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The Boltzmann reservoir: A model constant-temperature environment
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(Received 28 July 1999; accepted 19 October 1999

The Boltzmann reservoifBR) is a model constant-temperature environment that exhibits highly
atypical thermodynamic behavior. Its microcanonical ensemble entropy is a linear, nonconcave
function of its internal energy, and its zero-work heat capacity is infinite. Its canonical partition
function diverges because all possible energies are equally likely, so the microcanonical and
canonical ensembles amet equivalent. If two BRs with the same temperatiigeare put in thermal
contact, either can have any fraction of the total energy; i.e., there is no unique equilibrium state. If
two BRs with different temperatures are in thermal contact, the higher temperature BR gives all its
energy to the other. A BR’s temperature cannot be changed by a heat process but, in principle, can
be altered by a work process. These and other properties that challenge conventional wisdom
provide thought-provoking examples for thermal physics courses20® American Association of
Physics Teachers.

[. INTRODUCTION are unknown. In contrast, the BR igwcroscopicallyspeci-
) fied model that can store fanite internal energy and can be

Useful ways to model thermal reservoirs have been deexplored in depth using statistical mechanics. As the only
scribed recently by Prentis, Andrus, and StaseVidheir  known constant-temperature microscopic model that does
motivation was to present new and improved ways to obtaithot require the infinite size limit, it is an interesting addition
the Boltzmann factor of statistical physics. One of the interg the list of tractable models in statistical physics.
esting environments they proposed is the so-called Boltz- |n what follows we address potpourri of ideas relevant
mann reservoitBR), a hypotheticalmodel reservoir that as- to BRs, including nonconcavity of entropy, infinite zero-
sures a constant temperature in a non-BR system with whiclyork heat capacity, a non-invertible Legendre transforma-
it is in thermal contact. The BR is described solely in termstion, a canonical ensemble of reservoirs, inequivalence of the

of its energy spectrum, canonical and microcanonical ensembles, temperature
U(n)=ne, with >0 and n=0,1,..., (1) change of a BR via a work process, and interacf[ions between
_ two BRs and between a BR andharmal reservoir. In Sec.
with degeneracy Il, we state and discuss nine properti@sost of which are
Q(U)=b"=bYs, where b>1. ) multifaceted of BRs and in Sec. Il we summarize what was

learned. The reader who is more interested in the main ideas

The parametet is the separation energy between adjacentnd results than the details can go directly to Sec. IIl.
degenerate energy levels, abpds a dimensionless constant.

The BR’s quantum state is denoted by the integer quantu
numbern. In Ref. 1, and also below, it is shown that for aq;'EPng/ETJIES OF THE BOLTZMANN
chosen value o, the BR temperature is determined by the S o

chosen value o, and is independent af, and thudJ. This Property 1. Entropy, temperature, and heat capacltye

shows that the BR is indeed a constant-temperature S¥Ste’3ntropys of a BR is alinear function of thediscretequan-
There are at least two reasons to examine the BR fufthery,m numbern, independent of the energy level spacing

{:irzt, although or|1et_ exr;e(i':;s a ccinstant-f[te;]mpﬁre;]tgtr(_a ;eser;/ome temperatur@ is constant and this implies infinite zero-
0 be massive relative to the systems with which it interacts, ‘oot capacitg. .

and to store a relatively large internal energy, these features : : L0

are not evident in the BR’s defining Eq4) and(2). Indeed, fli)heetaélgtrlalnearlty in n follows from the Boltzmann form

these equations contain no reference to the number of atonte Py

in the BR, and a BR model can stomay amount of energy,

large or small. Finite energy storage precludes infinite size. S(U)=KklIn Q(U):<

This counter-intuitive property is but one of a number of

intriguing BR properties that challenge conventional wisdomwherek is Boltzmann’s constant. For a given valuerpfthe

based on the behavior eibrmal macroscopic systems. An- smallest possible increase h,AU=¢, occurs forAn=1.

other is that the micro-and canonical ensembles differ-  The corresponding change i@ is AS=(kInb). Because

ent results for the BR. It is hoped that by illustrating the S(U) is linear in U, the finite difference ratioAS/AU

u_nconventional, teachers and students can gain deeper ig-(k Inb)/e is identical to theformal derivative @S/dU), ,

sight into the conventional. . holding the parametes fixed. The constraint of fixed cor-
Second, macroscopically defined constant-temperaturgsponds to energy transfer by a pure heat process—namely

reservoirs are routinely assumed tools in thermal physicsg process with zero-work ofor by) the BR. Thermodynami-
Because they are assumed to store an infinite amount of egg|ly this means that

ergy, one cannot even write an expression for internal en- 4
ergy, say, as a function of temperature, and their properties Tg =(3S/dU),, (4)

b
U=(kInb)n, 3)

&
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and thus are responsible for the inequivalence between the canonical
and microcanonical ensembles for BRs.
Tg=——r. (5) Details Consider first a BR for whicin<M and then let
kinb M become arbitrarily large. The partition function %,

Equation(5) shows how the parameterdetermines the BR = 2nb" exp[—ne/(kTg)], where the sum here and in the ex-
temperaturd g for a specified value of. Linearity and tem- ~ pressions below goes from=0 to n=M. Equation(5) im-
perature constancy were discussed in Ref. 1. plies b exp[—&/(kTg)]=1. ThereforeZy==,(1)"=M+1.
From Eq.(5) it is clear thatTg is independent of), and it  The probability of finding a system with energy=ne is
follows that a BR has infinite heat capacity for a zero-work,P(U)=Z"b"exp[—ne/(kTg)]=Z *=(M+1)"! for all n
pure heat process. That is, an energy exchai@detween <M; i.e., P(U) is the same for each allowed enerty
the BR and another system leaves the BR'’s temperature URsMe. In the limit M—o, Z,,—% and P(U)—0 for all
altered ATg=0), which implies thalC,=6Q/ATg is infi-  possibleU=ne. In the canonical ensemble, one has the
nite. The labele connotes a zero-work process. This COM-identity, C£=(AE)2/(kT§), where AE)? is the variance in

pletes the discussion of Property 1. ; . .
Property 2. The continuous variable approximation andthe canonical energy. For finitd, the average energy in the

the energy spectrunFor 0<(b—1)<1 ande<kTs, Sk  nsemble iE=e(M+1) lzn”:%'\gs becaus?lthe sum s
andU/(kTg) can be treated as continuous variables. Everyz M(M+1). The variance AE)“=(M+1)""2(ne)
region of the BR’s energy spectrum is similar in the sense-(3Meg)?, and the inequalityEnn2>f(“,"y2dy=M3/3 im-
that the fractional increase in the number of states per unijlies  (AE)?>M?2e?[(M —3)/12(M +1)]. For M
energy interval is the same for all possibleand U. We —.,(AE)? diverges asM?, consistent with the fact that
assume the continuous approximation is valid throughoutach of the infinite number of energies), 2¢,... is equally

this article. ; L : g L DI ]
Details For given fixed values ob and ¢, the smallest Ilkel_y. The infinite varlancez(sE) .|mp||es infinite heat ca
pacity C, for M—oo, in accord with Property 1.

increases inS and U occur forAn=1, whenceAS=kInb | f | BR .
andAU=eg=KkTgInb, where the last step follows from Eq. . n contrast, fornormal (not BR) Macroscopic §ystems
(5). Therefore, with  Z=3Q(E) exp[-E/(kT)], InZ~InQ(E)-E/(KT),

where E~E, the system’s average energy. This holds

&

A(SIk)=AU/(kTg))=Inb=¢<1, 6 . =
(S =AU/ (kTg)) ¢ © when the energy fluctuations are small relativeEtatself.
when In such cases, because the Helmholtz function Ais
é=b—1<1. @) =—kTInZ, this implies thatkIn (), the microcanonical

] ] ] entropy, equals E—A)T !, a canonical ensemble entity.
Notice that G<¢<1, which means thab approaches unity Tne |atter reflectgbut does noprove that for normal sys-
from above. Equationé) and(7) show that the changes in tems, the canonical and microcanonical ensembles are
S/k andU/(kTg) can be made arbitrarily small by choosing equivalent.
¢ sufficiently small. In this way the dimensionless entrpy,  However, for the ratheabnormalBR, the infinite fluctua-
(S/k), and the dimensionless rati¢/ (kTg) can be approxi- tjons in a canonical ensemble of BRs leads to the conclusion
mated as continuous variables. We work with dimensionlesghat canonical and microcanonical ensemblesnatequiva-
quantities to make our results independent of units. lent. The unbounded energy fluctuations can also be linked

Operationally, because Eq§l), (3), and (5) imply U to thermodynamic instability, which is implied by the non-
=TgS, we may writedU=TgdS, with the understanding concavity ofS(U) described in Property 5.

that this is equivalent tal(U/(kTg))=d(S/k)~¢<1. It is Property 4. Legendre transformBecause the entropy
worth noting that Eqs(1), (5), and(7) imply S(U) is linear in U, the Helmholtz free energA=U
R —TgS=0. An equivalent statement is that the Legendre
&= <1. (8)  transformation ofS with respect toU is formally zero. The
kTg inverse Legendre transform, leading frofnto S does not

exist.

Equati h that f fi | if lect . _—
quation(8) shows that for a fixed value df, if we selec Details By definition,A=U—TgS. Because Eggl), (3),

a decreasing sequence €¥alues, there is a corresponding X ,
decreasing sequence olvalues. Indeed, foé—0, we must  and (9 imply U=TgS, A=0. The Legendre transformation
also haves—0 in order to keepTg fixed. Notice that by ©f S(U) is defined asW¥(P)=S-U(dS/dU),=—A/Tg,
suitable choices of<1 andé<1, one can obtain any desired WhereP=(dS/dU), . Using Eq.(3), we obtain¥ =A=0. It

temperaturelz =&/ (k&) to lowest order iré. is obviously impossible to constru§(U) from A; i.e., the
Different regions of the spectrum are similar in the sensénverse Legendre transform does not eXiiven thatA
that the fractional increase i, per unit energy interval, =—TgW andA is directly related to the canonical partition

is independent of U; ie., (9S/dVU).=k[d(InQ)/oU],  function, it is not surprising that a canonical ensemble of
=K (dQ/Q)/dU],=(kIn b)/e=const. This completes the dis- BRs leads to the mathematical difficulties described in Prop-
cussion of Property 2. erty 3. o _
Property 3. Canonical ensembl@he canonical partition ~ Property 5. Nonconcave entropphe linearity ofSwith U
function Z for a BR with temperaturdy diverges because N Eq. (3) is not consistent with the thermodynamic sta}blllty
the probability of finding the system in a state with enetgy requirement thas(U) be concave. As a consequence, if two
is the same for alU. The implied infinite energy fluctuations BRs with the same, b, andTg, but distinct internal ener-
are consistent with the property of infinite heat capacity, andgjies U= AU, are in thermal contact, forming an isolated
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composite system, no unique equilibrium state emergesquilibrium. Becaus@&j is fixed, the normal reservoir's tem-
More specifically, all internal energy pairsU-AU,U perature must vary in order to achieve the equilibrium con-
+AU) have the same entropy and all are possible. Thus thdition T.=Tg.
number of possible final states is infinite. For T<Tjg initially, there is an energy transfer from the
Details Concavity of S implies’ that if two systems of BR to the normal reservoir. If there is sufficient energy in the
identical size and type, having internal enerdies AU and  BR, equilibrium afT =Ty can be reached. Otherwise, the BR
U+AU and entropiesS(U —AU) andS(U +AU), interact  will empty itself of energy, increasing,; as much as pos-
thermally, and form an isolated composite system, they exsjble, andT,<Tg. For T>Tj initially, the energy transfer
change energy until each has internal enddgyrheir final i pe from the normal reservoir until its temperature equals

total entropy will be Z(U), where Tg. If T=Tg initially, the entropyS,, is already maximized,
2S(U)=S(U—-AU)+S(U+AU), SO zero net energy transfer occurs ang=Tg. If T,=Tg,
) o . we can consider a collection of BRs, each with an identical
with equality if and only if AU=0. 9 normal reservoir at temperatufBs—i.e., a canonical en-
The strict inequality holds for alAU #0. semble of BRs, as in Property 3.
However, if two BRs with the sameande are in contact, In the case wher@,<Tg, one might naively consider a

then S(U—AU)+SU+AU)=(e *kInb)[(U-AU)+(U canonical ensemble of BRs with parametem®snde, in con-
+AU)]=(e " *kInb)(2U)=2U)=const for allAU. That is, tact with a reservoirR with constant temperaturer
in Eq. (9) the inequality isneversatisfied and the equality is <&/(kInb)=Tg. In this case,b exp[—&/(kT)]<1, where-
satisfied for all possiblaU. It follows that all possible pairs upon the Z series convergesformally to Z={1-b
(U—AU,U+AU) have the same entropy, and all are pos-xXexp[—e/(kT)]}"* and the average energy i&J(T)
sible final states. The lack of a unique equilibrium state is yet=e{b~ ! exp[e/(kT)]—1} 1. This argument suggests that the
another sign of the BR’s thermodynamic instability, which BR behaves as a normal thermodynamic system. However,
we encountered in Property 3 in terms of the infinite energythe discussion above shows tAat Ty only if the BR trans-
fluctuations and heat capacity. fers all its energy to the normal reservoir, so the canonical
Property 6. Interacting Boltzmann reservail§ two BRs  ensemble becomes a collection of BRs, each with0. Fur-
have the samé, but differents parameters, then they will  thermore, the normal reservoir's temperature has changed

have different temperatures. When two such BRs are putintgm T 1o T., whereT, depends explicitly on how much

therma_l contact, forming an isolated system, energy wil fIOWenergy the BRs had initially. These characteristics deviate
from higher to lower temperature until the higher tempera

; “substantially from the normal conditions and tenets of the
ture BR. is empty of energy. canonical ensemble.

Details Let BR, havee;>0 and Tgy=e¢,/(kInb) and Property 8. Work and heat processéfsthe energy level
BR, haves,>0 andTg,=¢,/(kInb), wheree;<e,. Itfol-  gpacinge is a function of an externally controllable variable
lows from the foregoing thaB=kInb[U,/e;+U,/e;], and (e g., volume or magnetic fieldthe temperatur@; of a BR
the system entropys is maximum whenU;—U and U,  can be modified in principle by an adiabatic work process
—0. that alterse. In contrast, heat processes chaklbby altering

Property 7. Interacting Boltzmann and normal reservoirs n for fixed e. For an infinitesimal reversible work process
Suppose a BR with temperaturfg is in thermal contact with  s§W=S dTg, and for a combination work plus heat process,
a normal reservoifdefined belowhaving initial temperature the heat capacity of a BR can be positive, negative, or zero.
T, and this composite system is isolated from the rest of the Details From Eqs(3) and(5), we saw that)=TgS. Thus
universe. IfT<Tg initially, the BR will transfer energy to dU=TzdS+SdT;. For a reversible heat processQ
the normal reservoir until eithdl) T increases to the equi- =TgdS, and from the first law of thermodynamicsU
librium temperaturd=Tg or (b) Tincreases tde<Tg and = 5Q+ SW. These equations implyW=S dT. Equations
the BR is empty of energy. If the BR has enough energy thafg) and(s) also lead toTg dS=sAn andS dT;=n ds. Thus
Te=Tg, then the BR can be described using the canonicaj heat process changes the thermodynamic state of the sys-
ensemble at temperatuils, but not at the normal reser- tem by changing its quantum state without altering the
voir's initial temperaturel. If T>Tg initially, the reservoir  BR’s energy spectrum. In contrast, an adiabatic reversible
will transfer energy to the BR untilf.=Tg. When T,  work process modifies the level separatiowithout chang-
=Tg, the conditions for a canonical ensemble of BRs existjng the quantum state.
as in Property 3. Along an arbitrary reversible path callet] we can write

Details A normal reservoir is defined here to be a systeméQ="Tg (dS/dTg), dTg=C,dTg and SW=S dTg, where
with internal energyJy, entropySg(Ug), and heat capacity C, is the BR’s heat capacity along the path Eliminating
Cgr, with the property that its temperatufie= (dUr/9Sg),  dTg from the latter two equations, we obtaidQ
changes slowly with changes inUg; i.e., AT/T =(C,/S)SW. Assumingn>0, thenS>0, and if §Q and
~AURg/(CRT)<1 for AUR<Ug. In the composite system, SW have the same algebraic sign, then>0; if 6Q and
with total energyd, denote the normal reservoir's energy by SW have opposite signs, thed,<0; and if §Q=0 with
(U—E) and the BR’s energy b¥, where E<U initially 6W=0, thenC_=0. The latter result is familiar; it holds for
(i.e., the normal reservoir is relatively langerhe total en- anyreversible adiabatic work processamy system.
tropy of the composite system &,=Sx(U—E)+E/Tg, and Property 9. Boltzmann factor For any BR, Q(U)
the equilibrium condition is {S/JE),=—1/T+ 1/Tg=0. =exp U/kTg), and for an ensemble of nonreservoir systems
Also (92S,t/JE?),=—1/(T?Cg)<0. The latter inequality as- in thermal contact with this BR, the probability of the system
sures that the total entropy’s extremum is a maximum abeing in state s with energy E; is P(E)=2Z1
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X exp[ —E¢/(kTg)]. This is the Boltzmann factor ariflis the ~ tains its initial temperature even as it gains or loses ener-

canonical partition function. gy.The higher temperature BR will give all its energy to the
Details Equations (3) and (5 imply that Q(U) lower temperature one.
—exp (U/kTg). A consequence of the postulate efiual a Although heat processes cannot change the temperature of

a BR, in principle a work process can do so by changing
the spacing between adjacent energy levels. That is, the tem-
perature of a “heat reservoir” can be changed by an adia-
batic work process. This variation s can occur without

priori probabilities is that the probability that a system in
thermal contact with such a BR occupies statth energy
E; is proportional toQ(U—Eg), which can be put in the

17 .
ffml 1 exp[U/(KTg)] exp[ —E/(KT)]. . W_r lting P(E.S.) altering the BR’s quantum state In contrast, heat processes
=Z “exp[~EJ/(kT)], the  normalization  condition cpangen with & unaltered. For combined heat and work pro-
2sP(Es) =1 shows thaZ =3 exp[ —Es/(kTg)]; i.e., the nor-  cesses, the concomitant heat capacity can be positive, nega-
malization factorZ is the canonical partition function. This tjve, or zero.
finding is in agreement with that in Ref. 1 for a two-level  The BR enables one to quickly obtain the Boltzmann fac-
system in contact with a BR, and with the observationior and the canonical ensemble from the microcanonical for-
therein that the result generalizes to other systems in thermahalism. As observed in Ref. 1, the latter avoids the need for
contact with a BR. assumptions about constant temperature, the use of series
expansions, and the so-called reservoir limit. These are no-
IIll. CONCLUSIONS table points, which underscore the BR’s potential value as a
In order to maintain a constant temperature, a BR’s entool in statistical physics. .
tropy must be linear in the internal energyand its zero- Prentis, Andrus, and Stasevichave made an important
work heat capacity must be infinite. Although one normallycontribution to thermal physics by modeling various
envisions a reservoir as a large mass of material and arbfeservoir environments. The Boltzmann reservoir (is
trarily large internal energy, there is no restriction on the sizéhis authoy the most interesting of their proposed
of the internal energy) of a hypothetical BR. Rather, its environments because of its thought-provoking properties.
spectrum is such that the quantity(dQ/Q)/dU], By its very nature, a model reservoir that maintains

=1/(kTg) is the same for all parts of the spectrum. This jgStrictly constant temperature amid finite energy exchanges

very different from the typical case, where temperature inexhibits thermodynamic behavior that is not conventional.
: e Boltzmann reservoir model illustrates this point

creases and the latter ratio decreases with increasing ener Sl h h . f
Further light is shed on the BR by considering an ensemblé/€!l- It suggests that the common assumption o
constant-temperature  reservoirs, though helpful in

of BRs at theimatural temperaturels=&/(k In b). This is a thermal physics analyses, implies very weird properties for
collection of such BRs in thermal contact with any reservoirthe reseR/o>i/rs yses, Imp y prop

at temperaturdg. The structure of the BR's energy spec- Because the BR is not based on a Hamiltonian, there is no

trum is such that the probability of finding it with enerty o 5,045 believe that it modetsiy real system. Neverthe-

1S mdependent ot. This is consstent with t’he finding that less, as the only known strictly constant-temperature micro-

T=Tg independent of the region of the BR’s spectrum thalgcqpic model, it adds an intriguing example to the list of

is involved. , tractable statistical mechanical models. To the extent that its
In the canonical ensemblé,= —kTgInZ, andZ diverges  gperrant properties can bring a deeper appreciation of normal

for a BR at temperatur€g, which impliesA— —c, in con-  thermodynamic behavior, the Boltzmann reservoir offers the

flict with the thermodynamic resuk=U—TgS=0. The les-  possibility of being a helpful teaching and learning tool in

son to be learned here is that the canonical ensemble formahkermal physics courses.

ism fails for a BR. In addition, because the microcanonical

ensemble, typified by Eq$3) and (5), vields a well-defined ACKNOWLEDGMENTS
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