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Intensive and Extensive 

Underused Concepts 

Sebastian G. Canagaratna 
Ohio Northern University, Ada, OH 45810 

Classifing the properties of material systems into exten- 
sive and intensive types embodies a ver, important cou- 
cept. Indeed the existence of extensive has been 
raised ( I )  to the status of the fourth law of thermodynam- 
ics. 

The use that we make of these conce~ts in our teachine 
does not do justice to their importance:*~ost textbooks on 
thermodvnamics mention them onlv brieflv. sometimes in 
connectibn with Euler's  theorem.^ few ?reshman text- 
books ( 2 4 )  define them briefly, but make no use of them. 
The book by Bodner (5) is the only elementary text I have 
seen in which some use is made of these conce~ts. 

In this article I share with the readers of this >ournu1 the 
methods I have adouted in teachine intensive and exten- 
sive properties bot; at  the freshman and junior levels. 
First I will give some background: a systematization of the 
facts and concepts relating to intensive and extensive 
properties. 

Experimental Facts 
Experimental facts concerning the properties of systems 

sueeest that two im~ortant  conceuts are needed to de- 
s c Z e  any system: thk state of the system and the size or 
extent ofthe svstem. This distinction imolies that it is oos- 
s~ble tn samples of the system tiat differ in exient 
tee.. volume, but havc the same state. Thcstate is delined. 
for-a pure substance, by the temperature and pressure of 
the sample. Thus, two samples of water both at 25 'C and 
1 atm, with volumes of 25 mL and 50 mL, are said to be in 
the same state. 

The concept of state is important because experiments 
suggest that certain properties-like density, refractive 
index, viscosity-depend only on the state and not on the 
size (e.g., the volume of the sample). For a homogeneous 
mixture, the state of the system is completely fixed by 
s~ecifvine. in addition to the temoerature and Dressure. . " -. 
the composition of the system (i.e., the chemical nature 
and relative proportion of the constituents in the mixture). 

Intensive Properties 
The above considerations show that there are some prop- 

erties that, for a given state, do not depend on the size of 
the system. Such properties have, at  equilibrium, the same 

value for all parts of a phase; indeed they have well-de- 
fined values at  any point of the phase. They are called in- 
tensive properties. Their values can be used to character- 
ize the state of the system. 

Temperature and pressure are two very important inten- 
sive properties. Their intensive nature is stated in two 
laws: the zeroth law  law of thermal e(ruilibrium, and the 
law of hydrostatic equilibrium. For a pure substance ex- 
ueriments show that all intensive urouerties deoend onlv . . 
on the temperature and pressure. For homogeneous mix- 
tures formed by mixing C substances, any intensive prop- 
erty depends, in general, not only on the temperature and 
Dressure but also on C - 1 additional intensive ~ ro~er t i e s .  . A 

(e.g., mole fractions of C - 1 constituents of the mixture). 
Exam~les of other common intensive ~ r o ~ e r t i e s  are den- 
sity, concentration, and molality of so1;tes; 

We can define an intensive DroDertv more formallv as - .  - 
below. 

If a, p, y, ... are parts of a system in equilibrium, and y is a 
property such that y(a) = y(P) = y(d ..., then y is said to be an 
intensive property. 

The value ofy for the system may then be defined by 

Clearly y(sys) is independent of the size (or extent) of the 
system. 

Constancv of the value in all oarts as eiven bv ea 1 is the - " .  
criterion for deciding whether a given property is inten- 
sive. Another way is t~ ask 'Voes it make sense to talk of 
the property without specifying the size of the system?" We 
s~eak .  for exam~le. of the densitv of water at a certain tem- . . 
perature and pressure, not of the density of 10 g of water 
or the density of 20 g of water. This shows that density is 
an intensive property. 

Extensive Properties 
In strong contrast to intensive properties are properties 

like volume and mass whose value for the system is the 
sum ofvalues for the parts. Instead of eq 1, the properties 
obey the following relations. 

V(sys) = V(U) + V(P) + ... (2)  

W(S~S)  * W(a) + W(P) + .. . (3) 
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Thus, extensive properties are additive with respective to 
parts of the system. For example, if a system consists of 
solid ice and liquid water, then 

V(system) = V(ice) + V(1iquid) 

Besides mass and volume, common examples of exten- 
sive properties include 

number of molecules 
total amount of substance, nbt 
amount of component i, nj 

mass  of component i, W, 
the themadynamic properties 

internal enerw U -. 
enthalpy H 
entmpy S 
Gibbs free energy G 

For homogeneous systems the value of an extensive prop- 
erty will depend on the size (or extent) of the system. 

Direct Proportionality Relationships 
We can make the last statement much more definite. 

Consider two samples of a systemin the same state. Let WI 
and W2 he the total masses of the samples 1 and 2. If 

w,=7xw1 

then sample 2 may he regarded as comprising r parts, each 
part being identical to sample 1. 

If X and Yare any two extensive properties of the sam- 
ples, then by the law of additivity with respect to parts of 
the system, we get the following. 

X,=X1+X1+ ...+ XI (4) 

in whichXl is added r times to give 

X2=rxXl 

Similarly, 

Y 2 = r x Y ,  

Eliminating r, we get 

The validity of eq 6 is independent of r. Thus, we may sum- 
marize the significance of eq 6. 

The ratio of any two extensive properties of a homogeneous 
phase in equilibrium is independent of the size of the system 
and depends at most on the state of the system. 

Thus, the ratio of extensive properties (in eq 6 )  is an inten- 
sive property. Equation 6 may be regarded in various ways. 

as a rationale for the definition of intensive pmperties 
as a basic law for extensive properties 
as giving a basis for describing the extent of a phase 
as giving a basis for checking the consistency of equations 

Rationale for the Definition of Intensive Quantities 
The ratio of any two extensive quantities will be inde- 

pendent of sample size and thus can be used to character- 
ize the state of the system. Several common intensive 
properties can be correlated by eq 6. 

Density 

Using Y = mass, W, and X = V, we get 

This gives us the following definition of density p for the 
given state. 

The density is a function of T,p, and composition. 

Concentration 

Using Y = the amount of i, ni, andX= V, we get 

This gives us the following definition for the concentra- 
tion of i. 

Thus, the concentration of i, ci, is a function of T,p, and 
composition. The concentration of C - 1 solutes may used 
to specify the composition. 

Mole Fraction 

Using Y = nj and X = total amount, ntot, we get 

where xi is the mole fraction of i. The mole fractions are 
often used to specify the composition. For a given system, 
the mole fractions are, in contrast to concentrations, inde- 
pendent of T and p. 

Molality 

Using Y = nj andX= mass of solvent, W1, we get 

where mi is the molality of i. Like mole fractions, the 
molalities are, for a given system, independent of T andp. 

Mass Fraction 

Using Y = mass of i, Wj, and X = total mass Wm, we get 

=mass fraction of i 

A related intensive property is mass percentage. 

Molar Mass 

Using Y = W, and X= ni, we get 

where Mj is the molar mass. Molar mass is characteristic 
of the substance and independent of the state. 

Avogadro Constant 

Using Y = number of molecules of i, Nj, andX= ni, we get 
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5.0 W(oxalic acid) = - x 50 g 
155 

Applying Changes in Extensive Properties 
where NA is the Avogadro constant. The Avogadro constant 
is a universal constant, due to the way in which we define 
the amount of a substance. 

Molar and Specific Properties 

When Y is any extensive property of a pure substance 
and X is either the amount of substance n or the mass W, 
we obtain the following defmitions of molar and specific 
properties, respectively. 

Using the Ratio of Extensive Properties 

Herron et al. (6) have recently drawn attention to the 
diiliculties that students have with the usual definitions of 
density, etc. If we defme density as mass divided by vol- 
ume, it becomes a purely mathematical relation. Indeed 
the student is in danger of thinking that mass and volume 
are the independent variables for density! The full signifi- 
cance emerges only when we understand the definition in 
terms of eq 6. 

In particular, eq 6 gives us a recipe for the experimental 
determination. 

Take any sample in the spe*fied state. 
Then either select a portion of this sample of known mass and 

determine its volume, or select a sample of known volume 
and determine its mass. 

The ratio of mass to volume will give the density. 

The Law for Extensive Quantities 
Equation 6 is a basic law concerning extensive quanti- 

ties. It can be used directly without reference to the name 
of any intensive quantity. I believe there is much pedagogic 
merit in stressing the general laws and in reinforcing them 
by showing how they can be used in solving problems. 

Applying the Ratio of Extensive Quantities 

The way I work the following problems shows how I re- 
inforce the importance of this law. 

Problem 
5.0 g of od ic  acid is dissolved in 150 g of water. 
Calculate the mass of oxalic acid in 50 g of the solution. 

Solution 

The quantity that we want is W(oxa1ic acid), given that 
W(solution) = 50 g. Because these are extensive properties, 
the law for the problem is 

W(oxalic acid) W(oxalic acid) 
W(solution) ample 1 

Taking sample 1 as the solution with W(solution) = 50 g 
and sample 2 as the solution with W(oxalic acid) = 5.0 g 
and W(water)= 150 g, we have 

W(oxalic acid) - 5.0 g - 
50 g 5.0g+150g 

Thus, we get 

Another type of question that I give students concerns 
the stoichiometric law for chemical reactions. These relate 
changes in extensive quantities and may be regarded as an 
example of eq 6: Changes in amounts, masses, and vol- 
umes of gases (measured at the same T andp) are propor- 
tional to&e another. 

One of the samples can be taken as the sample repre- 
sented by the following balanced equation. Consider the 
following. 

Problem 
.What is the mass of calcium oxide that can be prepared by 

the complete dissociation of 100 tons of calcium carbonate? 

The equation for the reaction is 

CaC03 CaO + C02 

Solution 

It is given that 

W(CaC03) = 100 ton 

or more strictly, Aw(CaCO3) = 100 ton, etc. 

Because these are extensive quantities, we can apply eq 6, 
and the law for the problem becomes 

Taking the balanced equation as representing sample 1, 
when W(CaC03) = 100 g, W(Ca0) = 28 g. Thus, we get 

W(Ca0) -a 
100 ton - 100 g 

28 W(Ca0) = - x 100 ton 
100 

There is no need to convert from ton to gram and back, as 
many students might do using the "dimensional analysis" 
approach. 

Specifying the Extent of a Phase 
In my treatment I stress that students should be sure 

their systems are completely defined before embarking on 
any analysis: A system is completely defined by its state 
and its extent. Equation 6 may also be written as 

Y = Xx intensive property 

To calculate an extensive property we need not only the 
state of the phase (to define intensive properties) but also 
one extensive quantity. Also, any extensive quantity is di- 
rectly proportional to another extensive quantity. This 
makes clear the rule for describing a phase. 

A phase is completely described by specifying its state and 
its extent. The state of a phase is completely described by spec- 
ifying its temperature, pressure, and C - 1 composition vari- 
ables. The extent is specified by specifying any one extensive 
quantity. 

Checks for Mistakes in Equations 
Students often make careless mistakes in mathematical 

manipulations, so they should check for such mistakes. A 
check that follows from eq 6 is 
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If one side of an equation is extensive (or intensive), then so 
must he the other side. 

In applying this check we must remember the following. 

The product of an intensive quantity with an extensive 
quantity is extensive. 

The ratio of two extasive quantities is intensive. 
The product of intensive quantities will be intensive. 

Though the quantity calculus will reveal any mistakes at 
the final stage, I encourage students to apply this check 
before starting the numerical calculation. 

Laws of Conservation 
There are two other ideas that I use in my systematiza- 

tion. The law of conservation obeyed by some extensive 
quantities is the following. 

The value of a conserved extensive property of a closed sys- 
tem is independent of time and does not change even if there is 
a change of state 

This may be written as 

The total property after the reaction = 

The total property before the reaction 

where the value of the total property is calculated by the 
principle of additivity with respect to the parts of the sys- 
tem. 

The extensive quantities that obey the law of consewa- 
tion are 

electric charge (There seem to he no exception to this.) 
the mass (This is strictly &ue only if we neglect small rela- 
tivistic corrections.) 
the amount of each elemental species (in the absence of a 
nuclear reaction) 

.the amount of each molecular species (in the ahsence of a 
chemical reaction) 

Acommon mistake that students make is to assume that 
volume is conserved. When I ask students to predict the 
volume of the resulting solution obtained by mixing 200 
mL of distilled water with 50 mL of 1 M NaCl solution, 
almost all give 250 mL as the answer. This gives me a 
chance to discuss the difference between additivity with 
respect to parts and conservation. Because there is a 
change of composition in the above case, volume is not con- 
served. 

I contrast this case with m i ~ g  200 mL of 0.1 M NaCl 
solution with 50 mL of 0.1 M NaCl solution. where both , ~~~~~ 

solutions are a t  the same temperature and pressure. In 
this example there is no chanee of state. and the final vol- - 
ume by additivity is 250 mL. 

Additivity with Respect to Constituents 
The last of the ideas that I use in mv svstematization 

(but only at the junior level) relates to &e Hdditivity with 
respect to constituents of extensive properties of a mix- . . 
ture. Thus, in a homogeneous mixture with the amounts nl 
for species 1, nz for species 2, etc., any extensive property 
may be written in the following form. 

Y=ngI+ngz +n&+ ... (7) 

where 

with yi called the partial molar value of Y with respect to 
species i. 

Y takes the form of a sum of contributions from each con- 
stituent, where the contribution of each constituent is for- 

mally similar to that of a pure substance (i.e., Y = ny) ex- 
cept thatyi depends not only on T andp but in general also 
on the composition. 

The following equation is an example of using eq 7 to 
state the Gibbs free energy. 

Equation 8 has its basis in Euler's theorem on homoge- 
neous functions (8). Students can write such equations 
more readily and work with them better when they grasp 
the connection between the form of the equation and the 
extensivity of the property. 

The following equation can also be understood in terms 
of intensive and extensive properties. 

It describes changes in an extensive property Y brought 
about by changes hi at constant T andp. 

Equation 9 combined with eq 7 gives us the Gibbs- 
Duhem equations. Students find it easier, a t  least the first 
time around, to have these equations written according to 
their physical significance rather than by using Euler's 
theorem. 

Introducing the Concepts: When and How? 
Many of the concepts that science students encounter in 

high school and earlier are intensive or extensive: mass, 
length, volume, area, temperature, pressure, concentra- 
tion. Much of the difficulty that students later experience 
may arise from a poor first introduction to these concepts. 

An example is the way in which we introduce a concept 
like density. We tell students how we defme the value of 
this quantity, but a true understanding of this concept re- 
quires seeing that density does not depend on the sample 
size. It depends only on T, p, and composition. Students 
must also understand why this follows from the additivity 
of mass and volume: The density is characteristic of the 
substance and its state-not of the sample size. 

The basic ideas on which the "extensive/intensive" clas- 
sification is based are 

the additivity of a property with respect to parts of a system 
the constancy of a property in all parts of the system at equi- 
librium 

The idea of additivity of the mass and volume of a sample 
is best explored by thpdiscovery lab" method using simple 
systems like water or a solution of sodium chloride. Stu- 
dents can then be led to explore how the ratio of mass to 
volume depends on sample size, temperature, and concen- 
tration of sodium chloride. The constancy of this ratio then 
becomes a "law", and problems involving this law can be 
introduced even before the term density is introduced. Stu- 
dents should also be invited to measure the temperature a t  
various points in the system and contrast this with the re- 
sults they obtained with mass and volume. 

Hypothetical Experiments 

Unfortunately, my students have not had such a discov- 
em course in hieh school. and lack of time has kept me 
from developingthe subject this way. I do the nex't best 
thing: I discuss the relevant ideas in terms of hypothetical 
experiments and try to elicit responses from students as to 
the results they think they would obtain. 

Students have no difficulty with the additivity of mass 
and volume. I then have them consider the additivitv of 
numbers of particles and amounts (no. of mol). The effect 
of increasing (doubling, trebling, etc.) the size of a sample 
(system) on the ratio of two such additive properties is con- 
sidered. Students are also invited to consider how they 
would verify that a solutionis homogeneous. These consid- 
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erations lead them to the concept of properties that have 
the same value everywhere. Specific examples of such 
properties are considered. 

I try to reinforce the idea that the ratio of two extensive 
properties is independent of sample size. One way is to in- 
troduce problems long before formally introducing the rel- 
evant intensive properties like concentration and molality. 

My experience in teaching these ideas at the freshman 
level is limited, but I have consistently used this approach 
in the physical chemistry course a t  the junior level. The 
treatments at both levels have many ideas in common, but 
a t  the junior level I am able to give a systematic treatment 
a t  the beginning of the course because students are al- 
ready familiar with many of the concepts. 

My goal is to show how these ideas will help them do the 
following. 

correlate a large number of properties 
understand the rules for demiblnl: a system 
check the consistency of equations 
understand the physical significance of equations 

Calculating Intensive Quantities 
Students often have difficulty calculating intensive 

quantities or deriving theoretical expressions for them. In- 
tensive quantities are by definition independent of sample 
size. Thus, they can be expressed completely in terms of 
other intensive quantities. The ideal gas equation is a good 
yet simple way to show this. 

Exercises I have students try include 

obtaining the expression for the concentration of an ideal gas 
in terms of T andp 
obtaining the expression for the density of an ideal gas 

Another good exercise is the derivation of the expression 
for the average molar mass of a mixture. They know that 
i t  is an intensive quantity, but can they express i t  entirely 
in terms of other intensive quantities? More difficult exam- 
ples are expressing molalities in terms of concentrations 
and vice versa. 

Choosing Any Convenient Size 

I stress that because intensive oroverties are indeoen- 
A A 

dent of sample size, we may consider any convenient sam- 
ole size. To illustrate some of these ideas I work problems 
bf the following type, emphasizing how our knowledge of 
intensive and extensive properties can guide us. 

Problem 
A 0.4332 M solution of MgC12 at 20 'C and 1 atm has a den- 
sity of 1.0311 g/cm3. 
Calculate the molality of magnesium chloride. 

Solution 

Because molality is an intensive property, it is indepen- 
dent of sample size. To calculate it we can consider a sam- 
ole in the orescribed state but of any extent. We may 
choose a convenient extent for the sample from one of the 
followine: mass of solution. mass of magnesium chloride, 
volume i f  solution, etc. 

- 

A natural choice seems to be the volume of solution be- 
cause both concentration and density refer to volume of so- 
lution. We take a samole of solution of volume l L. For this 
sample we get the foliowing. 

From 

ni = ci x V 

we get 

n(MgClz) = 0.4332 mol 

and from 

we get 
W(so1ution) = 1.0311 x 1000 g 

By definition, molality is given by 

Thus, we need to know the mass of solvent. 
Because we appear to have exhausted all the relation- 

ships between extensive quantities, we need another 
source of information concerning mass, so we try the law of 
conservation of mass. 

Mass of solution = mass of HzO + mass of MgClz 

The mass of solute can be calculated from the amount 
From 

Wi=nixMj 

we get 

W(MgC12) = 0.4332 mol x m = 4 1 , 2 g  mol 

The mass of water is thus 
1031.1 g- 41.2 g = 989.9 g = 989 x lo3 kg 

Therefore 
0.4332 mol 0.438 mol 

m(MgCl2) = 0,989 kg - 
kg 

I stress how important i t  is for students to show their 
reasoning, as in the above example, and I give them credit 
for this. This minimizes working by rote memory 

Single- and Multistep Calculations 
The idea that the extensive properties of a phase are di- 

rectly proportional to one another is, when coupled with 
definitions of intensive properties, a very fruitful one in 
mapping out the strategy for solving a problem. The im- 
oortance of ma~o ine  out a oath has been stressed (9). The 
book by ~ i - ~ o o ' ? a n g  (10) i'one of the few solutions manu- 
als that I have seen that does an excellent job encouraging - - 
the student always to write out a solutionbath. 

Using A Strategic Map 

The following illustrates how I help students find their 
way through a multistep problem. 

Problem 
Calculate the amount of HzS04 in 2 L of a solution of sulfuric 
acid in which the mass percentage of HzS04 is 96.4% and the 
density is 1.84 g/mL. 

Solution 
Summarizing the data, we have 

V(solution) = 2 L 

Because n(H2S04) is an extensive quantity, i t  can be cal- 
culated from another extensive quantity. We have been 
given the extensive quantity V(so1n) = 2 L. If we knew the 
ratio n(H2S04):V(soln) we could solve the problem. 

To get this ratio we consider another sample. Size does 
not matter, but the data suggests that we fm either the 

Volume 69 Number I2 December 1992 961 



mass or volume of the solution. Let us take 100 g of solu- 
tion. For this sample we must calculate the amount of sul- 
furic acid and the volume of the solution. I have students 
draw a rough circle to represent their sample and get them 
to calculate all extensive properties associated with this 
<v&=rn ", 

From the assumotion we eet W(soln) = 100 e. The task is ~ ~ ~ ~ ~ - - - ~  

of course to get the' amount:f sulfuric'acid a& the volume 
of the solution. From the nhvsical interoretation of mass . . 
percentage, we have W(H2S04) = 96.6 g. 

Thus, 

n(H2S04) = 96'6 = 0.985 mol 
98.01 5 

We now need the volume of solution. The definition of deu- 
sity gives 

Using the constancy of n(HzSOJV(soIn), we now have 

We can also do this bv considerineiust one samole. Here -" 
again we make use of the fsct that the extensive ~ ( H ~ s o ~ ,  
can be calculated from the extcnslvc V win,. Rut we don't 
know a relationship that relates t he se tw~d i r ec t l~ .  Obvi- 
ously, we have to do this in several steps. How do we pro- 
ceed? 

Let us try W(H2S04). This would require the molar mass 
of sulfuric acid, which is of course known. Now too, there 
does not  seem to be a direct relationship between 
W(H2S04) and V(soln). As a possible next step, the data on 
mass fraction suggests the extensive quantity W(so1n). 

Are we home? Yes, of course, since W(soln) and V(soln) 
are related by the density of the solution. The strategy can 
be mapped out as below. 

n(H2S04) t W(H2S04) c W(soln) t V(soln) 

The actual calculation can be carried out in separate 
steps. 

W(soln) from V(soln) using the density 
then W(H2S04) from W(soln) from the mass percentage 

'lastly, the required quantity n(H2S04) from W(H2S04) using 
the molar mass of sulfuric acid 

An alternative method that some might prefer uses one 
step. To generate a one-line relationship we use 

The motivation behind this step is our knowledge that ra- 
110s of extensive properties are intensive prnperties. 

The strategic map yields the Iollowing. 

n(H,SO,) IV, H,S041 
A-r . x W'Ro'n' A ~(soln) n(HzSo~.  i v , m  11 ~ s O I ~ )  1. soln, 

where we have used both the density and the defmition of 
the molar mass. 

Summary of Problem-Soluing Strategy 

We are working with quantities, not units, and the start- 
ing point i n  the generation of the map is the required ex- 

tensive quantity-the amount of sulfuric acid. Mapping 
out the path is an essential step in the calculation, and the 
student should be expected to write i t  out explicitly. No 
"mental" steps are involved, and the student is forced to 
think of relationships between quantities and the defmi- 
tions of the associated intensive quantities. 

A Chart of Relationships 
A chart (see the figure) giving the interrelationships be- 

tween the various intensive quantities is very helpful in 
mapping out one or more strategies for solving a problem. 
By using this chart, the student learns to think in terms of 
quantities and relationships-not in terms of units and the 
manipulation of units. The student can also map out a 
path for the solution to a problem even when there are no 
actual numbers involved. 

Amajor difficulty for the students, especially the weaker 
ones, is that thev cannot alwavs remember the various re- 
lat~onships.  here is a delinice improvement in their per- 
formance if the\. have the chart of relutionshios in front of 
them; a p e r m L e n t  improvement will depend on the 
students' willingness to memorize the relationships. 

Below we use. this chart to map out a solution to two dif- 
ferent problems in which no numbers are involved, one in- 
volving an extensive quantity and another a n  intensive 
quantity. 

Finding an Extensive Quantity 

Problem 

Determine the amount of a solute i in a given volume of so- 
lution, when the concentration of solute i is not known. 
What other information would be reouired to enable us to 
calculate n(i)? 

Solution 

The chart tells us that n(i) is related to V(tot) by c(i). (All 
three sit on the same circle.) However, we do not know c(i). 

We must take a n  alternative route. An adjacent circle of 
relationship involves W(tot) and d(tot), which takes us to 

Chart of Relationships. Circles connect values that are related to 
each other by simple relationships. (The bottom circle shows that a 
change in the amount of a species. An({), is related to the change in 
another species, An(/), by the wefficients that balance the reaction 
equation.) Lines show interrelationships that can be used to strategi- 
cally mapout pathsfor problem solving. (Because n(0 is found on five 
circles, it is often used to obtain one of the other values found on the 
five circles. The path depends on the information given.) 
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the next circle of relationship involving W(i) and W(tot) 
through the mass fraction f,(i). Having come to W(i), we 
find that i t  is easy to calculate n(i). 

Finding an Intensive Quantity 

Problem 
Cnlrulnre the mncentratlon a#) ofn solure I frum its rnolnlln 
m ! ,  in a solutton ronrnlnmg only one solurr r 
\\'hat funhtr quantltlcs arc rrqulrrd7 

Solution 

The first thing to note is that the relationship must in- 
volve intensive quantities only, because an intensive quan- 
tity can be expressed completely in terms of intensive 
quantities. Also we can consider any extent in deriving the 
relationshio. 

We mustgo from the circle of relationship involving c(i), 
nli). and Vltot) to the one involving m(i), n(i), and W(so1- 
vent). We wish to establish a conn&ionbet&een c(i) and 
m(i). Because n(i) is common to both circles, we must con- 
ned W(so1vent) with V(tot). We can go through V(tot) to 
V(tot), d(tot), and W(tot). 

Can we connect W(so1vent) and W(tot)? Yes, through the 
law of conservation of mass 

W(tot) = Wlsolvent) + W(i) 

where W(i) is given by 

Wli) = n(i) xM(i) 

To actually derive the relationship we first write down 
both de f~ t ions .  

and 

We now have 

Are we home? Not quite. We must express the RHS in 
terms of m(i), which is related to W(so1vent) and n(i). One 
way to do this would be to write W(so1vent) in terms of n(i) 
and m(i). Then simplify Because 

it would be quicker to divide the numerator and denomina- 
tor by Wbolvent). 

Thus, we need to know the density of the solution and the 
molar mass of i. 

Conclusion 
Though I do not have objective data comparing the ap- 

proach outlined above with other approaches, from talking 
with my students I get the impression that they find the 
concepts of intensive and extensive properties very helpful 
in several ways. 

in understanding the physical significance of equations - -~ 

i n  correlating various properties 
in working out a strategy for problem solving 

Recognizing that  a quantity is extensive sometimes 
eives them a valuable clue that thev had missed. This en- ~, 
ublas them to try the general laws apphcable to extenslvc 
orooertwx. Thcir main diflicultv is that they iespec~allv 
ihe'freshmen) are still thinking ih the "dimensionai anal;- 
xis" mode, and it takes effort to gmw: 

These concepts are fundamental and may very well be 
teachable even at the school level. The idea of additivity of 
certain properties and constancy 6f others is easily ex- 
plored in the laboratory and may improve concept forma- 
tion. 

The main objective of the approach has been to provide a 
general conceptual framework for stndents-not a pmb- 
lem-solving method. However, students can use these con- 
cepts with the different problem-solving methods. All ap- 
proaches would benefit from some emphasis on the 
correlational power of these concepts. 
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