w
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IDEMPOTENT STATES QUASI-SUBGROUPS

o Let G be a locally compact quantum group. A state w on
Cy(G) is idempotent if

W*Ww=w,

where = is the convolution: p* v = (u® v)oA".

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 3/ 31



IDEMPOTENT STATES QUASI-SUBGROUPS

o Let G be a locally compact quantum group. A state w on
Cy(G) is idempotent if

W*Ww=w,

where = is the convolution: p* v = (u® v)oA".
o Let Idem(G) be the set of all idempotent states on C{§(G).
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o Let G be a locally compact quantum group. A state w on
Cy(G) is idempotent if

W*Ww=w,

where = is the convolution: p* v = (u® v)oA".
o Let Idem(G) be the set of all idempotent states on C{§(G).

THEOREM (KAWADA-ITO)
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IDEMPOTENT STATES QUASI-SUBGROUPS

o Let G be a locally compact quantum group. A state w on
Cy(G) is idempotent if

W*Ww=w,

where = is the convolution: p* v = (u® v)oA".
o Let Idem(G) be the set of all idempotent states on C{§(G).

THEOREM (KAWADA-ITO)
Let G be a locally compact group and let w € Idem(G).

i
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IDEMPOTENT STATES QUASI-SUBGROUPS

o Let G be a locally compact quantum group. A state w on
Cy(G) is idempotent if

W*Ww=w,

where = is the convolution: p* v = (u® v)oA".
o Let Idem(G) be the set of all idempotent states on C{§(G).

THEOREM (KAWADA-ITO)

Let G be a locally compact group and let w € Idem(G). Then there
exists a unique compact subgroup K of G such that

w(f) = jf(k) dhg(k),  feColG)
K
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IDEMPOTENT STATES QUASI-SUBGROUPS

o Let G be a locally compact quantum group. A state w on
Cy(G) is idempotent if

W*Ww=w,

where = is the convolution: p* v = (u® v)oA".
o Let Idem(G) be the set of all idempotent states on C{§(G).

THEOREM (KAWADA-ITO)

Let G be a locally compact group and let w € Idem(G). Then there
exists a unique compact subgroup K of G such that

w(f) = jf(k) dhg(k),  feColG)
K

(hg = the Haar measure on K, Co(G) = Cj(G) canonically).
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o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then
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o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then

o we have an epimorphism = : C§(G)—=C"(K),
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IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then

o we have an epimorphism = : C§(G)—=C"(K),
o w = hgor is an idempotent state on Cy(G).
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IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then

o we have an epimorphism = : C§(G)—=C"(K),
o w = hgor is an idempotent state on Cy(G).

o However, not every w € Idem(G) arises this way (A. Pal).
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IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then

o we have an epimorphism 7 : C}(G)—=C"(K),
o w = hgor is an idempotent state on Cy(G).

o However, not every w € Idem(G) arises this way (A. Pal).

EXAMPLE
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IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then

o we have an epimorphism 7 : C}(G)—=C"(K),
o w = hgor is an idempotent state on Cy(G).

o However, not every w € Idem(G) arises this way (A. Pal).

EXAMPLE
Let G = S;
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IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then

o we have an epimorphism 7 : C}(G)—=C"(K),
o w = hgor is an idempotent state on Cy(G).

o However, not every w € Idem(G) arises this way (A. Pal).

EXAMPLE
Let G = Ss: C(G) =C[Ss], A(g) =g®gforall ge Ss.
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IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact

quantum subgroup of G then
o we have an epimorphism 7 : C}(G)—=C"(K),
o w = hgor is an idempotent state on Cy(G).

o However, not every w € Idem(G) arises this way (A. Pal).

EXAMPLE
Let G = Ss: C(G) = C[Ss], A(g) = g®g for all g € Ss. Define

w(Z agg> = Qe + O,

geS3

where s € S3 is any order two element.
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IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact

quantum subgroup of G then
o we have an epimorphism 7 : C}(G)—=C"(K),
o w = hgor is an idempotent state on Cy(G).

o However, not every w € Idem(G) arises this way (A. Pal).

EXAMPLE
Let G = Ss: C(G) = C[Ss], A(g) = g®g for all g € Ss. Define

w(Z agg> = Qe + O,

geS3

where s € S3 is any order two element. Then w € Idem(G)

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018

4 /31



IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then
o we have an epimorphism 7 : C}(G)—=C"(K),
o w = hgor is an idempotent state on Cy(G).

o However, not every w € Idem(G) arises this way (A. Pal).

EXAMPLE
Let G = Ss: C(G) = C[Ss], A(g) = g®g for all g € Ss. Define
w(Z agg> = Qe + O,
geSs

where s € S3 is any order two element. Then w € Idem(G) and w
does not arise from a (compact quantum) subgroup of G.
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IDEMPOTENT STATES QUASI-SUBGROUPS

o If G is a locally compact quantum group and K is a compact
quantum subgroup of G then
o we have an epimorphism 7 : C}(G)—=C"(K),
o w = hgor is an idempotent state on Cy(G).

o However, not every w € Idem(G) arises this way (A. Pal).

EXAMPLE
Let G = Ss: C(G) = C[Ss], A(g) = g®g for all g € Ss. Define
w(Z agg> = Qe + O,
geSs

where s € S3 is any order two element. Then w € Idem(G) and w
does not arise from a (compact quantum) subgroup of G.

o Given w € Idem(G) we will say that w corresponds to a
compact quantum quasi-subgroup of G.
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G —locally compact quantum group, w € Idem(G).



IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
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G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
whose range

N, = {x € L?(G)| E,(x) = x}
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IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
whose range
N, = {x € L?(G)| E,(x) = x}

is a left coideal in L*°(G) (von Neumann subalgebra with
A(N,) € L*?(G)®N,).
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IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
whose range
N, = {x € L?(G)| E,(x) = x}

is a left coideal in L*°(G) (von Neumann subalgebra with
A(N,) € L*?(G)®N,).

o The convolution operation x — w = x can be viewed as

wxx=(1dQ@w)(W(x@1L)W*), x € L*(G),
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IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
whose range
N, = {x € L?(G)| E,(x) = x}

is a left coideal in L*°(G) (von Neumann subalgebra with
A(N,) € L*?(G)®N,).

o The convolution operation x — w = x can be viewed as
wxx=(1dQ@w)(W(x@1L)W*), x € L*(G),

where W € I\/I(CO(@) ® CH(G)) =« M(# (LA(G))) ® C3(G)) is the
“half-lifted” Kac-Takesaki operator of G.
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IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
whose range
N, = {x € L?(G)| E,(x) = x}

is a left coideal in L*°(G) (von Neumann subalgebra with
A(Ny,) € L*(G)®N,).

o The coideal N, is invariant under the scaling group
T = (7¢)ter of G and integrable
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IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
whose range
N, = {x € L?(G)| E,(x) = x}

is a left coideal in L*°(G) (von Neumann subalgebra with
A(Ny,) € L*(G)®N,).

o The coideal N, is invariant under the scaling group
T = (7¢)ter Of G and integrable (the right Haar measure of G
is semifinite on N,,.)
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IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
whose range
N, = {x € L?(G)| E,(x) = x}

is a left coideal in L*°(G) (von Neumann subalgebra with
A(N,) € L*?(G)®N,).
o The element

A~

P, = (ld®w)W € L*(G)
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G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
whose range
N, = {x € L?(G)| E,(x) = x}

is a left coideal in L*°(G) (von Neumann subalgebra with
A(N,) € L*?(G)®N,).
o The element

A~

P, = (ld®w)W € L*(G)

is a group-like projection
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IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

G - locally compact quantum group, w € Idem(G).
o The state w defines a normal conditional expectation

E,: L*(G)>x— wxxe L*G)
whose range
N, = {x € L?(G)| E,(x) = x}

is a left coideal in L*°(G) (von Neumann subalgebra with
A(N,) € L*?(G)®N,).
o The element

A~

P, = (ld®w)W € L*(G)

is a group-like projection, i.e. it is a projection such that

AP,)Y1®P,) =P, ®P,.
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Let G be a locally compact quantum group.




IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

THEOREM (FAAL-KASPRZAK)

Let G be a locally compact quantum group. Then there are
bijective correspondences between the sets of

o idempotent states w on Cj(G),
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THEOREM (FAAL-KASPRZAK)

Let G be a locally compact quantum group. Then there are
bijective correspondences between the sets of

o idempotent states w on Cj(G),
o integrable T-invariant left coideals N ¢ L*(G),
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THEOREM (FAAL-KASPRZAK)
Let G be a locally compact quantum group. Then there are
bijective correspondences between the sets of

o idempotent states w on Cj(G),

o integrable T-invariant left coideals N ¢ L*(G),

~

o 7T-invariant group-like projections P € L*(G)
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IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

THEOREM (FAAL-KASPRZAK)

Let G be a locally compact quantum group. Then there are
bijective correspondences between the sets of

o idempotent states w on Cj(G),

o integrable T-invariant left coideals N ¢ L*(G),

o 7T-invariant group-like projections P € L*(G)
mapping w € Idem(G) to N, and P,, respectively.
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THEOREM (FAAL-KASPRZAK)

Let G be a locally compact quantum group. Then there are
bijective correspondences between the sets of

o idempotent states w on Cj(G),

o integrable T-invariant left coideals N ¢ L*(G),

o 7T-invariant group-like projections P € L*(G)
mapping w € Idem(G) to N, and P,, respectively.

o P, e B(L?*G)) is the (orthogonal) projection onto L*(N,).
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IDEMPOTENT STATES IDEMPOTENT STATES, COIDEALS & GROUP-LIKE PROJECTIONS

THEOREM (FAAL-KASPRZAK)

Let G be a locally compact quantum group. Then there are
bijective correspondences between the sets of

o idempotent states w on Cj(G),

o integrable T-invariant left coideals N ¢ L*(G),

o 7T-invariant group-like projections P € L*(G)
mapping w € Idem(G) to N, and P,, respectively.

o P, e B(L?*G)) is the (orthogonal) projection onto L*(N,).

o If w arises as the Haar measure of a compact quantum
subgroup K then

N, = L*(G/K).
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o Let w, € Idem(G).



o Let w, u € Idem(G). We say that ;. dominates w if

W= [



o Let w, u € Idem(G). We say that ;. dominates w if

W= [

Notation: w < pu.



IDEMPOTENT STATES ORDER ON QUASI-SUBGROUPS
o Let w, u € Idem(G). We say that ; dominates w if
w* = U.

Notation: w < pu.
o For idempotent states w, u arising from compact quantum
subgroups H and K
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IDEMPOTENT STATES ORDER ON QUASI-SUBGROUPS

o Let w, u € Idem(G). We say that ; dominates w if

W* U= [

Notation: w < pu.
o For idempotent states w, u arising from compact quantum
subgroups H and K we have

(o<) = (nc
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IDEMPOTENT STATES ORDER ON QUASI-SUBGROUPS

o Let w, u € Idem(G). We say that ; dominates w if

W* U= [

Notation: w < pu.
o For idempotent states w, u arising from compact quantum
subgroups H and K we have

(o<) = (nc

PROPOSITION

i
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IDEMPOTENT STATES ORDER ON QUASI-SUBGROUPS
o Let w, u € Idem(G). We say that ; dominates w if
w* = U.

Notation: w < pu.
o For idempotent states w, u arising from compact quantum
subgroups H and K we have

(o<) = (nc

PROPOSITION
Let w, pu € Idem(G).

i
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IDEMPOTENT STATES ORDER ON QUASI-SUBGROUPS
o Let w, u € Idem(G). We say that ; dominates w if
w* = U.

Notation: w < pu.
o For idempotent states w, u arising from compact quantum
subgroups H and K we have

(o<) = (nc

PROPOSITION
Let w, pu € Idem(G). Then the following are equivalent

i
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IDEMPOTENT STATES ORDER ON QUASI-SUBGROUPS

o Let w, u € Idem(G). We say that ; dominates w if

W* U= [

Notation: w < pu.
o For idempotent states w, u arising from compact quantum
subgroups H and K we have

(o<) = (nc

PROPOSITION
Let w, pu € Idem(G). Then the following are equivalent:
o w=xp,

i
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IDEMPOTENT STATES ORDER ON QUASI-SUBGROUPS

o Let w, u € Idem(G). We say that ; dominates w if

W* U= [

Notation: w < pu.
o For idempotent states w, u arising from compact quantum
subgroups H and K we have

(o<) = (nc

PROPOSITION

Let w, pu € Idem(G). Then the following are equivalent:
0w p,
9 E,0E, =E,,

i
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IDEMPOTENT STATES ORDER ON QUASI-SUBGROUPS

o Let w, u € Idem(G). We say that ; dominates w if

W* U= [

Notation: w < pu.
o For idempotent states w, u arising from compact quantum
subgroups H and K we have

(o<) = (nc

PROPOSITION

Let w, pu € Idem(G). Then the following are equivalent:
0w p,
9 E,0E, =E,,
o N, <N,

i
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IDEMPOTENT STATES ORDER ON QUASI-SUBGROUPS

o Let w, u € Idem(G). We say that ; dominates w if

W* U= [

Notation: w < pu.
o For idempotent states w, u arising from compact quantum
subgroups H and K we have

(o<) = (nc

PROPOSITION
Let w, pu € Idem(G). Then the following are equivalent:
0w p,
9 E,0E, =E,,
o N, <N,
9 P,<P,.

i

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 7/ 31



o Let w, € Idem(G).



o Let w, € Idem(G). Define
N =N, v N,.



o Let w, € Idem(G). Define
N =N, v N,.

Then N is an integrable 7-invariant left coideal in L*(G).



LATTICE OPERATIONS INTERSECTION
o Let w, u € Idem(G). Define
N =N, v N,.

Then N is an integrable 7-invariant left coideal in L*(G).
o It follows that there exists v € Idem(G) such that

N=N,.
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LATTICE OPERATIONS INTERSECTION
o Let w, u € Idem(G). Define
N =N, v N,.

Then N is an integrable 7-invariant left coideal in L*(G).
o It follows that there exists v € Idem(G) such that

N=N,.

We denote v =w A
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LATTICE OPERATIONS INTERSECTION
o Let w, u € Idem(G). Define
N =N, v N,.

Then N is an integrable 7-invariant left coideal in L*(G).
o It follows that there exists v € Idem(G) such that

N=N,.

We denote v = w A p and call it the idempotent state
corresponding to the intersection of quasi-subgroups
related to w and p.
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LATTICE OPERATIONS INTERSECTION
o Let w, u € Idem(G). Define
N =N, v N,.

Then N is an integrable 7-invariant left coideal in L*(G).
o It follows that there exists v € Idem(G) such that

N=N,.

We denote v = w A p and call it the idempotent state
corresponding to the intersection of quasi-subgroups
related to w and p.

9 (w,u) — w A p is commutative and associative.
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LATTICE OPERATIONS INTERSECTION
o Let w, u € Idem(G). Define
N =N, v N,.

Then N is an integrable 7-invariant left coideal in L*(G).

o It follows that there exists v € Idem(G) such that
N=N,.

We denote v = w A p and call it the idempotent state
corresponding to the intersection of quasi-subgroups
related to w and p.

9 (w,u) — w A p is commutative and associative.

PROPOSITION
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LATTICE OPERATIONS INTERSECTION
o Let w, u € Idem(G). Define
N =N, v N,.

Then N is an integrable 7-invariant left coideal in L*(G).
o It follows that there exists v € Idem(G) such that

N=N,.

We denote v = w A p and call it the idempotent state
corresponding to the intersection of quasi-subgroups
related to w and p.

9 (w,u) — w A p is commutative and associative.

PROPOSITION
We have
w A p=sup{v e Ildem(G) |v < w, v < p}.
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LATTICE OPERATIONS ~ GENERATION
o For w, u € Idem(G) put
N =N, nN,.
Then N is a 7-invariant left coideal.

o Set Idemo(G) = Idem(G) u {0}.

THEOREM
Let w, p € Idem(G). Then
0 L3(Ny) n L3(N,) = L3N, n'N,),

o the sequence ((w * pu)*")
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LATTICE OPERATIONS GENERATION
o For w, u € Idem(G) put
N =N, nN,.

Then N is a 7-invariant left coideal.
o Set Idemo(G) = Idem(G) u {0}.

THEOREM
Let w, p € Idem(G). Then
o L3(N,) ~ LX(N,) = L3N, A N,.),
o the sequence ((w  p1)*")
v € Idemg(G),

ey IS weak™ convergent to
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THEOREM
Let w, p € Idem(G). Then
o LX(N,) n L2(N,) = L*(N,, A N,.),
o the sequence ((w  p1)*")
v € Idemg(G),
o L*(Ny) n L*(N,,) # {0} if and only if v # O
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LATTICE OPERATIONS GENERATION
o For w, u € Idem(G) put
N =N, nN,.

Then N is a 7-invariant left coideal.
o Set Idemo(G) = Idem(G) u {0}.

THEOREM
Let w, p € Idem(G). Then
0 L3(Ny) n L3(N,) = L3N, n'N,),

o the sequence ((w+ p)*™) . is weak* convergent to

v € Idemg(G),

o L*(Ny) n L*(N,) # {0} if and only if v # O; moreover, in this
case, v is the idempotent state corresponding to the
T-invariant integrable left coideal N, N N,,.

neN
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o For w, u € Idem(G) put
N =N, nN,.

Then N is a 7-invariant left coideal.
o Set Idemo(G) = Idem(G) u {0}.

THEOREM
Let w, p € Idem(G). Then
0 L3(Ny) n L3(N,) = L3N, n'N,),
o the sequence ((w  p1)*")
v € Idemg(G),
o L*(Ny) n L*(N,) # {0} if and only if v # O; moreover, in this
case, v is the idempotent state corresponding to the
T-invariant integrable left coideal N, N N,,.

: K
ey IS wealk™® convergent to

o M c L*(G) - coideal. Then L%(M) # {0} iff M is integrable.
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o The mapping Idem(G) x Idem(G) — Idemo(G)

_wrtT: *N
(w,p) = w v p =W lim (w = p)



LATTICE OPERATIONS GENERATION

o The mapping Idem(G) x Idem(G) — Idemo(G)

ok 1: *1
(W, p) = w v p = W= lim (w = p1)

is a commutative and associative operation.
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o The mapping Idem(G) x Idem(G) — Idemo(G)

ok 1: *1
(W, p) = w v p = W= lim (w = p1)

is a commutative and associative operation.
o Putting w v u = O whenever either of the states is zero
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LATTICE OPERATIONS GENERATION

o The mapping Idem(G) x Idem(G) — Idemo(G)

(W, p) — w v =W = lim (W p)™"
n—oo
is a commutative and associative operation.

o Putting w v u = O whenever either of the states is zero
extends this operation to a commutative and associative
operation on Idemg(G).
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o The mapping Idem(G) x Idem(G) — Idemo(G)
ok 1: *N
(W, p) = w v p = W= lim (w = p1)
is a commutative and associative operation.
o Putting w v u = O whenever either of the states is zero

extends this operation to a commutative and associative
operation on Idemg(G).

o If w and p are Haar measures on compact subgroups H and
K of G then
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LATTICE OPERATIONS GENERATION

o The mapping Idem(G) x Idem(G) — Idemo(G)
ok 1: *N
(W, p) = w v p = W= lim (w = p1)
is a commutative and associative operation.
o Putting w v u = O whenever either of the states is zero

extends this operation to a commutative and associative
operation on Idemg(G).

o If w and p are Haar measures on compact subgroups H and
K of G then

{Haar measure of (H, K) (H,K) is compact,
WV =
0
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LATTICE OPERATIONS GENERATION

o The mapping Idem(G) x Idem(G) — Idemo(G)

(W) — w v p=w'— lim (W= p

*1
n—oo )

is a commutative and associative operation.

o Putting w v u = O whenever either of the states is zero
extends this operation to a commutative and associative
operation on Idemg(G).

o If w and p are Haar measures on compact subgroups H and
K of G then

Haar measure of (H, K) (H,K) is compact,
w Vv = P ——
a 0 (H,K) is not compact.
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LATTICE OPERATIONS GENERATION

o The mapping Idem(G) x Idem(G) — Idemo(G)

ok 1: *N
(W, p) = w v p = W= lim (w = p1)

is a commutative and associative operation.
o Putting w v u = O whenever either of the states is zero

extends this operation to a commutative and associative
operation on Idemg(G).

o If w and p are Haar measures on compact subgroups H and
K of G then

Haar measure of (H, K) (H,K) is compact,
w Vv = P ——
a 0 (H,K) is not compact.

o We say that w v u corresponds to the quasi-subgroup of G
generated by the quasi-subgroups related to w and p.
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o We extend the order < from Idem(G) to Idemo(G) by
declaring that O is the largest element.
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LATTICE OPERATIONS GENERATION

o We extend the order < from Idem(G) to Idemg(G) by
declaring that O is the largest element.

PROPOSITION

We have
AAVETES inf{l/ € Idemo(G) |w <Y, pu< V}.
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LATTICE OPERATIONS GENERATION

o We extend the order < from Idem(G) to Idemg(G) by
declaring that O is the largest element.

PROPOSITION

We have
AAVETES inf{l/ € Idemo(G) |w <Y, pu< V}.

PROOF

N, is the largest integrable 7-invariant coideal contained both
in N, and N,

~
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declaring that O is the largest element.

PROPOSITION

We have
AAVETES inf{l/ € Idemo(G) |w <Y, pu< V}.

PROOF

N, is the largest integrable 7-invariant coideal contained both
in N, and N,, (it is {O} if N,, n N, is not integrable).
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LATTICE OPERATIONS GENERATION

o We extend the order < from Idem(G) to Idemg(G) by
declaring that O is the largest element.

PROPOSITION

We have
AAVETES inf{l/ € Idemo(G) |w <Y, pu< V}.

PROOF

N, is the largest integrable 7-invariant coideal contained both
in N, and N,, (it is {O} if N,, n N, is not integrable). ]

~
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Let w, u, p € Idem(G) be such that




Let w, u, p € Idem(G) be such that
Q p<xw,




Let w, u, p € Idem(G) be such that
Q p<xw,
@ pvpu=p=p,




Let w, u, p € Idem(G) be such that
Q p<xw,
@ pvpu=p=p,
) Nw/\u _ (NwNM)G_c‘l'S'.




Let w, u, p € Idem(G) be such that
Qrxw,
@pvpu=p=p,
) Nw/\u _ (NwNM)G_c‘l'S'.
Thenw A (v p)=(w A p) Vv p.




LATTICE OPERATIONS MODULAR LAW

THEOREM
Let w, i, p € Idem(G) be such that
Q p<xw,
@ PV U= p*U,
d Nw/\u _ (NwNM)U_C'l'S'.
Thenw A (p v p) = (w A p) v p.

o Assumption @ has several equivalent forms
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THEOREM
Let w, i, p € Idem(G) be such that
Q p<xw,
@ PV U= p*U,
d Nw/\u _ (NwNM)U_C'l'S'.
Thenw A (p v p) = (w A p) v p.

o Assumption @ has several equivalent forms:
O PV p=pxp,
O pEpE =L,
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LATTICE OPERATIONS MODULAR LAW

THEOREM
Let w, i, p € Idem(G) be such that
D rp<uw,
@ PV U= p*U,
d NUJ/\/,L _ (NwNu)U_C'l'S'.
Thenw A (p v p) = (w A p) v p.

o Assumption @ has several equivalent forms:
9 PV U= p*LU,
O pEpE =Py
O pEp=prp.
In terms of quasi-subgroups one could say that this
assumption says that those corresponding to p and w
normalize one another.
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LATTICE OPERATIONS MODULAR LAW

THEOREM
Let w, i, p € Idem(G) be such that
D rp<uw,
@ PV U= p*U,
d NUJ/\/,L _ (NwNu)U_C'l'S'.
Thenw A (p v p) = (w A p) v p.

o Assumption @ has several equivalent forms:
9 PV U= p*LU,
O pEpE =Py
O pEp=prp.
In terms of quasi-subgroups one could say that this
assumption says that those corresponding to p and w
normalize one another.
o Assumption @ is of technical nature (“c—c.l.s.” means
o-weakly closed linear span).

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 12 / 31



LATTICE OPERATIONS MODULAR LAW

THEOREM
Let w, i, p € Idem(G) be such that
Q p<xw,
@ PV U= p*U,
d NUJ/\/,L _ (NwNu)U_C'l'S'.
Thenw A (p v p) = (w A p) v p.

o Assumption @ has several equivalent forms:
9 pV U= prp,
O pEpEpL= L,
O prxEp=px L.
In terms of quasi-subgroups one could say that this
assumption says that those corresponding to p and w
normalize one another.
o Assumption @ is of technical nature (“c—c.l.s.” means
o-weakly closed linear span). It is fulfilled in case of actual
compact quantum subgroups.
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o The space L*(G), embeds naturally into Cj(G)*.



OPEN QUASI-SUBGROUPS

o The space L*(G), embeds naturally into Cj(G)*. We will
refer to elements of L*(G), < Cj(G)* as normal functionals.
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normal.
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o The space L*(G), embeds naturally into Cj(G)*. We will
refer to elements of L*(G), < Cj(G)* as normal functionals.

o Normal functionals form a closed ideal in Cj(G)*.

@ A compact quantum subgroup K of a locally compact

quantum group G is open in G iff the Haar measure of K is
normal.

(K c G is open if apart form the epimorphism

7 : Cj(G) —=C"(K)
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o The space L*(G), embeds naturally into Cj(G)*. We will
refer to elements of L*(G), < Cj(G)* as normal functionals.

o Normal functionals form a closed ideal in Cj(G)*.

@ A compact quantum subgroup K of a locally compact
quantum group G is open in G iff the Haar measure of K is
normal.

(K c G is open if apart form the epimorphism

7 : Cj(G) —=C"(K)

we have a compatible o-weakly continuous

=

. L(G)—=L*(K)
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normal.

(K c G is open if apart form the epimorphism
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we have a compatible o-weakly continuous
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o The space L*(G), embeds naturally into Cj(G)*. We will
refer to elements of L*(G), < Cj(G)* as normal functionals.

o Normal functionals form a closed ideal in Cj(G)*.

@ A compact quantum subgroup K of a locally compact
quantum group G is open in G iff the Haar measure of K is
normal.

(K c G is open if apart form the epimorphism

7 : Cj(G) —=C"(K)
we have a compatible o-weakly continuous

. L(G)—=L*(K)

=

— both commuting with comultiplications.)
Let Idem, o (G) = Idem(G) n L*(G).

©
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OPEN QUASI-SUBGROUPS

o The space L*(G), embeds naturally into Cj(G)*. We will

refer to elements of L*(G), < Cj(G)* as normal functionals.

o Normal functionals form a closed ideal in Cj(G)*.
@ A compact quantum subgroup K of a locally compact

quantum group G is open in G iff the Haar measure of K is

normal.
(K c G is open if apart form the epimorphism

7 : Cj(G) —=C"(K)

we have a compatible o-weakly continuous

=

. L(G)—=L*(K)

— both commuting with comultiplications.)

Let Idem,(G) = Idem(G) n L*(G),. The corresponding
quasi-subgroups will be called open.

©
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For any w, p € Idem(G) we have
W W
w € Idem,.(G)

— (u € Idemmr(G)).

L*(G)y is an ideal in Cj(G)*, so p = w * p € L*(G)«




OPEN QUASI-SUBGROUPS

PROPOSITION

For any w, p € Idem(G) we have
W W

w € Idem,.(G) — <# € Idemm,(G)>.

PROOF
L*(G)y is an ideal in C§(G)*, so u = w * p € L*(G), and hence
w € Idem,.(G).
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For any w, p € Idem(G) we have
W W
w € Idem,.(G) — <# € Idemm,(G)>.
PROOF
L*(G)y is an ideal in C§(G)*, so u = w * p € L*(G), and hence
w € Idem,.(G). O
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OPEN QUASI-SUBGROUPS

PROPOSITION
For any w, p € Idem(G) we have
dom, ( )
w € Idem,,(G) = (p € Idem,,.(G)).

PROOF
L*(G), is an ideal in Cj(G)*, so p = w * p e L*(G), and hence
w € Idem,.(G). O

~

COROLLARY
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OPEN QUASI-SUBGROUPS

PROPOSITION
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w € Idem,.(G) — ('u © Idemmr(G)>.

PROOF
L*(G)4 is an ideal in C§(G)*, so p = w * p € L*(G), and hence
w € Idem,.(G). O

COROLLARY
If G is a discrete quantum group then Idem,,.(G) = Idem(G).

PROOF

The counit ¢ of G is normal. Consequently any w € Idem(G)
satisfies ¢ < w, so w € Idem,,,(G) by proposition above. ]

o In other words any compact quasi-subgroup of a discrete
quantum group is open.
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PROOF OF @ =
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)

It follows that (1® @5)(A(x) —x®1)* (A(x) —x®@1)(1®QS) =0
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THEOREM
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SKETCH OF PROOF
Take arbitrary x € N,,. Then
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THEOREM

Q- is central and minimal in N,,.

SKETCH OF PROOF
Take arbitrary x € N,,. Then
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COROLLARY
QreN,.
o This is immediate from last proposition and corollary.

THEOREM

Q- is central and minimal in N,,.

SKETCH OF PROOF
Take arbitrary x € N,,. Then

AX)A®Q,)=x®Q; and (1®Q,)A(x) =x®Q;.

It follows that for any p € L*(G), we have
(n®1d)(A(X)) Gy = () = Qu (1 ®1d) (A(x)).
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COROLLARY
Qj e N,.

o This is immediate from last proposition and corollary.

THEOREM

Q- is central and minimal in N,,.
SKETCH OF PROOF
Take arbitrary x € N,,. Then
ANI®Q,)=x®Q; and (1®Q,)A(X)=x®QJ;.
It follows that for any p € L*(G), we have
(1 ®1id)(A(X)) Q9 = p(x)Qy = Qi (p®id) (A(x)).

The result follows from o-weak linear density of elements of the
form (p®id)(A(x)) in N,.
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COROLLARY
The projection @ is integrable for the right Haar measure of G. J

o As corollaries of this we have the following:

o the scaling constant of G must be equal to 1,
(@} is a non-zero, positive, 7-invariant integrable element);
o if G is discrete then the support of w € Idem,,.(G) in

c(G) = P M, (C)

aelr G

is finite (this follows from formula for h).
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Let w € Idem,,(G) then

_h(Q,x9))

w(x) = x € L(G).

h(Qy)
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THEOREM
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_h(Q,x9,)

w(x) = RQD) x e L*(G).

SKETCH OF PROOF
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Let w € Idem,.(G) then
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w(x) = —=2 x € L*(G).
h(Q})
SKETCH OF PROOF
Define 6 by
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THEOREM
Let w € Idem,.(G) then
h(Q.xQy)
w(x) = —22 =W/ x € L*(G).
(x) h(QL) (G)
SKETCH OF PROOF
Define 6 by
h(QxQ))
0(x) = —2 =9~ x e L*(G).
R (o1 ©
Then 6 is a normal state and 9 « 0 = 6
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SKETCH OF PROOF
Define 6 by
1 1
f(x) = h(9,x9,) xe L(G).

h(Qy)

Then 6 is a normal state and 0 = § = § (because Qj is a
group-like projection).
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f(x) = h(9,x9,) xe L(G).

h(Qs) ~’
Then 6 is a normal state and 0 = § = § (because Qj is a

group-like projection).
Easy to see: Qyp = Q.
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THEOREM
Let w € Idem,.(G) then

h L L
w(x) = %, x € L°(G).
SKETCH OF PROOF
Define 6 by
L L
o(x) = MOux0) x e L°(G).

h(Q5)
Then 6 is a normal state and 0 = § = § (because Qj is a
group-like projection).

Easy to see: Qy = Q., and since Qy determines Ny, we have
Ng = N,.
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THEOREM
Let w € Idem,.(G) then

h L L
w(x) = %, x € L°(G).
SKETCH OF PROOF
Define 6 by
L L
o(x) = MOux0) x e L°(G).

h(Q5)
Then 6 is a normal state and 0 = § = § (because Qj is a
group-like projection).

Easy to see: Qy = Q., and since Qy determines Ny, we have
Ng = N,,. Therefore w = 6.
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Let w € Idem,,(G). Then

~

P, = (id ®w)(W) e L®G)

is integrable with respect to h.




OPEN QUASI-SUBGROUPS DuALITY

PROPOSITION
Let w € Idem,.(G). Then

P, = (id ® w)(W) € L®(G)

is integrable with respect to h.

o The proof relies on modular theory and results of
Faal-Kasprzak.
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P, = (id ® w)(W) € L®(G)

is integrable with respect to h.

o The proof relies on modular theory and results of
Faal-Kasprzak.

o The next theorem uses co-duality for coideals. Let
N c L*®(G) be a left coideal. Then

~ A~

N =N nL?G)

~

is a left coideal in L*(G).
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OPEN QUASI-SUBGROUPS DuALITY

PROPOSITION
Let w € Idem,.(G). Then

P, = (id ® w)(W) € L®(G)

is integrable with respect to h.

o The proof relies on modular theory and results of
Faal-Kasprzak.

o The next theorem uses co-duality for coideals. Let
N c L*®(G) be a left coideal. Then

~

N =N nL%G)

~

is a left coideal in L*(G). We have N =N.
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that N, = Ng.
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THEOREM
Let w € Idem,,.(G). Then there exists a unique @ € Idemmr(@) such
that N, = Ng. Moreover

o the mapping

Idem,(G) s w+— w e Idemmr(@)

satisfies @ = w for all w,
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THEOREM

Let w € Idem,,.(G). Then there exists a unique @ € Idemmr(@) such
that N, = Ng. Moreover

o the mapping
Idem,(G) s w+— w e Idemmr(@)

satisfies & =w Jorall w,
o we have @+ = P, and P; = Q.
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that N, = Ng. Moreover
o the mapping

Idem,(G) s w+— w e Idemmr(@)

satisfies & =w Jorall w,
o we have @+ = P, and P; = Q.

o We have

~ - ﬁ(Pwwa) 00/
w(y)—iﬁ(Pw) : ye L”(G).

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018

22 /31



OPEN QUASI-SUBGROUPS DuALITY

THEOREM

Let w € Idem,,.(G). Then there exists a unique @ € Idemmr(@) such

that N, = Ng. Moreover
o the mapping
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satisfies & =w Jorall w,
o we have @+ = P, and P; = Q.

o We have

~ B ﬁ(Pwwa) 0 (1
w(y)—iﬁ(Pw) : ye L”(G).

o Important ingredient of the proof:
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Let w € Idem,,.(G). Then there exists a unique @ € Idemmr(@) such

that N, = Ng. Moreover
o the mapping

Idem,(G) s w+— w e Idemmr(@)

satisfies & =w Jorall w,
o we have @+ = P, and P; = Q.

o We have N
~ h(Pw wa) 00/
w\yYy) = ——7""", ye L*(G).
(y) AP (G)
o Important ingredient of the proof:
_{yeLOO |A JAI®P,) =y®P,}
(Faal-Kasprzak).
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OPEN QUASI-SUBGROUPS DuALITY

o By the work of Kalantar-Kasprzak-Skalski on open
quantum subgroups of locally compact quantum groups we
have a bijective correspondence between

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 23/ 31



OPEN QUASI-SUBGROUPS DuALITY

o By the work of Kalantar-Kasprzak-Skalski on open
quantum subgroups of locally compact quantum groups we
have a bijective correspondence between

o normal open quantum subgroups of a l.c.q.g. G,

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 23/ 31



OPEN QUASI-SUBGROUPS DuALITY

o By the work of Kalantar-Kasprzak-Skalski on open
quantum subgroups of locally compact quantum groups we
have a bijective correspondence between

o normal open quantum subgroups of a l.c.q.g. G,
o normal compact quantum subgroups of G.

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 23/ 31



OPEN QUASI-SUBGROUPS DuALITY

o By the work of Kalantar-Kasprzak-Skalski on open
quantum subgroups of locally compact quantum groups we
have a bijective correspondence between

o normal open quantum subgroups of a l.c.q.g. G,
o normal compact quantum subgroups of G.
9 Our theorem gives a bijection between

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 23/ 31



OPEN QUASI-SUBGROUPS DuALITY

o By the work of Kalantar-Kasprzak-Skalski on open
quantum subgroups of locally compact quantum groups we
have a bijective correspondence between

o normal open quantum subgroups of a l.c.q.g. G,
o normal compact quantum subgroups of G.

9 Our theorem gives a bijection between
o compact open quasi-subgroups of G,

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 23/ 31



OPEN QUASI-SUBGROUPS DuALITY

o By the work of Kalantar-Kasprzak-Skalski on open
quantum subgroups of locally compact quantum groups we
have a bijective correspondence between

o normal open quantum subgroups of a l.c.q.g. G,
o normal compact quantum subgroups of G.
9 Our theorem gives a bijection between
o compact open quasi-subgroups of G,
o compact open quasi-subgroups of G.

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 23/ 31



OPEN QUASI-SUBGROUPS DuALITY

o By the work of Kalantar-Kasprzak-Skalski on open
quantum subgroups of locally compact quantum groups we
have a bijective correspondence between

o normal open quantum subgroups of a l.c.q.g. G,
o normal compact quantum subgroups of G.
9 Our theorem gives a bijection between
o compact open quasi-subgroups of G,
» compact open quasi-subgroups of G.
o The latter is, in fact, an extension of a special case of the
former.
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OPEN QUASI-SUBGROUPS COMPACT AND DISCRETE QUANTUM GROUPS

INTERLUDE

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOLTAN)

Let G be a compact quantum group acting ergodically on a von
Neumann algebra N
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INTERLUDE

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOLTAN)

Let G be a compact quantum group acting ergodically on a von

Neumann algebra N with a finite-dimensional direct summand.
Then dimN < +oo0.

9 An action a: N - L*(G)®N is ergodic if

(a(x) = ]l®x) = (xe C]l>

for all x € N.
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OPEN QUASI-SUBGROUPS COMPACT AND DISCRETE QUANTUM GROUPS

INTERLUDE

THEOREM (DE COMMER-KASPRZAK-SKALSKI-SOLTAN)

Let G be a compact quantum group acting ergodically on a von

Neumann algebra N with a finite-dimensional direct summand.
Then dimN < +oo0.

9 An action a: N - L*(G)®N is ergodic if

(a(x) = ]l®x) = (xe C]l>

for all x € N.

o The natural action of G on a coideal N ¢ L*(G) is ergodic.
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THEOREM

Let G be a compact quantum group and w € Idem(G). Then
w € Idem,.(G) if and only if dim N,, < +0c0.

PROOF =

If w € Idem,,.(G) then N, admits a minimal central projection, so
it has a finite dimensional direct summand. Also the action of G
on N, is ergodic. By theorem on ergodic actions of c.q.g.’s on
such von Neumann algebras we have dimN,, < +c0.
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Let G be a compact quantum group and w € Idem(G). Then
w € Idem,.(G) if and only if dim N,, < +0c0.

PROOF <
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P, is a projection onto the finite-dimensional space L?(N,), so
h(P,) < +. Therefore

h(P,yP,)

Aey @ U@

W(y) =

is a normal idempotent state and N\;J — N3. It follows that w = &
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is a normal idempotent state and N\;J = Ng. It follows that w =
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~
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Let G be a compact quantum group and w € Idem(G).
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COROLLARY

Let G be a compact quantum group and w € Idem(G). Then N,, has
a finite dimensional direct summand if and only if w € Idem,,.(G).
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COROLLARY

Let G be a compact quantum group and w € Idem(G). Then N,, has
a finite dimensional direct summand if and only if w € Idem,,.(G).

>

PROOF
If w € Idem,,.(G) then dim N, < +0o0
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OPEN QUASI-SUBGROUPS COMPACT AND DISCRETE QUANTUM GROUPS

COROLLARY

Let G be a compact quantum group and w € Idem(G). Then N,, has
a finite dimensional direct summand if and only if w € Idem,,.(G).

>

PROOF
If w € Idem,,,.(G) then dim N,, < +00, so N, is a direct sum of
matrix algebras.
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Let G be a compact quantum group and w € Idem(G). Then N,, has
a finite dimensional direct summand if and only if w € Idem,,.(G).

PROOF

If w € Idem,,,.(G) then dim N,, < +00, so N, is a direct sum of
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that
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o G — locally compact quantum group.

o If w, p € Idem,,(G) and w v p # Othen w v p € Idem,,.(G).



OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

o G — locally compact quantum group.
o If w, € Idem,,(G) and w v u # Othen w v p € Idem,.(G).

o If H and K are compact open quantum subgroups of G then
H ~ K is open
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o G — locally compact quantum group.
o If w, € Idem,,(G) and w v u # Othen w v p € Idem,.(G).

o If H and K are compact open quantum subgroups of G then
H n K is open, so if w and p are Haar measures on H and K
then w A p is normal.

o However, w A p is not necessarily normal.
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Let L be a non-compact locally compact quantum group
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Let L be a non-compact locally compact quantum group
generated by two compact open subgroups H; and Hy. Let p;
and u9 be the corresponding idempotent states of Haar type on
CH(L) (both are normal). Then, first of all, we have
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and u9 be the corresponding idempotent states of Haar type on
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N,, = L°(L/Hy), i=1,2.
Put G = L and wi = f1; for i = 1,2. Then w;,wy € Idem,,,.(G) and

—_—

N,, = N, = L°(L/H;) = L°(H,), i=1,2.
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Let L be a non-compact locally compact quantum group
generated by two compact open subgroups H; and Hy. Let p;
and u9 be the corresponding idempotent states of Haar type on
CH(L) (both are normal). Then, first of all, we have

N,, = L°(L/Hy), i=1,2
Put G = L and wi = f1; for i = 1,2. Then w;,wy € Idem,,,.(G) and
Nay, = Ny, = L2(L/Hy) = L2(H), i=12
Furthermore, since L = G is generated by H; and Hy, we have
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SO wi A wg Mmust be the counit of G.
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Put G = L and wi = f1; for i = 1,2. Then w;,wy € Idem,,,.(G) and
Nay, = Ny, = L2(L/Hy) = L2(H), i=12
Furthermore, since L = G is generated by H; and Hy, we have

Nuj awy = Nuy v Ny, = LP(H,;) v LP(Hy) = L2(G),

SO0 wi A wg must be the counit of G. However, the latter is
normal if and only if G is discrete which is not the case since L
is not compact.
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OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

EXAMPLE

Let L be a non-compact locally compact quantum group
generated by two compact open subgroups H; and Hy. Let p;
and u9 be the corresponding idempotent states of Haar type on
CH(L) (both are normal). Then, first of all, we have

N,, = L°(L/Hy), i=1,2
Put G = L and wi = f1; for i = 1,2. Then w;,wy € Idem,,,.(G) and
Nay, = Ny, = L2(L/Hy) = L2(H), i=12
Furthermore, since L = G is generated by H; and Hy, we have

Nuj awy = Nuy v Ny, = LP(H,;) v LP(Hy) = L2(G),

SO0 wi A wg must be the counit of G. However, the latter is
normal if and only if G is discrete which is not the case since L
is not compact. It follows that w; A wg is not normal.
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Let w, u € Idem,,.(G). Then w A p € Idem,(G) if and only if
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OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

PROPOSITION
Let w, p € Idem,,(G). Then w A p € Idem,,.(G) if and only if
w v i # 0. In this case we have

WAU=KV .

PROOF
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PROPOSITION

Let w, p € Idem,,(G). Then w A p € Idem,,.(G) if and only if
w v i # 0. In this case we have

WAU=KV .

PROOF
Assume first that w A p is a normal state.
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Let w, p € Idem,,(G). Then w A p € Idem,,.(G) if and only if
w v i # 0. In this case we have
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PROOF
Assume first that w A p is a normal state. Then

Nm = NwAu

P.M. SOLTAN (WARSAW) LATTICE OF IDEMPOTENT STATES FEBRUARY 26, 2018 31/ 31



OPEN QUASI-SUBGROUPS OPERATIONS ON OPEN QUASI-SUBGROUPS

PROPOSITION

Let w, p € Idem,,(G). Then w A p € Idem,,.(G) if and only if
w v i # 0. In this case we have

~

WAU=KV .

PROOF
Assume first that w A p is a normal state. Then

Ngzz = Nonp = Ny VN,
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Let w, p € Idem,,(G). Then w A p € Idem,,.(G) if and only if
w v i # 0. In this case we have
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WAU=KV .

PROOF
Assume first that w A p is a normal state. Then

~ o~

Nm:Nw/\H:Nw\/NHZNwﬁNH
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Let w, p € Idem,,(G). Then w A p € Idem,,.(G) if and only if
w v i # 0. In this case we have

~
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PROOF
Assume first that w A p is a normal state. Then
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PROPOSITION

Let w, p € Idem,,(G). Then w A p € Idem,,.(G) if and only if
w v i # 0. In this case we have

~

WAU=KV .

PROOF
Assume first that w A p is a normal state. Then

~ o~

Nm=m=vaNH=Nme“:N&V

s

sothatw v i=w A #0.
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w v i # 0. In this case we have

~

WAU=KV .

PROOF
Assume first that w A p is a normal state. Then
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Conversely, if & v 1 # 0
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