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The Boltzmann reservoir~BR! is a model constant-temperature environment that exhibits highly
atypical thermodynamic behavior. Its microcanonical ensemble entropy is a linear, nonconcave
function of its internal energyU, and its zero-work heat capacity is infinite. Its canonical partition
function diverges because all possible energies are equally likely, so the microcanonical and
canonical ensembles arenot equivalent. If two BRs with the same temperatureTB are put in thermal
contact, either can have any fraction of the total energy; i.e., there is no unique equilibrium state. If
two BRs with different temperatures are in thermal contact, the higher temperature BR gives all its
energy to the other. A BR’s temperature cannot be changed by a heat process but, in principle, can
be altered by a work process. These and other properties that challenge conventional wisdom
provide thought-provoking examples for thermal physics courses. ©2000 American Association of

Physics Teachers.

I. INTRODUCTION

Useful ways to model thermal reservoirs have been de-
scribed recently by Prentis, Andrus, and Stasevich.1 Their
motivation was to present new and improved ways to obtain
the Boltzmann factor of statistical physics. One of the inter-
esting environments they proposed is the so-called Boltz-
mann reservoir~BR!, a hypotheticalmodel reservoir that as-
sures a constant temperature in a non-BR system with which
it is in thermal contact. The BR is described solely in terms
of its energy spectrum,

U~n!5n«, with «.0 and n50,1,..., ~1!

with degeneracy

V~U !5bn5bU/«, where b.1. ~2!

The parameter« is the separation energy between adjacent
degenerate energy levels, andb is a dimensionless constant.
The BR’s quantum state is denoted by the integer quantum
numbern. In Ref. 1, and also below, it is shown that for a
chosen value of«, the BR temperature is determined by the
chosen value ofb, and is independent ofn, and thusU. This
shows that the BR is indeed a constant-temperature system.

There are at least two reasons to examine the BR further.2

First, although one expects a constant-temperature reservoir
to be massive relative to the systems with which it interacts,
and to store a relatively large internal energy, these features
are not evident in the BR’s defining Eqs.~1! and~2!. Indeed,
these equations contain no reference to the number of atoms
in the BR, and a BR model can storeany amount of energy,
large or small. Finite energy storage precludes infinite size.
This counter-intuitive property is but one of a number of
intriguing BR properties that challenge conventional wisdom
based on the behavior ofnormal macroscopic systems. An-
other is that the micro-and canonical ensembles givediffer-
ent results for the BR. It is hoped that by illustrating the
unconventional, teachers and students can gain deeper in-
sight into the conventional.

Second, macroscopically defined constant-temperature
reservoirs are routinely assumed tools in thermal physics.
Because they are assumed to store an infinite amount of en-
ergy, one cannot even write an expression for internal en-
ergy, say, as a function of temperature, and their properties

are unknown. In contrast, the BR is amicroscopicallyspeci-
fied model that can store afinite internal energy and can be
explored in depth using statistical mechanics. As the only
known constant-temperature microscopic model that does
not require the infinite size limit, it is an interesting addition
to the list of tractable models in statistical physics.3

In what follows we address apotpourri of ideas relevant
to BRs, including nonconcavity of entropy, infinite zero-
work heat capacity, a non-invertible Legendre transforma-
tion, a canonical ensemble of reservoirs, inequivalence of the
canonical and microcanonical ensembles, temperature
change of a BR via a work process, and interactions between
two BRs and between a BR and anormal reservoir. In Sec.
II, we state and discuss nine properties~most of which are
multifaceted! of BRs and in Sec. III we summarize what was
learned. The reader who is more interested in the main ideas
and results than the details can go directly to Sec. III.

II. PROPERTIES OF THE BOLTZMANN
RESERVOIR

Property 1. Entropy, temperature, and heat capacity: The
entropyS of a BR is alinear function of thediscretequan-
tum numbern, independent of the energy level spacing«.
The temperatureTB is constant and this implies infinite zero-
work heat capacityC« .

Details: Linearity in n follows from the Boltzmann form
of the entropy,

S~U !5k ln V~U !5S k ln b

« DU5~k ln b!n, ~3!

wherek is Boltzmann’s constant. For a given value ofn, the
smallest possible increase inU,DU5«, occurs forDn51.
The corresponding change inS is DS5(k ln b). Because
S(U) is linear in U, the finite difference ratioDS/DU
5(k ln b)/« is identical to theformal derivative (]S/]U)« ,
holding the parameter« fixed. The constraint of fixed« cor-
responds to energy transfer by a pure heat process—namely
a process with zero-work on~or by! the BR. Thermodynami-
cally this means that

TB
215~]S/]U !« , ~4!
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and thus

TB5
«

k ln b
. ~5!

Equation~5! shows how the parameterb determines the BR
temperatureTB for a specified value of«. Linearity and tem-
perature constancy were discussed in Ref. 1.

From Eq.~5! it is clear thatTB is independent ofU, and it
follows that a BR has infinite heat capacity for a zero-work,
pure heat process. That is, an energy exchangedQ between
the BR and another system leaves the BR’s temperature un-
altered (DTB50), which implies thatC«5dQ/DTB is infi-
nite. The label« connotes a zero-work process. This com-
pletes the discussion of Property 1.

Property 2. The continuous variable approximation and
the energy spectrum: For 0,(b21)!1 and«!kTB , S/k
and U/(kTB) can be treated as continuous variables. Every
region of the BR’s energy spectrum is similar in the sense
that the fractional increase in the number of states per unit
energy interval is the same for all possiblen and U. We
assume the continuous approximation is valid throughout
this article.

Details: For given fixed values ofb and «, the smallest
increases inS and U occur for Dn51, whenceDS5k ln b
andDU5«5kTB ln b, where the last step follows from Eq.
~5!. Therefore,

D~S/k!5D„U/~kTB!…5 ln b5j!1, ~6!

when

j[b21!1. ~7!

Notice that 0,j!1, which means thatb approaches unity
from above. Equations~6! and ~7! show that the changes in
S/k andU/(kTB) can be made arbitrarily small by choosing
j sufficiently small. In this way the dimensionless entropy,4

(S/k), and the dimensionless ratioU/(kTB) can be approxi-
mated as continuous variables. We work with dimensionless
quantities to make our results independent of units.

Operationally, because Eqs.~1!, ~3!, and ~5! imply U
5TBS, we may writedU5TB dS, with the understanding
that this is equivalent tod„U/(kTB)…5d(S/k)'j!1. It is
worth noting that Eqs.~1!, ~5!, and~7! imply

j5
«

kTB
!1. ~8!

Equation~8! shows that for a fixed value ofTB , if we select
a decreasing sequence ofj values, there is a corresponding
decreasing sequence of« values. Indeed, forj→0, we must
also have«→0 in order to keepTB fixed. Notice that by
suitable choices of«!1 andj!1, one can obtain any desired
temperatureTB5«/(kj) to lowest order inj.

Different regions of the spectrum are similar in the sense
that the fractional increase inV, per unit energy interval,
is independent of U; i.e., (]S/]U)«5k@](ln V)/]U#«

5k@(dV/V)/dU#«5(k ln b)/«5const. This completes the dis-
cussion of Property 2.

Property 3. Canonical ensemble: The canonical partition
function Z for a BR with temperatureTB diverges because
the probability of finding the system in a state with energyU
is the same for allU. The implied infinite energy fluctuations
are consistent with the property of infinite heat capacity, and

are responsible for the inequivalence between the canonical
and microcanonical ensembles for BRs.

Details: Consider first a BR for whichn<M and then let
M become arbitrarily large. The partition function isZM

5(nbn exp@2n«/(kTB)#, where the sum here and in the ex-
pressions below goes fromn50 to n5M . Equation~5! im-
plies b exp@2«/(kTB)#51. ThereforeZM5(n(1)n5M11.
The probability of finding a system with energyU5n« is
P(U)5Z21bn exp@2n«/(kTB)#5Z215(M11)21 for all n
<M ; i.e., P(U) is the same for each allowed energyU
<M«. In the limit M→`, ZM→` and P(U)→0 for all
possibleU5n«. In the canonical ensemble, one has the
identity, C«5(DE)2/(kTB

2), where (DE)2 is the variance in
the canonical energy. For finiteM, the average energy in the

ensemble isĒ5«(M11)21(nn5 1
2 M« because the sum is

1
2 M (M11). The variance (DE)25(M11)21(n(n«)2

2( 1
2 M«)2, and the inequality(nn2.*0

My2 dy5M3/3 im-
plies (DE)2.M2«2@(M23)/12(M11)#. For M
→`,(DE)2 diverges asM2, consistent with the fact that
each of the infinite number of energies 0,«, 2«,... is equally
likely. The infinite variance (DE)2 implies infinite heat ca-
pacity C« for M→`, in accord with Property 1.

In contrast, fornormal ~not BR! macroscopic systems

with Z5(EV(E) exp@2E/(kT)#, ln Z'ln V(Ê)2Ê/(kT),

where Ê'Ē, the system’s average energy. This holds

when the energy fluctuations are small relative toĒ itself.
In such cases, because the Helmholtz function isA
52kT ln Z, this implies thatk ln V, the microcanonical

entropy, equals (Ē2A)T21, a canonical ensemble entity.
The latter reflects~but does notprove! that for normal sys-
tems, the canonical and microcanonical ensembles are
equivalent.

However, for the ratherabnormalBR, the infinite fluctua-
tions in a canonical ensemble of BRs leads to the conclusion
that canonical and microcanonical ensembles arenot equiva-
lent. The unbounded energy fluctuations can also be linked
to thermodynamic instability, which is implied by the non-
concavity ofS(U) described in Property 5.

Property 4. Legendre transform: Because the entropy
S(U) is linear in U, the Helmholtz free energyA5U
2TBS50. An equivalent statement is that the Legendre
transformation ofS with respect toU is formally zero. The
inverse Legendre transform, leading fromA to S, does not
exist.

Details: By definition,A5U2TBS. Because Eqs.~1!, ~3!,
and ~5! imply U5TBS, A50. The Legendre transformation
of S(U) is defined asC(P)[S2U(]S/]U)«52A/TB ,
whereP[(]S/]U)« . Using Eq.~3!, we obtainC5A50. It
is obviously impossible to constructS(U) from A; i.e., the
inverse Legendre transform does not exist.5 Given that A
52TBC andA is directly related to the canonical partition
function, it is not surprising that a canonical ensemble of
BRs leads to the mathematical difficulties described in Prop-
erty 3.

Property 5. Nonconcave entropy: The linearity ofSwith U
in Eq. ~3! is not consistent with the thermodynamic stability
requirement thatS(U) be concave. As a consequence, if two
BRs with the same«, b, andTB , but distinct internal ener-
gies U6DU, are in thermal contact, forming an isolated
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composite system, no unique equilibrium state emerges.
More specifically, all internal energy pairs (U2DU,U
1DU) have the same entropy and all are possible. Thus the
number of possible final states is infinite.

Details: Concavity of S implies6 that if two systems of
identical size and type, having internal energiesU2DU and
U1DU and entropiesS(U2DU) andS(U1DU), interact
thermally, and form an isolated composite system, they ex-
change energy until each has internal energyU. Their final
total entropy will be 2S(U), where

2S~U !>S~U2DU !1S~U1DU !,

with equality if and only if DU50. ~9!

The strict inequality holds for allDUÞ0.
However, if two BRs with the sameb and« are in contact,

then S(U2DU)1S(U1DU)5(«21k ln b)@(U2DU)1(U
1DU)#5(«21k ln b)(2U)52S(U)5const for allDU. That is,
in Eq. ~9! the inequality isneversatisfied and the equality is
satisfied for all possibleDU. It follows that all possible pairs
(U2DU,U1DU) have the same entropy, and all are pos-
sible final states. The lack of a unique equilibrium state is yet
another sign of the BR’s thermodynamic instability, which
we encountered in Property 3 in terms of the infinite energy
fluctuations and heat capacity.

Property 6. Interacting Boltzmann reservoirs: If two BRs
have the sameb, but different« parameters, then they will
have different temperatures. When two such BRs are put into
thermal contact, forming an isolated system, energy will flow
from higher to lower temperature until the higher tempera-
ture BR is empty of energy.

Details: Let BR1 have «1.0 and TB15«1 /(k ln b) and
BR2 have«2.0 andTB25«2 /(k ln b), where«1,«2 . It fol-
lows from the foregoing thatS5k ln b@U1 /«11U2 /«2#, and
the system entropyS is maximum whenU1→U and U2

→0.
Property 7. Interacting Boltzmann and normal reservoirs:

Suppose a BR with temperatureTB is in thermal contact with
a normal reservoir~defined below! having initial temperature
T, and this composite system is isolated from the rest of the
universe. IfT,TB initially, the BR will transfer energy to
the normal reservoir until either~a! T increases to the equi-
librium temperatureTe5TB or ~b! T increases toTe,TB and
the BR is empty of energy. If the BR has enough energy that
Te5TB , then the BR can be described using the canonical
ensemble at temperatureTB , but not at the normal reser-
voir’s initial temperatureT. If T.TB initially, the reservoir
will transfer energy to the BR untilTe5TB . When Te

5TB , the conditions for a canonical ensemble of BRs exist,
as in Property 3.

Details: A normal reservoir is defined here to be a system
with internal energyUR , entropySR(UR), and heat capacity
CR , with the property that its temperatureT5(]UR /]SR)«

changes slowly with changes inUR ; i.e., DT/T
'DUR /(CRT)!1 for DUR!UR . In the composite system,
with total energyU, denote the normal reservoir’s energy by
(U2E) and the BR’s energy byE, where E!U initially
~i.e., the normal reservoir is relatively large!. The total en-
tropy of the composite system isStot5SR(U2E)1E/TB , and
the equilibrium condition is (]Stot /]E)«521/T11/TB50.
Also (]2Stot /]E2)«521/(T2CR),0. The latter inequality as-
sures that the total entropy’s extremum is a maximum at

equilibrium. BecauseTB is fixed, the normal reservoir’s tem-
perature must vary in order to achieve the equilibrium con-
dition Te5TB .

For T,TB initially, there is an energy transfer from the
BR to the normal reservoir. If there is sufficient energy in the
BR, equilibrium atT5TB can be reached. Otherwise, the BR
will empty itself of energy, increasingStot as much as pos-
sible, andTe,TB . For T.TB initially, the energy transfer
will be from the normal reservoir until its temperature equals
TB . If T5TB initially, the entropyStot is already maximized,
so zero net energy transfer occurs andTe5TB . If Te5TB ,
we can consider a collection of BRs, each with an identical
normal reservoir at temperatureTB—i.e., a canonical en-
semble of BRs, as in Property 3.

In the case whereTe,TB , one might naively consider a
canonical ensemble of BRs with parametersb and«, in con-
tact with a reservoir R with constant temperatureT
,«/(k ln b)5TB . In this case,b exp@2«/(kT)#,1, where-
upon the Z series convergesformally to Z5$12b
3exp@2«/(kT)#%21 and the average energy isU(T)
5«$b21 exp@«/(kT)#21%21. This argument suggests that the
BR behaves as a normal thermodynamic system. However,
the discussion above shows thatTe,TB only if the BR trans-
fers all its energy to the normal reservoir, so the canonical
ensemble becomes a collection of BRs, each withU50. Fur-
thermore, the normal reservoir’s temperature has changed
from T to Te , whereTe depends explicitly on how much
energy the BRs had initially. These characteristics deviate
substantially from the normal conditions and tenets of the
canonical ensemble.

Property 8. Work and heat processes: If the energy level
spacing« is a function of an externally controllable variable
~e.g., volume or magnetic field!, the temperatureTB of a BR
can be modified in principle by an adiabatic work process
that alters«. In contrast, heat processes changeU by altering
n for fixed «. For an infinitesimal reversible work process
dW5S dTB, and for a combination work plus heat process,
the heat capacity of a BR can be positive, negative, or zero.

Details: From Eqs.~3! and~5!, we saw thatU5TBS. Thus
dU5TB dS1S dTB . For a reversible heat process,dQ
5TB dS, and from the first law of thermodynamics,dU
5dQ1dW. These equations implydW5S dTB . Equations
~3! and~5! also lead toTB dS5«Dn andS dTB5n d«. Thus
a heat process changes the thermodynamic state of the sys-
tem by changing its quantum staten, without altering the
BR’s energy spectrum. In contrast, an adiabatic reversible
work process modifies the level separation« without chang-
ing the quantum staten.

Along an arbitrary reversible path calledp, we can write
dQ5TB (]S/]TB)p dTB[Cp dTB and dW5S dTB , where
Cp is the BR’s heat capacity along the pathp. Eliminating
dTB from the latter two equations, we obtaindQ
5(Cp /S)dW. Assumingn.0, thenS.0, and if dQ and
dW have the same algebraic sign, thenCp.0; if dQ and
dW have opposite signs, thenCp,0; and if dQ50 with
dWÞ0, thenCp50. The latter result is familiar; it holds for
any reversible adiabatic work process inany system.

Property 9. Boltzmann factor: For any BR, V(U)
5exp (U/kTB), and for an ensemble of nonreservoir systems
in thermal contact with this BR, the probability of the system
being in state s with energy Es is P(Es)5Z21

523 523Am. J. Phys., Vol. 68, No. 6, June 2000 Harvey S. Leff
 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

169.230.243.252 On: Thu, 19 Feb 2015 14:58:07



3exp@2Es/(kTB)#. This is the Boltzmann factor andZ is the
canonical partition function.

Details: Equations ~3! and ~5! imply that V(U)
5exp (U/kTB). A consequence of the postulate ofequal a
priori probabilities is that the probability that a system in
thermal contact with such a BR occupies states with energy
Es is proportional toV(U2Es), which can be put in the
form exp@U/(kTB)# exp@2Es/(kT)#.1,7 Writing P(Es)
5Z21 exp@2Es/(kT)#, the normalization condition
(sP(Es)51 shows thatZ5(s exp@2Es/(kTB)#; i.e., the nor-
malization factorZ is the canonical partition function. This
finding is in agreement with that in Ref. 1 for a two-level
system in contact with a BR, and with the observation
therein that the result generalizes to other systems in thermal
contact with a BR.

III. CONCLUSIONS

In order to maintain a constant temperature, a BR’s en-
tropy must be linear in the internal energyU and its zero-
work heat capacity must be infinite. Although one normally
envisions a reservoir as a large mass of material and arbi-
trarily large internal energy, there is no restriction on the size
of the internal energyU of a hypothetical BR. Rather, its
spectrum is such that the quantity@(dV/V)/dU#«

51/(kTB) is the same for all parts of the spectrum. This is
very different from the typical case, where temperature in-
creases and the latter ratio decreases with increasing energy.
Further light is shed on the BR by considering an ensemble
of BRs at theirnatural temperatureTB5«/(k ln b). This is a
collection of such BRs in thermal contact with any reservoir
at temperatureTB . The structure of the BR’s energy spec-
trum is such that the probability of finding it with energyU
is independent ofU. This is consistent with the finding that
T5TB independent of the region of the BR’s spectrum that
is involved.

In the canonical ensemble,A52kTB ln Z, andZ diverges
for a BR at temperatureTB , which impliesA→2`, in con-
flict with the thermodynamic resultA5U2TBS50. The les-
son to be learned here is that the canonical ensemble formal-
ism fails for a BR. In addition, because the microcanonical
ensemble, typified by Eqs.~3! and~5!, yields a well-defined
entropy, this is an example where the two ensembles are not
equivalent. The reason is that energy fluctuations in the ca-
nonical ensemble are infinite. This, in turn, can be traced to
the fact that linearity inU means thatS(U) is not concave,
and this implies that a BR is not thermodynamically stable.
BecauseA is the Legendre transform ofS(U), the resultA
50 means that this Legendre transform is not invertible—
namely, one cannot constructS(U) from a knowledge ofA.

If two reservoirs are linked to one another, one expects
energy to flow from higher to lower temperature. For actual
finite, approximatereservoirs, this would lead ultimately to
thermodynamic equilibrium at an intermediate temperature.
However, if a BR is put in contact with a normal reservoir—
namely a large system with high heat capacity—the energy
exchange movesT towardTB . If T,TB initially and there is
not sufficient energy in the BR, the BR will simply give up
all its internal energy to the normal reservoir. The BR’s tem-
perature remainsTB until the last joule of energy is trans-
ferred. If the BR has enough energy initially, then the normal
reservoir achieves temperatureTe5TB . For two BRs, no
such compromise is possible because each reservoir main-

tains its initial temperature even as it gains or loses ener-
gy.The higher temperature BR will give all its energy to the
lower temperature one.

Although heat processes cannot change the temperature of
a BR, in principle a work process can do so by changing«,
the spacing between adjacent energy levels. That is, the tem-
perature of a ‘‘heat reservoir’’ can be changed by an adia-
batic work process. This variation in« can occur without
altering the BR’s quantum staten. In contrast, heat processes
changen with « unaltered. For combined heat and work pro-
cesses, the concomitant heat capacity can be positive, nega-
tive, or zero.

The BR enables one to quickly obtain the Boltzmann fac-
tor and the canonical ensemble from the microcanonical for-
malism. As observed in Ref. 1, the latter avoids the need for
assumptions about constant temperature, the use of series
expansions, and the so-called reservoir limit. These are no-
table points, which underscore the BR’s potential value as a
tool in statistical physics.

Prentis, Andrus, and Stasevich1 have made an important
contribution to thermal physics by modeling various
reservoir environments. The Boltzmann reservoir is~to
this author! the most interesting of their proposed
environments because of its thought-provoking properties.
By its very nature, a model reservoir that maintains
strictly constant temperature amid finite energy exchanges
exhibits thermodynamic behavior that is not conventional.
The Boltzmann reservoir model illustrates this point
well. It suggests that the common assumption of
constant-temperature reservoirs, though helpful in
thermal physics analyses, implies very weird properties for
the reservoirs.

Because the BR is not based on a Hamiltonian, there is no
reason to believe that it modelsany real system. Neverthe-
less, as the only known strictly constant-temperature micro-
scopic model, it adds an intriguing example to the list of
tractable statistical mechanical models. To the extent that its
aberrant properties can bring a deeper appreciation of normal
thermodynamic behavior, the Boltzmann reservoir offers the
possibility of being a helpful teaching and learning tool in
thermal physics courses.
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