
I t  was interesting to see that the use of 
Jacohians in thermodynamics was demonstrated in a 
recent issue of THIS JOURNAL (1)  without havingtoresort 
to the Shaw (2) procedure. Shortly thereafter another 
article (5) appeared suggesting that the student could 
he relieved of any knowledge of Jacohians by using a 
procedure described by Tobolsky some years ago. As 
one who recommended the Toholsky procedure with 
some minor modifications in THIS JOURNAL (4) and has 
used it in the classroom for a number of years I would 
like to suggest that a few general properties of Jacohians 
and some features of the Tobolsky method may be com- 
bined in thermodynamic derivations to yield a direct, 
simple, and rapid method. Having used this combina- 
tion in elementary thermodynamics, our experience has 
been that the students soon take to the use of Jacobians 
as ducks to water. A description of this procedure may 
encourage more widespread use of that extremely useful 
mathematical tool. The few rules required for the 
manipulation of Jacobians in the method discussed here 
are almost trivial. 

The serious student will find the use of functional 
determinants advantageous in wading through mathe- 
matical hardware not only in relationships among the 
usual thermodynamic first partials for simple systems 
hut also for systems where more than two independent 
variables are required. Jacobians may he used to great 
advantage in examining the higher order terms involved 
in equilibria (5) ; and of course there are many instances 
where Jacohians are used in allied branches of physical 
chemistrv. 
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There is general agreement that a procedure for deriv- 
ing relations among the thermodynamic derivatives 
without resorting to the Bridgman tables is highly 
desirable. The use of Jacobians makes for directness 
and speed. The work of Crawford (6) has done much 
to clarify and simplify the use of Jacobians in thermo- 
dynamics. -The procedure based on the Toholsky 
method can be made considerably less tedious. A few 
of the most common Jacobian properties are the only 
additional requirements. 

The fundamental equations for the differential ex- 
pressions of the so-called secondary variables (i.e., dE, 
d H ,  dA and dG) are still required, as well as the expres- 
sions for C, and C,. For a simple system four Maxwell 
equations are needed. The recommended procedure 
for obtaining the relation for a first partial in terms of a 
set of selected independent variables consists of the 
following three steps: 

On the Use of Jacobians 

in Thermodynamics 

Step 1.  Write the given partial immediately in terms of the 
selected independent variables. 

Step d. Replace the partials containing secondary variable 
b y  means of  equations ( I )  through ( 4 ) :  

dE = TdS - PdV 
dH = TdS + VdP 
dA = -SdT - PdV 
dG = -SdT + VdP 

Step 3. Replace the partials containing the entropy variable 
by means of the Msxwell equations (which now may he written 
in Jacobim form as a single equation 5 ) ,  

J(T,S)  = J ( P , V )  ( 5 )  

and also 

Step 1: The expansion o j  a partial i n  terms of a set of 
selected independent variables. 

It has been repeatedly shown (7) 'that a thermody- 
namic partial derivative may he writ,ten as a Jacobian, 
e.g., 

It should be noted that this is a reversible procedure; a 
Jacohian having a common variable in the numerator 
and denominator may be written as a simple partial 
derivative. When a common variable does not appear 
directly over itself the determinantal property of a 
Jacobian requires a change of sign, i.e., 

Now if a change to a new set of independent variables 
(x ,y)  is desired, then these may be introduced into a 
Jacobian as follows: 

where, e.g., the numerator 

We thus express a Jacobian as a ratio of two Jacobians 
in the transformation to a new set of independent vari- 
ables. Consider an actual problem: the transforma- 
tion of the Joule-Thomson coefficient, ( b T / b P ) x  to the 
independent variables T and P. We write 
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Whereas in the earlier procedure (4) one expressed a 
partial derivative in the form of a differential equation, 
the partial derivative in question is now expanded into 
a functional determinant and the selected independent 
variables are immediately introduced-yielding in gen- 
eral a ratio of two Jacobians. Were it not for the 
desirability of ridding the final expression of the so- 
called secondary variables, E, H, A, G and the entropy 
variable, the sought result would be contained in the 
very first step. 

Step 2: The elimination of secondary variables, E,  H,  
A, G. 
This can he done on sight using the set of equations 

( 1 4 ) .  We proceed with the problem of the Joule- 
Thomson coefficient and substitute the following in the 
last equation. 

These expressions of course are directly obtainable from 
equation (2) and obviously should be modified in ac- 
cordance with Step 3 before they are substituted in the 
main equation. 

Step 3: The elimination of the entropy variable. 
This step will be recognized as one that is precisely 

the same as in the previous method (4) except that the 
procedure now can be somewhat more elegant. To con- 
tinue with the Joule-Thomson example we use equation 
(5) and write immediately the desired Maxwell equa- 
tion. 

Note that the order of the selected independent vari- 
ables must be preserved. Substitution of the latter 
equation and the expression for @ L S / ~ T ) ~  using equa- 
tion (66) leads to the well known equation for the Joule- 
Thomson coefficient in terms of the independent vari- 
ables, T and P: 

Many times students will recognize certain partials 
and use shortcuts; in the above example ( bH/bT) ,  
would be recognized as C,. However the three-step 
procedure is direct and systematic. 

As another example for using this procedure, we take 
the one illustrated by both Hakala and Breen: the 
equation for (bE/bV)E in terms of the independent vari- 
ables T and P. We have: 

Step I .  

Slep 8. We need expressions for the following: 

Step 3. We dso need the following expressions in view of the 
entropy partiah in Step 2. 

Also fromequation ( 6b )  

Direct substitution of the required partials in the equation for 
Step ( I )  yields 

Systems With More Than Two Independent Variables 

The greatest advantage in the use of Jacobians in 
thermodynamics is the derivation of relations where 
systems require more than two independent variables. 
The transition mathematically, thanks to Crawford, 
requires very little additional know-how beyond that 
needed for the manipulation of determinants of order 
greater than two. The Crawford paper (6b) is highly 
recommended for the detailed treatment of the general 
n-variables case; some elements of this case will be 
given here. 

In  setting up a problem for a system which requires 
more than two independent variables, for example the 
temperature change accompanying the sudden or adia- 
batic stretching of a metal bar, the fundamental equa- 
tion for dE should be considered in the beginning. Thus 
in this particular system, if the metal is isotropic we 
have 

dE = T d S - p d v + ~ d L  (7) 

where r = tension and dL = increment in length. 
Equation (7) would replace equation (1). 

The dozen Maxwell relations between the six primary 
variables would begin to present a serious problem in 
bookkeeping whereas in terms of Jacobian notation 
there are only three Maxwell equations to keep track of. 
By means of Jacobians it is not too difficult for the 
student to venture into even more complex systems. 

In  general for a system that requires n independent 
variables for its description, dE may be written in the 
form of so-called conjugate forces, +, and displacements, 
x.: 

Experiment or theory establishes the relation 
between a force and its conjugate displacement. The 
thermodynamic requirement for the validity of (7) or 
(8) is the absence of hysteresis effects, i.e., that A, be a 
unique function of &. Equation (8) leads to corre- 
sponding equations for the remaining secondary vari- 
ables, H, A, and G. 
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" 
A = E - TS; dA = -SdT f +idhi (10) 

i = Z  

Two matters have to be considered a t  this point: one 
is the manipulation of higher order functional determi- 
nants; the other is the establishment of the many 
Maxwell relations in Jacobian form. The manipu- 
lation of higher order determinants for thermo- 
dynamics centers about the rule of signs and follows the 
rule that the sign of the Jacobian is changed when a 
neighboring pair of variables either in the numerator or 
denominator is interchanged. Cancellation of a com- 
mon variable in the numerator and denominator follows 
the same procedure as that used previously; i.e., a 
cancelled variable causes a reduction of the order of the 
Jacobian and the cancelled variable appears outside the 
partial. For example, for the Jacobian 

whereas 

In all this it is being assumed that a given partial deriva- 
tive, (bz/by,), ...,., may be written as the Jacobian 

As for the Maxwell equations, Crawford (6b) has 
shown that for a system of n independent variables 
where we write equation (8) in general form 

Here the conjugate pair, (T,S) has been considered as 
one of the members of equation (13) and the x, are the 
selected independent variables of the 2% primary set of 
variables. The important point for present purposes is 
that if the independent variables are chosen so that 
there is one from each conjugate set, then equation (13) 
yields n(n - 1)/2 Maxwell equations, these being, of 
course, in Jacobian form. This may he sumn~arized in 
general terms 

where j = 1,2,. . .n; j # k; i takes on all values except 
i and k, and (x,. . .x,) are non-conjugate primary vari- 
ables. 

To illustrate the applicability of the above we will 
consider a few simple examples involving third order 
determinants. Returning to the case of the adiabatic 
extension of a metal bar under constant pressure, we 
consider finding a relationship for (bT/br),,, selecting 

as our set of independent variahles T ,  P, and 7,  i.e., 
members of the 4 or "force" set. As may be seen from 
equation (7) we write 

Step 1. 

Step 2. No secondary variables to be removed. 
Step 3. Required Maxwell equation: 

Also 

Substitution in Step 1 yields 

Since metals possess positive values for (bL/M'),p we 
expect a cooling effect in stretching the bar. The op- 
posite effect would be expected for rubber where 
(bL/dT) ,  is known to be negative. 

Finally we consider the problem of obtaining an 
expression for the difference in heat capacity (Cpx;-  
C,,), for an  isotropic substance in a magnetic field, X, 
where g is the intensity of magnetization. The equa- 
tion for dE may be written as 

dE - TdS - PdV + x d s  

Clearly an expression for both CPx and CDg in terms of 
the same set of independent variables is called for. 
Suppose one selects a mixed set, T ,  P, and 9, then 
taking C p x  which is equivalent to 

we write 

Noting that the appropriate Maxwell equation is 

and that 



one can readily obtain the expression 

While these examples may still be managed without 
the use of Jacobians it should not be difficult to realize 
their great usefulness if terms had been involved which 
considered the svstem anisotro~ic and/or where the so- 
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