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By far the most important application of thermodynamics
in chemistry is to the study of chemical reactions and, in
particular, to the determination of the equilibrium conditions
for balanced reactions. This is facilitated by the construction
and use of tables of standard thermodynamic properties of
substances, and a primary object in any introductory course
in chemical thermodynamics should be to teach the student
how such tables are constructed from calorimetric and related
measurements and how they are used to predict equilibrium
conditions, The standard thermodynamic properties are those
of the substances in their standard states. Misconceptions
concerning the definitions of these standard states are wide-
spread and a number of articles in THIS JOURNAL (I-3) have
referred to some of these. The situation is particularly bad
when the substance under consideration is a solute. Robbins
(2) found that only three of the twenty-four textbooks he re-
viewed used the correct definition of the standard state when
discussing standard electromotive force. The problem is ex-
acerbated by the ambiguities concerning the definitions of a
number of related concepts, in particular those of the “ideal
solution” and “ideal dilute solution,” and by the confusion
arising from the use of several activity coefficients and two
osmotic coefficients in the application of thermodynamics to
dilute solutions.

Dilute Solution

In discussing phases containing more than one substance
it is often convenient to make a distinction between a mixture
and a solution. A mixture is a gaseous, liquid, or solid phase
in which the substances are all treated the same way. A solu-
tion is a liquid or solid phase in which one of the substances
(or sometimes a mixture of some of the substances), which is
called the solvent, is treated differently from the other sub-
stances, which are called solutes. There is nothing funda-
mental in this distinction between a mixture and a solution:
it is a matter of convenience. When the total amount of solute
is small compared with the total amount of solvent, the solu-
tion is called a diluie solution.

Qur object is to look at principles applicable to all dilute
solutions and, to simplify the discussion, we will consider a
liquid, binary dilute solution, at, temperature 7" and pressure
p, in which an amount ny of a (non-dissociating) solute 2 (of
molar mass M) is dissolved in an amount n; of a solvent 1 (of
molar mass M;). The measures of solute composition [mole
fraction xo = na/(n1 + ns), molality ms = na/n1M1, concen-
tration (molarity) cs = nop/(n1 M + naMs)] are related by the
equations

Mims = x5/(1 — x2) = Mica/(p — Macs) (1)

where p is the density of the solution, a function of 7', p, and
composition. In the limit of infinite dilution, defined as ns —
0, eqn. (1) reduces to

Mims =x3=Myca/p] (2)

in which p] is the density of the pure solvent at T and p.
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{Throughout this paper the superscript ° will be used only in
association with the properties of pure substances.) Equation
(2) expresses the fact that the various measures of solute
composition are directly proportional to one another in the
infinite dilution limit. The fact that ¢o, in contrast to x5 and
ma, is temperature dependent is widely used as an argument
against the use of the concentration scale. It is seldom pointed
out that in certain circumstances (for example, when the
solvent is a mixture of substances) some ambiguity may arise
in the definitions of molality and mole fraction. [Ben-Naim
(4) has argued in favor of using the concentration scale in
dealing with dilute solutions.]

Gibbs-Duhem Equation

A binary phase (components 1 and 2) possesses three de-
grees of freedom and, consequently, its thermodynamic state
can be determined by specifying T, p, and the composition
of one of the components. (In this paper we will not usually
include the functional dependencies of the various thermo-
dynamic properties in our equations, but will specify these in
the text and/or in tabular form.) The chemical potentials of
1 and 2, g1 and po, are related by the Gibbs-Duhem equa-
tion,

x1du; + xedus = 0 (constant T, p) (3)

This equation can be rearranged to give

x2  [duz
dpyy=——"——| d 4
. (1—x32) (5952)’1‘,.0 e i
which upon integration becomes
xg  [Oug
=K(T,p)— [ —) d
i 3 (]. — x9) \0xg Tp g (5)

in which &(T, p) is an integration constant. In those cases
where the range of compositions of the binary phase extends
to pure component. 1, eqn. (5) can be expressed in the form

“ x: )
wlT,p,x2) = i1, p) = | ——xz—( ”2} dz  (6)
o] (1 = xg) 6x2 T.p
in which u] is the chemical potential (molar Gibbs function)
of pure 1l at T, p.

Reference Systems

In the application of thermodynamics to pure gases, mix-
tures, and solutions it is usual to introduce what we will refer
to as reference systems. The definitions of these systems are
based on experimental information, concerning, in particular,
the behavior of real systems under certain limiting conditions,
or, less frequently, on statistical mechanical information. The
reference systems are hypothetical systems, the behavior of
any real system deviating to a greater or lesser extent from the
behavior of a corresponding reference system. They are used
in two ways: (1) As approximations to real systems. In those
cases where more than one reference system has been used for
areal system (as is the case with dilute solutions), the question
arises as to which of the reference systems most closely ap-
proximates the behavior of the real system. A recent article
in THIS JOURNAL (5) has discussed this question with respect
to the Debye-Hiickel theory. (2) As references against which
to describe the behavior of real systems; one discusses the real



Table 1. Pure Gases, Gaseous Mixtures, Liquid Mixtures

Definition

ulpg) = uPs + RTIn(p/ p°)
piApgm) = ui¥ + RTIn(p/ p®) (I=1,2)

Reference System

Perfect (or ideal) gas
Perfect gaseous mixture

Ideal mixture wiim) = pRTIn x (i=1,2)
Real System Definition of Fugacities and Activity Coefficients
Pure gas H=uPS+ RTIN (#p®); lim (#p)=1
o0

Gaseous mixture i = pPRMIn (f/ p°); lim (f/p)=1(i=1,2)
0

Liguid mixture i = S+ RTn xy'™ lim v =1
x—=1
Functional
Symbol Dependence

uP9  Chemical potential of perfect gas at Tand p® T

ke Chemical potential of pure perfectgas iat T T

and p®

Iy Chemical potential of pure liquid jat Tand p T.p

P Partial pressure of / p, composition
f Fugacity of pure gas p

f; Fugacity of /in gaseous mixture T.p, composition

Aim Activity coefficient of iin liquid mixture T.p, composition

system in terms of the deviations of its properties.from those
of a corresponding reference system. (Our use of the adjective
“reference’”” emphasizes this application.)

Pure Gases and Gaseous Mixtures

For pure gases and gaseous mixtures the reference systems
are the perfect (or ideal) gas and perfect gaseous mixture,
respectively, which can be defined by the chemical potential
expressions in Table 1. In this table p® represents an arbi-
trarily chosen standard pressure which is usually, though not
necessarily, 101.325 kPa (i.e., exactly 1 atm). We will later use
m® and ¢® to represent an arbitrarily chosen standard mol-
ality and standard concentration which are usually 1 mol kg—!
and 1 mol dm~3, respectively. The behavior of real gases and
real gaseous mixtures is discussed in terms of fugacities (de-
fined in Table 1) or the parameters of some equation of
state.

Liquid Mixtures

The reference system is the ideal mixture which can be
defined by the chemical potential expression in Table 1. As-
suming that the vapor phase in equilibrium with an ideal
mixture is a perfect gaseous mixture, it can be shown (6)
that

P vedpli=1,2) %)

1
In(p;/, ;)=lnxi+—
(p:i/p BT J,

in which p; is the vapor pressure of pure liquid  at T', and V;,;
is the molar volume of pure liquid i at T" and p. As the integral
in eqn. (7) usually makes only a small contribution, it is nor-

mally neglected and eqn. (7) reduces to Raoult’s law:
pi =pixi(i =1,2) (8)

[If the perfect gaseous mixture approximation is not assumed,
the pressures on the left-hand side of eqn. (7) and those in eqn.
(8) must be replaced by the corresponding fugacities.] The
behavior of real liquid mixtures is discussed in terms of ac-
tivity coefficients (defined in Table 1) or excess thermody-
namic properties. (Sometimes activities are used as well as
activity coefficients. In this paper we will consider only the
latter.)

Dilute Solutions

In dealing with dilute solutions several reference systems
have been used. It is sufficient in defining these to specify the
chemical potential of the solute, that of the solvent being
determined by eqn. (6). These definitions are given in Table
2; the meanings of the symbols used in this table are given in
Table 4. Also given in T'able 2 are the corresponding expres-
sions for the solvent chemical potentials, obtained using eqn.
(6), and for the partial pressures of the solute and solvent. In
obtaining these partial pressures the perfect gaseous mixture
assumption is invoked and, in the cases of the solvent partial
pressures and the solute partial pressure for an ideal mixture,
it is further assumed that an integral of the form of that given
in eqn. (7) is negligible. The solute chemical potentials and
solute partial pressures for the various reference systems are
shown schematically in Figures 1 and 2. (These figures have
been based on the following: My = 100 g mol~%, My = 200 g
mol L, p = p] = 0.7g em~3, T = 298 K. The solute chemical
potentials have been plotted as solid lines over a composition
range corresponding to mg = 1 X 1072 to 10 mol kg~!. The
solute partial pressures have been plotted as solid lines up to
a composition corresponding to ms = 10 mol kg~1. The vertical
scales are the same for each of the diagrams in Figure 1 and
in Figure 2.)

The reference systems used for dilute sclutions fall into two
groups; the ideal mixture, which is the reference system used
for liquid mixtures, and those based on the behavior of the
solute in an infinitely dilute solution. Considering a real dilute
solution, it is physically obvious that in the limit of infinite
dilution

P2 = ng 9)

(We are assuming perfect gaseous mixture behavior.) This
proportionality can, under the appropriate conditions, be
consistent with each of the following:

P2 o Xg (10
p2 = mg (11)
Do = ¢y (12)

In the limit of infinite dilution, egn. (2) requires that eqns. (10)
to (12) are equivalent. As we go to finite solute compositions,
none of the proportionalities, eqns. (10) to (12), will be exact,
but they may be, and all in fact have been, used for reference

Table 2. Reference Systems Used for Dilute Solutions

Solvent Chemical

Partial Pressures

Label Definition Potential Solute Solvent
im  galim) = gy + ATIN X 14(im} = p5 + RTIn x4 PaXs PIX1
[ pally = gb+ RTIn x, uall) = pi+ ATIn x, Kox Pyx1
[ pallll = ph + RTIn (my/m®) walll) = gy — RTM;m, Kim, 5 exp(—M:m)
o =pil = d+, )
Il walll) = w4+ BT In (ca/ c®) walllly = gl — RTM, j; ;TCdCQ Kileo P11 — Mocol pj)Mhi/Me 2
- 22

= 3+ ATIMy/ Mo} In [(pT — Maco)i p5]%

=pix[1 = (1 — My M)E + ., ]2

@ Assuming that the density of the dilute solution is equal to that of the pure solvent at the same T, p.
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Figure 1. Solute chemical potentials at T and p for the various dilute solution
reference systems and for a real dilute solution.
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Figure 2. Solute partial pressures at T for the various dilute solution reference
systems and for a real dilute solution.

purposes. As can be seen in Table 2, the reference systems I,
II, and III correspond to the proportionalities in eqns. (10),
(11), and (12), respectively.

Before considering real dilute solutions it is appropriate to
draw attention to a number of points concerning the dilute
solution reference systems: (a) As we approach the pure liquid
solute, my — = and, consequently, the equations for reference
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gystem II in Table 2 become untenable; they predict, for ex-
ample, an infinite value for py. In dealing with dilute solutions,
however, we are not concerned with conditions approaching
pure liquid solute and, consequently, such problems do not
arise.

{b) w3 and p, are properties of the pure liguid solute. In
dealing with dilute solutions this is usually a hypothetical
state, being a supercooled liquid in those cases where the so-
lute is a solid at T', p and a superheated liquid in those cases
where it is a gas.

(¢) As can be seen in Table 2, the solvent partial pressures
for reference systems II and III deviate from Raoult’s law,
defined by eqn. (8), although usually to only a very small ex-
tent. Tt is often stated that, as a consequence of the Gibhs-
Duhem equation, if the solvent obeys Raoult’s law over some
composition range, the solute must obey Henry’s law over the
same composition range, and vice versa. Except in the limit
of infinite dilution, this statement is rigorously correct only
if Henry’s law is expressed in terms of x» [i.e., by eqn. (10)],
a restriction that is by no means clear in many treatments of
the subject.

(d) Reference systems I, IT, and III represent different
(hypothetical) systems, the properties of which converge with
one another, and with those of a real dilute solution, in the
limit of infinite dilution (Fig. 1).

Real Dilute Solutions

Solute

The behavior of the solute in a real dilute solution has been
referred to each of the reference systems in Table 2 by the
introduction of corresponding solute activity coefficients (or
solute activites). In the case of the ideal mixture (im) reference
system the solute activity coefficient, v¥, is defined as in
Table 1. For the other reference systems we consider firstly
the general case of a reference system «(=I, II, III) defined,
as in Table 2, in terms of a (dimensionless) measure of solute
composition x§(=x2, ma/m®, ca/c®). We define a solute ac-
tivity coefficient, y§, a function of T, p, and the composition,
by the equations

o =k(T, p) + RT In x§v§(e=1, 11, I1I) (13)
lim 4§ = (14)
x50

in which ps is the chemical potential of the solute in the real
dilute solution. These equations define both v5 and k(T p).
The physical significance of the latter can be established as
follows. According to eqns. (13) and (14),

k*(T, p) = lim (us— RT In x§) (=1, II, I1I) (15)
x§—0
The reference system o« was defined (Table 2) such that uo(c)
— RT In x§ was independent of x5 for finite values of x3.
Therefore,

k=(T, p) = us(a) — RT In x§(e=11I, III) (16)
= pa(a)(x§ = 1) = pfla=1 11, 111) (17)

The meanings of p§{a=I, 11, III) are exactly the same as in
Table 3; these are given in Table 4. Miconceptions concerning
the physical significance of the composition independent term
in eqn. (13) are widespread. The definitions of the solute ac-
tivity coefficients and the corresponding equations for the
solute partial pressure (again assuming perfect gaseous mix-
ture behavior) are given in Table 3; the meanings of the
symbols used in this table are given in Table 4. The solute
chemical potential and solute partial pressure of a real dilute
solution are compared schematically with these properties for
the various reference systems in Figures 1 and 2.

Making use of the facts that, in the limit of infinite dilution,
the measures of solute composition are related by eqn. (2) and



the chemical potentials of reference systems I, TI, and IIT
converge, it is readily shown that

ph=pf = RTIn (Mim®) = ui'' + RT In (p1/M1c®)  (18)

Combining eqns. (1) and (18) with the definitions of the solute
activity coefficients in Table 3, it can be shown that

vh = R + maMy) = vHp + calM1 ~ My)|/p} (19)

(The activity coefficients 5 and v¥ are sometimes called the
rational and practical activity coefficierits, respectively. The
symbols fa, Yz, and y5 have been used for v5, ¥ and v, re-
spectively.)

Solvent

The behavior of the solvent in a real dilute solution has been
referred to the ideal mixture and reference system I (Tables
1, 2), these being equivalent as far as the solvent is concerned,
by the introduction of a solvent activity coefficient, vi™(=~1),
and an osmotic coefficient, g (the rational osmotic coefficient),
and to reference system II by the introduction of an osmotic
coefficient, ¢ (the practical osmotic coefficient). These three
properties, each of which is a function of T, p and the com-
position, are defined in Table 3. The corresponding equations
for the solvent partial pressure, obtained by assuming perfect
gaseous mixture hehavior and neglecting an integral of the
form of that given in eqn. (7), are included in Table 3.

It follows from the Gibbs-Duhem equation, eqn. (3), that
in dilute solutions the deviation of yi™(=+!) from unity is
much less than that of ¥§ or vi. From Table 3 it follows
that

g—1=Invy®Inx;~ ({1 —y™)/xy (20)

Table 3. Activity Coefficients and Osmotic Coefficients used for
Dilute Solutions

Reference Partial
System Definition Pressure
Solute
im Hz =y + RTIN 7y lim i = paxaym
xg—1
I Ho = b+ RTIN xpyh; lim 45 =1 Koxoyh
xz-+0

I K2 = pp+ RTIN (myy/mP) lim y3 =1 Kimey}

The osmotic coefficient g therefore provides a more sensitive
measure of the deviation of the solvent from ideal mixture or
reference system I behavior than does y®(=+1). As can be seen
by comparing the definition of the osmotic coefficient ¢ (Table
3) with the expression for the solvent chemical potential in
reference system IT (Table 2), ¢ provides a direct measure of
the extent to which the solvent deviates from reference system
II behavior. Combining equations in Table 3 it can be shown
that the two osmotic coefficients are related by the equa-
tion
In x4

p=———g=[L+Mms/2+ Mma%/3+...]g (21)
MIMQ

Terminology

In the preceding discussion we have omitted some of the
terminology usually associated with the thermodynamics of
dilute solutions; in particular, we have not used the expres-
sions “ideality,” “ideal solution,” or “ideal dilute solution.”
This we have done deliberately because, as we will now discuss,
such terms are not uniquely defined, and this situation has
sometimes led to confusion. A perusal of textbooks on physical
chemistry and thermodynamics shows that an ideal solution
has been defined in two ways.

(1) An ideal solution is defined as one for which the
chemical potential of each component is given by

i =pi(T,p) +RTInx (i=1,2) (22)

The physical significance of (T, p) depends upon the
composition range over which eqn. (22) applies. Two cases
arise: (a) Eqn. (22) holds at all compositions; u; (T, p} = u; (T,
p) and we have the ideal mixture defined in Table 1. This case
has also been referred to as a perfect solution (7). (b) Eqn. (22)
holds only for dilute solutions; ui(T, p) = u;(T, p), us(T, p)
= pl(T, p) and we have reference system I defined in Table
2. This case has also been referred to as an ideal dilute solu-
tion (7). The definition of an ideal solution by eqgn. (22)
therefore includes both the ideal mixture and reference system
I depending upon the composition range over which the
equation is applicable.

(2) Anideal solution is defined in the same way as an ideal
mixture (Table 1), To within the approximations mentioned
above, this is equivalent to the definition, familiar in many

-0
" o = 1+ RTIn (cyl/ ey l’in:n W1 ol elementary textbooks, that an ideal solution is one in which
e all components obey Raoult’s law, eqn. (8). In recent IUPAC
sponsored articles (8, 9) and elsewhere (10) the ideal dilute
Solvent solution has been defined as in the case of reference system
im, | = g5+ AT xyy lim ' = 1 prxyyT Il in Table 2. It has, however, also been defined as in the cases
. inet . of reference system I (7) and reference system III (4), The
im, | K=+ gRTIN x3; }imT g=1 X term dilute solution has been used for reference system I
. L " (11).
L M=y~ PRTMymy; lim ¢ = 1 P X This is by no means a complete picture, It is sufficient,
me g Mima) however, to make cleur the necessity of stating unamhiguously
Table 4. Meanings of the Symbols used in Tables 2 and 3
Functional
Symbol Dependence
Hii=1,2) Chemical potential of /in a real dilute solution T, p, composition
,ué(a')(i =1,2){a=im,I, I} Il Chemical potential of i in reference system « 7, p, composition
wi(i=1,2) Chemical potential of pure liquid /at T, p T r
it Chemical potential of solute in reference system lat x, = 1and 7, p Tp
uh Chemical potential of solute in reference system llat m; = m and T, p T p
ny Chemical potential of solute in reference system lllat ¢; = ¢© and T, p Tp
'y.';(a =im, I, Il, Iif) Activity coefficient of solute defined with respect to reference system « T, p, composition
A Activity coefficient of solvent defined with respect to reference system T, p, composition
im (or 1)
pii=1,2) Vapor pressure of pure liquid iat T T
Ky p° exp[(uh — w8/ AT T.p
K (PO m®) exp(uh — uB)/RT] T.p
Ky (07 c®) exp[(uf — uB/AT] T.p
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what definition is being adopted whenever terms such as
“ideality,” “ideal solution” and “ideal dilute solution™ are
being used.

Standard States

The information required to calculate the yield of a chem-
ical reaction is made available in thermodynamic tables.
MecGlashan (10) has divided these into primary thermody-
namic tables, which contain the information needed to cal-
culate values of the (standard) equilibrium constant K(7"),
and secondary thermodynamic tables, which contain the ad-
ditional information (e.g., virial coefficients, fugacities, activity
coefficients, osmotic coefficients) required to calculate the
vield of a reaction from K©(T). He has pointed out that, while
primary thermodynamic tables are sufficiently extensive to
be useful (the U.S. National Bureau of Standards’ Circular
500, superseded by the parts of Technical Note 270, being the
best-known), there is a paucity of secondary thermodynamic
tables.

Primary thermodynamic tables contain values of the
standard thermodynamic properties of substances, and sums
and differences of these. Such properties are those of the
substances in their standard states. While, as McGlashan (10)
points out, an algebraic definition of the standard chemical
potential avoids any difficulties associated with the definition
of a standard state, the use of standard states is widespread
and, we believe, advantageous in an introductory chemical
thermodynamics course. The selection of a standard state for
a substance is a matter of convenience and will depend on the
problem under consideration. The choice must be clearly
stated and, in using thermodynamics tables, care must be
taken to ascertain which standard states have been em-
ploved.

In Technical Note 270 and in many other thermodynamic
tables, the standard states for solutes in solution (and for
gases) are states of what we have called reference systems. For
a solute in a nonaqueous solution the standard state is refer-
ence system I at xo = 1, p©, and T. For a solute in aqueous
solution the standard state is reference system Il at mqo = m®,
p@, and T. For a solvent in any liquid solution the standard
state is pure, liquid solvent at p® and 7. The definitions of all
standard states involve an arbitrarily chosen standard pres-
sure p© and, in the case of aqueous solutions, an arbitrarily
chosen standard molality m®; the temperature is not defined
(1). Consequently, the standard thermodynamic properties
are functions only of temperature. While values of the stan-
dard thermodynamic properties, and the sums and differences
of these, are frequently tabulated at a particular temperature,
usually 298.15 K, those at other temperatures can be calcu-
lated using thermodynamic relations.

Reference Systems and Reality

The use of reference systems as approximations to real
systems is commonplace, the former possessing the obvious
advantages of being mathematically tractable and, at least in
some cases, physically simple. In many, but by no means all,

situations such approximations are adequate. For dilute so-
lutions several reference systems have been defined (Table
2) and the question therefore arises as to whether one of these
best approximates a real dilute solution. This question was
raised with respect to the Debye-Huckel theory in a recent
article in THIS JOURNAL (5). Contrary to the approach used
in that paper, we contend that such a question can be an-
swered only on the basis of experimental and/or statistical
mechanical considerations. It is readily concluded from ex-
perimental evidence that the ideal mixture is a much less
reasonable approximation to a dilute solution than are ref-
erence systems [, II, and III. It is much more difficult, however,
to decide which, if any, of these three “infinite dilution” ref-
erence systems best approximates the behavior of some real
dilute solution. In those cases where the solute is a non-elec-
trolyte of molar volume similar to that of the solvent, all are
usually reasonable approximations; the experimental evidence
does not generally point to any one as being “best” and the
statistical mechanical evidence is equivocal as it depends on
the theory being used. In those cases when the solute is an
electrolyte or when there is a substantial size difference be-
tween the solvent and solute molecules, none of the reference
systems (I, IT, ITI) is a reasonable approximation except at very
low solute compositions. For dilute polymer solutions the
experimental and statistical mechanical evidence suggests
that a reference system based on a volume fraction (or, what
is virtually equivalent, a concentration) scale will best ap-
proximate the real system (12). In the Debye-Hiickel theory
of electrolyte solutions it is assumed that the solute chemical
potential ean be divided into two contributions: a non-elec-
trolyte contribution, this being the solute chemical potential
if the ions were uncharged species, and an electrical contri-
bution arising from the charges on the ions. Debye and Hiickel
estimated the former using reference system I but, subse-
quently, reference systems II and III have also been used.
From what we have said above concerning non-electrolyte
solutions, the choice is a matter of convenience and, accord-
ingly, we cannot accept Morel’'s (5) conclusion that the
Debye-Hiickel theory gives vi rather than I or vl
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