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By far the most important application of thermodynamics 
in chemistry is to the study of chemical reactions and, in 
particular, to the determination of the equilibrium conditions 
for balanced reactions. This is facilitated by the construction 
and use of tables of standard thermodynamic properties of 
suhstances, and a primary object in any introductory course 
in chemical thermodynamics should he to teach the student 
how swh tables are constructed from calorimetric and related -~ ~ 

measurements and how they are used to predict equilibrium 
conditions. The standard thermodynamic properties are those 
of the suhstances in their standard states. Misconceptions 
eoncernim the definitions of these standard states are wide- ~~-~~~ u 

spread and a number of articles in THIS JOURNAL (1-3) have 
referred to some of these. The situation is particularly had 
when the substance under consideration is a solute. Robhins 
(2) found that only three of the twenty-four textbooks he re- 
viewed used the correct definition of the standard state when 
discussing standard electromotive force. The problem is ex- 
acerhateihy the ambiguities concerning the definitions of a 
number of related concepts, in particular those of the "ideal 
solution" and "ideal dilute solution," and by the confusion 
arising from the use of several activity coefficients and two 
osmotic coefficients in the application of thermodynamics to 
dilute solutions. 

Dilute Solution 
In discussing phases containing more than one substance 

it is often convenient to make a distinction between a mkture 
and a solution. A mixture is a gaseous. liauid. or solid phase ~~ ~~ ~ . .  . 
in which the substances are alltreated the same way. *solu- 
tion is a liquid or solid phase in which one of the suhstances 
(or sometimes a mixture of some of the suhstances), which is 
called the soluent. is treated differently from the other suh- 
stances, which are called solutes. ~ h & e  is nothing funda- 
mental in this distinction hetween a mixture and a solution: 
it is a matter of convenience. When the total amount of solute 
is small comuared with the total amount of solvent, the solu- 
tion is called a d ~ l u t e  solution 

Our object is to look at  principles applicable to all dilute 
solutions and, to simplify the discussion, we will consider a 
liquid, binary dilute solution, at  temperature T and pressure 
p ,  in which an amount n2  of a (non-dissociating) solute 2 (of 
molar mass M2) is dissolved in an amount ni  of a solvent 1 (of 
molar mass Mi).  The measures of solute composition [mole 
fraction x2 = nzI(n1 + n d ,  molality m2 = nz1nlM1, concen- 
tration (molarity) cz = n2pl(nlMI + nzMz)] are related by the 
equations 

Mlmz = x d ( 1  - x d  = MICZ/(P - M Z C ~  (11 

where pis the density of the solution, a function of T, p ,  and 
comnosition. In the limit of infinite dilution, defined as nz - 
0, eqn. (1) reduces to 

M~mz = r z  = M I C ~ / P ~  (21 

in which p', is the density of the pure solvent at  T and p.  

acknowledged. 
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(Throughout this paper the superscript will he used only in 
association with the properties of pure suhstances.) Equation 
(2) expresses the fact that the various measures of solute 
composition are directly proportional to one another in the 
infinite dilution limit. The fact that c2, in contrast to x2 and 
m7, is temuerature deuendent is widelv used as an areument 
against the use of the concentration scale. It is seldompointed 
out that in certain circumstances (for example, when the 
solvent is a mixture of suhstances) some amhiguity may arise 
in the definitions of molality and mole fraction. [Ben-Naim 
(4) has argued in favor of "sing the concentratibn scale in 
dealing with dilute solutions.] 

Gibbs-Duhem Equation 
A binary phase (components 1 and 2) possesses three de- 

grees of freedom and, consequently, its thermodynamic state 
can he determined hv soecifvine T. D. and the com~osition - .  - - .  
of one of the components. (In this paper we wlll not usually 
include the functional dependencies of the various thermo- 
dynamic properties in our equations, hut will specify these in 
the text andlor in tabular form.) The chemical potentials of 
1 and 2, PI and 112, are related by the ~ i h b s - ~ u h e m  equa- 
tion, 

x l d r l +  X Z ~ P Z  = 0 (constant T, pl (31 

This equation can be rearranged to give 

which upon integration becomes 

in which h(T, p )  is an integration constant. In those cases 
where the range of compositions of the hinary phase extends 
to pure component 1, eqn. (5) can he expressed in the form 

in which p y  is the chemical potential (molar Gihhs function) 
of pure 1 a t  T, p. 

Reference Systems 
In the application of thermodynamics to pure gases, mix- 

tures. and solutions it is usual to introduce what we will refer 
to as reference systems. The definitions of these systems are 
based on ex~erimental information, concernine, in uarticular. 

reference ;yste&s are hypothetical systems, the behavior of 
any real svstem deviating to a greater or lesser extent from the 
hehavior i f  a corresponding reference system. They are used 
in two ways: (1) As approximations to real systems. In those 
cases where more than one reference system has been used for 
a real svstem (as is the case with dilute solutions), the question 
arises as to which of the reference systems most closely ap- 
proximates the hehavior of the real system. A recent article 
in THIS JOURNAL (5) has discussed this question with respect 
to the Dehye-Htickel theory. (2) As references against which 
to descrihe the hehavior of real systems; one discusses the real 



Table 1. Pure Gases. Gaseous Mixtures. Liauid Mixtures mally neglected and eqn. (7) reduces to Raoult's law: 
Reference System Definition 

Perfect (or ideal) gas MpgI =Pa + Rlln(pipe) 
Perfect gaseous mixture pi(pgm) = ppg + Rnn(pj!pe) ( i  = 1.2) 
Ideal mixture pi(im) = p7RTIn a ( i  = 1.2) 

Real System Definition of Fugacities and Activity Coefficients 

Pure gas p = p P *  + Rnn (tipe): lim (Up) = 1 
F O  

Gaseous mixture pi = pWRTln (fi/pe); lim (fdp,) = 1 ( i  = 1.2) 
0-0 

Liquid mixture p, = p;+ Rlln x,yy: lim yy = 1 
X T  1 

Functional 
Symbol Dependence 

Q Chemical potential of perfect gas at Tand pe T 
pp" Chemical potential at pure perfect gas ia t  T T 

and pa 
pg Chemical potential of pure liquid ia t  Tand p T.P 
pi Partial pressure of i p, composition 
f Fugacity of pure gas T.P 
C Fugacity of i in gaseous mixture T,p. composition 
y': Activity coefficient of i i n  liquid mixture T,p. composition 

system in terms of the deviations of its properties from those 
of a corresponding reference system. (Our use of the adiective 
"reference" emphasizes this application.) 

Pure Gases and Gaseous Mixtures 
For pure gases and gaseous mixtures the reference systems 

. ~ ~ ~ ~~~~ ~~- ~- 

tr&ly chosen standard pressure ~ h i c k  is usually, though not 
necessarily, 101.325 kPa (i.e., exactly 1 atm). We will later use 
m e  and ce to represent an arbitrarily chosen standard mol- 
ality and standard concentration which are usually l mol kg-' 
and 1 mol dm-" respectively. The behavior of real gases and 
real gaseous mixtures is discussed in terms of fugacities (de- 
fined in Tahle 1) or the parameters of some equation of 
state. 

Liquid Mixtures 
The reference system is the ideal mixture which can be 

defined by the chemical potential expression in Tahle 1. As- 
suming that the vapor phase in equilibrium with an ideal 
mixture is a perfect gaseous mixture, it can he shown (6) 
that 

In(p;lpj) = ln r i  + - . Vkidp(i = 1 , 2 )  
,IT Lf (7) 

in whichp, is the vapor pressure of pure liquid i a t  T, and Vki  
is the molar volume of pure liquid i at T and p. As the integral 
in eqn. ( 7 )  usually makes only a small contribution, it is nor- 

p, = p lx , ( i  = 1,2) (8) 

[If the perfect gaseous mixture approximation is not assumed, 
the pressures on the left-hand side of eqn. (7) and those in eqn. 
(8) must be replaced by the corresponding fugacities.] The 
behavior of real liquid mixtures is discussed in terms of ac- 
tivity coefficients (defined in Tahle 1) or excess thermody- 
namic properties. (Sometimes activities are used as well as 
activity coefficients. In this paper we will consider only the 
latter.) 

Dilute Solutions 
In dealing with dilute solutions several reference systems 

have been used. It is sufficient In defining these to specify the 
chem~cal potential of the solute, that of the solvent being 
determined by eqn. (6). These definitions are given in Table 
2; the meanings of the symbols used in this table are given in 
Tahle 4. Also given in Tahle 2 are the corresponding expres- 
sions for the solvent chemical potentials, obtained using eqn. 
(6), and for the partial pressures of the solute and solvent. In 
obtaining these wartial pressures the ~ e r f e c t  gaseous mixture 
assump<on is invoked and, in the cask of the solvent partial 
pressures and the solute partial pressure for an ideal mixture. 
i f  i: fflrther assulnt (1 I h a  an it~tegrd offhe i m ~ ~  d t h a t  giwn 
in tqn.  71 is nt,rliril>le. The i d u t r  vhen~icill r,utentinls nnd 
solute partial pr&&es for the various reference systems are 
shown schematically in Figures 1 and 2. (These figures have 
been based on the following: M I  = 100 g mol-1, M2 = 200 g 
mol-', p = pi = 0.7 g ~ m - ~ ,  T = 298 K. The solute chemical 
potentials have been plotted as solid lines over a composition 
range corresponding to m2 = 1 X 10-2 to 10 mol kg-l. The 
solute wartial Dressures have been dot ted as solid lines nn to 
a composition corresponding to m2 = 10 mol kg-'. The vert~cal 
scales are the same for each of the diagrams in Figure 1 and 

u ~ ~~~~~~ 

in Figure 2.) 
The reference systems used for dilute solutions fall into two 

solute-in an infinitely dilute solution. Considering a real dilute 
solution, it is physicallv obvious that in the limit of infinite 
dilution 

(We are assuming perfect gaseous mixture behavior.) This 
proportionality can, under the appropriate conditions, be 
consistent with each of the following: 

In the limit of infinite dilution, eqn. (2) requires that ems. (10) 

hut they may be, and all in fact have been, used for reference 

Table 2. Reference Systems Used for Dilute Solutions 

Solvent Chemical Partial Pressures 
Label Definition Potential Solute Solvent 

im pdim) = p; + RTin xz p,(im) = p: + RTln x, p i %  p i x?  
i I = p: + RTln x3 @,(I) = &: + RTln x,  t 2 ~ 2  P p '  
11 p,(lll = p! + RTln (m2!me) p7(ii) = p; - RTM,m2 K:m2 P, enP(-M?mi 

' 2  1 = +,(I - 'I2 4 + . . . ) 
111 p2(iil) = p; + RTln (c2/ce) u,(lli) = p; - RTM, - 

0 - M &  
d C2 K;'c2 p,(l - ~ ~ c ~ / p ; ) ~ ? ' . l h  a 

= P ;  + R T M I I M ~  in [ (P;  - M~c~IP~I '  =p;xl[i - '12(i - M~IM,)~ + . ..id 
' Assumlng that the density of the dilute soiuton is equal to that of the pure solvent at the same i p. 
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Figure 1. Solute chemical potentials at T and p for the various dilute solution 
reference systems and for a real dilute solution. 

Figure 2. Solute partial pressures at Tfor the various dilute solution reference 
Systems and for a real dilute solution. 

purposes. As can he seen in Table 2, the reference systems I, 
11, and 111 correswond to the wroportionalities in eqns. (101, . . 
(l'l), and (12), reipectively. 

Before considerinr real dilute solutions it is appropriate to 

solute, mz - and, consequently, the equations for reference 
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system I1 in Tahle 2 becomeuntenahle; they predict, for ex- 
ample, an infinite value for p,. In dealing with dilute solutions, 
however, we are not concerned with conditions approaching 
pure liquid solute and, consequently, such problems do not 
arise. 

(h) & and p i  are properties of the pure liquid solute. In 
dealing with dilute solutions this is usually a hypothetical 
state, heing a supercooled liquid in those cases where the so- 
lute is a solid at  T, p and a superheated liquid in those cases 
where it is a gas. 

(c) As can be seen in Tahle 2, the solvent partial pressures 
for reference systems I1 and I11 deviate from Raoult's law, 
defined by eqn. (8), although usually to only a very small ex- 
tent. I t  is often stated that, as a consequence of the Gibbs- 
Dnhem eauation. if the solvent ohevs Raoult's law over some 
composition range, the solute must obey Henry's law over the 
same composition range, and vice versa. Except in the limit 
of infinite dilution, this statement is rigorously correct only 
if Henry's law is expressed in terms of xz [i.e., hy eqn. (lo)], 
a restriction that is by no means clear in many treatments of 
the subject. 

(d) Reference systems I, 11, and 111 represent different 
(hypothetical) systems, the properties of which converge with 
one another, and with those of a real dilute solution, in the 
limit of infinite dilution (Fig. 1). 

Real Dilute Solutions 

Solute 
The hehavior of the solute in a real dilute solution has d e n  

referred to each of the reference systems in Table 2 by the 
introduction of corresponding solute activity coefficients (or 
solute activites). In the case of the ideal mixture (im) reference 
system the solute activity coefficient, yy, is defined as in 
Table 1. For the other reference systems we consider firstly 
the general case of a reference system a(=I,  11,111) defined, 
as in Table 2, in terms of a (dimensionless) measure of solute 
composition xE(=xn, m2/me, c2/ce) We define a solute ac- 
tivity coefficient, yg, a function of T, p ,  and the composition, 
by the equations 

pz = ko(T,p) + RTln ~ '$yf (a=I ,  11,111) (13) 

in which ~2 is the chemical potential of the solute in the real 
dilute solution. These equations define both yi and k"(T, p).  
The physical significance of the latter can he established as 
follows. According to eqns. (13) and (14), 

hm(T, p)  = lim (p2 - RT In xf)(u=I, 11,111) (15) 
x;-0 

The reference system a was defined (Table 2) such that IL~(CY)  
- R T  In X; was independent of x; for finite values of x;. 
Therefore, 

ke(T, p) = gda) - RT In x$(n=I, 11,111) (16) 

The meanings of p;(a=I, 11, 111) are exactly the same as in 
Table 3; these are given in Tahle 4. Miconceptions concerning 
the physical significance of the composition independent term 
in eqn. (13) are widespread. The definitions of the solute ac- 
tivity coefficients and the corresponding equations for the 
solute partial pressure (again assuming perfect gaseous mix- 
ture behavior) are given in Tahle 3; the meanings of the 
symhols used in this table are given in Tahle 4. The solute 
chemical potential and solute partial pressure of a real dilute 
solution are compared schematically with these properties for 
the various reference systems in Figures 1 and 2. 

Making use of the facts that, in the limit of infinite dilution, 
the measures of solute composition are related by eqn. (2) and 



the chemical potentials of reference systems I, 11, and III 
converge, it is readily shown that 

pi = - RT In (Mlme) = &" + R T  In (pilMlce) (18) 

Combining eqns. (1) and (18) with the definitions of the solute 
activity coefficients in Table 3, i t  can be shown that 

7: = y!f(l + mzMd = y!fl[p + CAMI - ~ d l l p ;  (19) 

(The activity coefficients y i  and yil are sometimes called the 
rational and practical activity coefficients, respectively..The 
symbols fa ,  y2, and y ,  have been used for y:, yiland y;I1, re- 
spectively.) 

Solvent 
The behavior of the solvent in a real dilute solution has been 

referred to the ideal mixture and reference system I (Tables 
1,2), these being equivalent as far as the solvent is concerned, 
by the introduction of a solvent activity coefficient, ylm(=y:), 
and an osmotic coefficient. e (the rational osmotic coefficient). " 

and to reference system I1 by the introduction of an osmotic 
coefficient, 4 (the practical osmotic coefficient). These three 
properties, each of which is a function of T,  p and the com- 
~osition. are defined in Table 3. The corresuondine eauations " .  
kor the solvent partial pressure, obtained h i  assuming perfect 
aaseons mixture hehavior and nealectina an integral of the 
form of that given in eqn. ( I ) ,  a r e k n d e d  in ~ a b i e  3. 

I t  follows from the Gibbs-Duhem equation, eqn. (31, that 
in dilute solutions the deviation of yi"(=y:) from unity is 
much less than that of ybm or yi. From Table 3 it follows 
that 

Table 3. Activity Coeflicients and Osmotic Coeflicients used for 
Dilute Solutions 

Reference Partial 
S~stem Definition Pressure 

I1 & I  = p; - rbRTM,m; lim 9 = 1 
mz--0 

P; x 
exp(-i?M? m )  

The osmotic coefficient g therefore provides a more sensitive 
measure of the deviation of the solvent, from ideal mixture or 
reference system I behavior than does yim(=y:). As can he seen 
by comparing the definition of the osmotic coefficient 4 (Tahle 
3) with the expression for the solvent chemical potential in 
reference svstem I1 (Tahle 2). d orovides a direct measure of ~~~~~ ~~ ~- 

the extent to which the solvent deviates from reference system 
I1 hehavior. Comhininr emations in Table 3 it can he shown 
that the two osmotic Eoeificients are related by the equa- 
tion 

Terminology 

In the preceding discussion we have omitted some of the 
terminology usually associated with the thermodynamics of 
dilute solutions; in particular, we have not used the expres- 
sions "ideality," "ideal solntion," or "ideal dilute solution." 
This we have done deliberately because, as we will now discuss, 
such terms are not uniauelv defined. and this situation has 
sometimes led to confusibn. A perusal of textbooks on physical 
chemistry and thermodvnamics shows that an ideal solution 
has been-defined in twd ways. 

(1) An ideal solution is defined as one for which the 
chemical potential of each component is given by 

The physical significance of pT(T, p )  depends upon the 
composition range over which eqn. (22) applies. Two cases 
arise: (a) Eqn. (22) holds at  all compositions; pJ(T, p) = &,(T, 
p) and we have the ideal mixture defined in Table 1. This case 
has also been referred to a3 aperfect solution (7). (b) Eqn. (22) 
holds only for dilute solutions; p;(T, p )  = pi(T, p) ,  @;(T, p )  
= &T, p )  and we have reference system I defined in Tahle 
2. This case has also been referred to as an ideal dilute solu- 
tion (7). The definition of an ideal solution by eqn. (22) 
therefore includes both the ideal mixture and reference system 
I depending upon the composition range over which the 
equation is applicable. 

(2) An ideal solntion is defined in the same way as an ideal 
mixture (Tahle 1). To within the approximations mentioned 
above, this is equivalent to the definition, familiar in many 
elementary textbooks, that an ideal solution is one in which 
all components ohey Raoult's law, eqn. (8). In recent IUPAC 
sponsored articles (8, 9)and elsewhere (10) the ideal dilute 
solution has been defined as in the case of reference system 
I1 in Tahle 2. It has, however, also been defined as in the cases 
of reference system I (7) and reference system I11 (4). The 
term dilute solution has been used for reference system I 
(11). 

This is by no means a complete picture. It is sufficient, 
however, to make clear the necessity of stating unambiguously 

Table 4. Meanings of the Symbols used in Tables 2 and 3 

- 
Functional 

Denendenre 

Chemical potential of i i n  a real dilute solution 
Chemical potential of i i n  reference system u 
Chemical potential of pure liquid ia t  % p 
Chemical potential of solute in reference system I at x, = 1 and T, p 
Chemical potential of solute in reference system I1 at m2 = me and T p 
Chemical potential of solute in reference system Ill at c2 = ce and T, p 
Activit~ Coefficient of solute defined with respect to reference system n 
Activity Coefficient of solvent defined with respect to reference system 

im lor 11 

T p. composition 
T, p, composition 
i P 
T, P 
T, P 
T, P 
T, p. composition 
% p. composition 

T 

T, P 
T. P 
T, D 
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what definition is being adopted whenever terms such as 
"ideality," "ideal solution" and "ideal dilute solution" are 
heing used. 

Standard States 
The information required to calculate the yield of a chem- 

ical reaction is made available in thermodynamic tables. 
McGlashan (10)  has divided these into ~ r i m a r y  thermody- 
il:ilnic r n l ~ h . ~ ,  w l , i c I ~  ccmtnin the inrorrn,~t~c,n i~ecdt.cl t t r  r u l -  
CUI ; I IC  v,,lue+ , > I  the \standard, rvluilIhriun~ con<tatbr K O ( ' / ' ) ,  
nnd +,wldnry therndynnmit tahlei, whis.h vmltain t h t . ~ l -  
u~titmnl i n ~ ~ ~ r m d t i m  (e.g., v ~ d  c ~ ~ ~ t ~ i ~ . i e t ~ t ~ ,  i~~~,~ci t ic~s .a~~t ivi ry  
cwiiic~, nts, c,,mt,tr werlirien~:, rcquirrd t u  ~ ~ k u l a l ~  the 
yield d ; ~  rt.mtiw~ irwn h'%T,. !I(. h ~ 5  p ~ ~ ~ t ~ r ~ l  c u t  t hd ,  while 
priln.~r? th~.r~~l.odyni~mic t:il~lra art suiiirtently rxtimslvt. It ,  
he ~ ~ 1 . 1 1 1 1  t l ~ e  (1.5. Y:it;<mal Ht~rtxu ,)I S r ~ n ~ l : ~ r ~ l s '  Cirmlar 
5!nJ w~~<.r~c.ded by the i,arrs.,r '1'1.1 hnlcdl Stall, Z<l, 1,einn rhv " .  
best-known), there is a paucity of secondary thermodynamic 
tables. 

Primary thermodynamic tables contain values of the 
standard thermodynamic properties of substances, and sums 
and differences of these. Such properties are those of the 
substances in their standard states. While, as McGlashan (10) 
points out, an algebraic definition of the standard chemical 
notential avoids anv difficulties associated with the definition 
of a standard state, the use of standard states is widespread 
and, we believe, advantageous in an  introductory chemical 
thermodynamics course. The selection of a standard state for 
a substance is a matter of convenience and will depend on the 
problem under consideration. The choice must be clearly 
stated and, in using thermodynamics tables, care must be 
taken to ascertain which standard states have heen em- 
ployed. 

In Technical Note 270 and in many other thermodynamic 
tables, the standard states for solutes in solution (and for 
gases) are states of what we have called reference systems. For 
a solute in a nonaqueous solution the standard state is refer- 
ence system I a t  x2 = 1, pe, and T. For a solute in aqueous 
solution the standard state is reference system I1 at  m2 = me, 
pe, and T. For a solvent in any liquid solution the standard 
state is pure, liquid solvent at  pe and T. The definitions of all 
standard states involve an arbitrarily chosen standard pres- 
sure pe and, in the case of aqueous solutions, an arbitrarily 
chosen standard molality me; the temperature is not defined 
(I). Consequently, the standard ther&odynamic properties 
are functions only of temperature. While values of the stan- 
dard thermodynamic properties, and the sums and differences 
of these, are frequently tabulated at  a particular temperature, 
usually 298.15 K, those at  other temperatures can he calcu- 
lated using thermodynamic relations. 

Reference Systems and Reality 

u 

some cases, phystcally simple. In many, but by no means all, 

situations such an~roximations are adeauate. For dilute so- 
lutions several reference systems have deen defined (Table 
2) and the auestion therefore arises as to whether one of these 
best apprmimntr  a r r :~ l  clilute vduriut~. Thi* qur..tiwi wai 
r a i 4  with r(,>r)r~.t to thc T)ehve-Huckcl rllcrry i n  a rzrenr 
article in THIS JOURNAL (5). contrary to the approach used 
in that paper, we contend that such a question can he an- 
swered only on the basis of experimental andlor statistical 
mechanical considerations. I t  is readily concluded from ex- 
perimental evidence that the ideal mixture is a much less 
reasonable approximation to a dilute solution than are ref- 
erence systems I, 11, and 111. It is much more difficult, however, 
to decide which, if any, of these three "infinite dilution" ref- 
erence systems best approximates the behavior of some real 
dilute solution. In those cases where the solute is a non-elec- 
trolvte of molar volume similar to that of the solvent, all are 

statisticarmechai%al evidenck is equivocalas it depends on 
the theorv heina used. In those cases when the solute is an 
electrolytk or when there is a substantial size difference he- 
tween the solvent and solute molecules, none of the reference 
systems (I, 11,111) is a reasonable approximation except at  very 
low solute compositions. For dilute polymer solutions the 
experimental and statistical mechanical evidence suggests 
that a reference system based on a volume fraction (or, what 
is virtuallv eauivalent. a concentration) scale will best an- . . 
pru~itntite the rea. nysrrm ,121. In ~ h v  ~je l )ye-~uckel  tlleo;y 
nieIectrol\~e ioluri(m> i f  is ihaurnt (1 th>it 1116' wlute i11e111iid 
potential can he divided into two contributions: a non-elec- 
trolyte contribution, this heing the solute chemical potential 
if the ions were uncharged species, and an electrical contri- 
bution arising from the charges on the ions. Dehye and Hiickel 
estimated the former using reference system I but, subse- 
quently, reference systems I1 and 111 have also been used. 
From what we have said above concerning non-electrolyte 
solutions, the choice is a matter of convenience and, accord- 
ingly, we cannot accept Morel's (5) conclusion that the 
Debye-Huckel theory gives y?  rather than yilor y;". 
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