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Key Point 3.1:   Entropy is an increasing, concave downward, 
function of internal energy at fixed volume—and an increasing, 
concave downward, function of enthalpy at fixed pressure. In 
either case, the slope of the curve at each point is the reciprocal 
of the temperature T, which shows graphically that as U or H 
increases, so does T.

• How can the shape of S help us understand the 
principle of entropy increase?  Figure 2 shows the S ver-
sus H curve for each of two identical systems (same type and 
size). When put in thermal contact, the lower-temperature sys-
tem absorbs energy Q and goes from state 1 ➝ f. Simultaneous-
ly the higher-temperature system loses energy Q, going from 
state 2 ➝ f. This irreversible process will not follow the concave 
curve because it entails nonequilibrium intermediate states, 
but the initial (1, 2) and final (f) equilibrium states are on the 
curve. The graph requires only a single curve because the sys-
tems are identical in size and type. Because of the concavity 
property, the lower-temperature system clearly gains more en-
tropy than the other system loses, and DS1 + DS2 > 0; i.e., the 
total entropy increases during temperature equilibration.

Key Point 3.2:   When energy is initially distributed inequi-
tably among the two subsystems that subsequently interact by a 
heat process, the inequity is rectified by energy-spreading. The 

concave shape of S assures that the entropy increase of 
the lower-temperature system exceeds the entropy de-
crease for the higher-temperature system, so the spread-
ing process is accompanied by an entropy increase of the 
total system. For two different type and/or size subsys-
tems, two curves are needed, but the graph (not shown) 
still illustrates that the entropy increase of the initially 
lower-temperature subsystem dominates and the total 
entropy still increases. The equality holds only when the 
subsystems begin with the same temperature—i.e., en-
ergy is distributed equitably.

 
• What is the Boltzmann entropy and what 
can we learn from it?  The so-called Boltzmann 
entropy4 for an isolated system with total energy E 
and volume V is

  S(E) = k lnW .				             (1)
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 In Part III of this five-part series of articles,1,2 simple graphic properties of entropy are illustrated, offering a novel way to 
understand the principle of entropy increase. The Boltzmann entropy is introduced and shows that in thermal equilibrium, 
entropy can be related to the spreading of a system over accessible microstates. Finally, constant-temperature reservoirs are 
shown to be idealizations that are nevertheless useful. A question-answer format is continued here and Key Points 3.1–3.4 are 
enumerated.

Questions and answers
 • What does thermodynamics imply about the 
shape of the entropy function?  It is common to con-
sider constant-volume systems and to express entropy S as 
a function of internal energy U and volume V. A straight-
forward thermodynamics argument (see appendix) shows 
that entropy is an increasing function of U for fixed volume 
V, and in the absence of a phase transition, the slope of 
S decreases with increasing U [see Fig. 1(a)]. That is, S is 
a concave downward function and any chord connecting 
two points on the S versus U curve lies beneath the curve 
(except at the end points).3 The interpretation is that when 
added energy spreads spatially through a system, its entropy 
increases, but more slowly as U grows. A similar property and 
interpretation holds for entropy as a function of enthalpy H at 
constant pressure P, as shown in Fig. 1(b).

Recall from Part I that the energy input needed to heat a 
system infinitesimally from initial temperature Ti to final Tf  at 
constant P is the enthalpy change dH. Notably, from the Clau-
sius algorithm dS =  đQrev /T and the identities dU = đQrev at 
constant V and dH = đQrev at constant P, it follows that dS = 
dU/T for constant V, and dS = dH/T for constant P. Thus the 
slope of each curve in Fig. 1 is 1/T at each point.

Fig. 1. (a) Entropy S vs internal energy U at constant volume. (b) Entropy S 
vs enthalpy H at constant pressure. In (a) and (b) initial and final states are 
shown. The temperature inequality Tf > Ti is evident because T  1/slope.
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namic equilibrium with its environment, that equilibrium is 
dynamic on a microscopic scale and S(E) can be viewed as a 
temporal spreading function.11,12 The system’s time-averaged 
energy, E, is identified with the internal energy U, so S = S(U). 
Actually, because the allowed energies typically depend on 
the system volume, S = S(U, V).

For the system plus an assumed constant temperature 
reservoir, the number of accessible microstates is the prod-
uct Wtot = W(E)Wres(Eres), where Eres >> E is the reservoir’s 
energy and Wres is the number of accessible states of the 
reservoir. This is because each of the W(E) system states can 
occur with any of the Wres(Eres) states, and vice versa. The 
equilibrium value of the system energy E is that for which Wtot 
is maximum under the condition that the total energy E + Eres 
= constant.

Key Point 3.3:   The Boltzmann entropy, Eq. (1), is a measure 
of the number of independent microstates accessible to the sys-
tem. When a system shares energy with its environment, its en-
ergy undergoes small fluctuations; i.e., there is temporal spread-
ing over microstates. The maximum possible extent of this 
spreading in the system plus environment leads to equilibrium. 
In a process, spatial spreading of energy occurs so as to reach the 
macrostate with the maximum number of microstates for the 
system plus surroundings. Subsequently, temporal spreading oc-
curs over these microstates.

• What is a constant-temperature “reservoir” and 
what can we say about its entropy?  In thermodynam-
ics, we commonly treat a system’s surroundings as a constant-
temperature reservoir. It is assumed that finite energy ex-
changes do not alter its temperature. In addition, we assume 
that the reservoir responds infinitely quickly (zero relaxation 
time) to energy changes, never going out of thermodynamic 
equilibrium.

Such a reservoir is especially helpful for a constant-tem-
perature, constant-pressure process. However because S(H) 
must be a concave function of H, as in Figs. 1 and 2, it is clear 
that a constant-temperature reservoir is a physical impos-
sibility because a chord on the S versus H curve would not 
lie beneath the curve, but rather on it, violating concavity.13 
Indeed any real system, no matter how large, has a finite heat 
capacity, and an energy exchange will alter its temperature 
somewhat. For a sufficiently large system, a segment of the 
S versus H curve can appear nearly linear and the reservoir’s 
temperature changes little during a thermodynamic process. 
Figure 3(a) shows the S versus H curves for a normal-sized 
system, a larger system, and, finally, an ideal reservoir for 
which S is a linear function of the enthalpy H.

Figure 3(b) shows a finite system with a concave spreading 
function initially in state A with temperature TA, the recip-
rocal of the slope. It then interacts thermally with an ideal 
reservoir of higher temperature Tres > TA, and gains sufficient 
energy to attain thermodynamic state B with temperature 
TB = Tres. It is clear graphically that DSsys + DSres > 0, so the 
second law of thermodynamics is satisfied. Furthermore the 

Here W is a function of E and volume V.  It is related to the 
“number of complexions” using a classical description,5,6 
and to the number of accessible microstates for a quantum 
description. It is typically of order 1010n(with n < 18 – 21).7 
For an isolated quantum system, W is the number of quantum 
states accessible to the system when its total energy is either 
precisely E or is in an energy interval d E << E containing E. 
Because no state is known to be favored over any other state, 
it is common to assume that the W states are equally likely, 
each being occupied with probability 1/W. This is called the 
principle of equal a priori probabilities (discussed in Part V, in 
connection with uncertainty or, equivalently, missing infor-
mation8).

Equation (1) is interesting for at least two reasons. First, its 
units come solely from the pre-factor, Boltzmann’s constant, 
k = 1.38 3 10-23 JK-1.9 Second, all the physics is contained 
in the dimensionless quantity W, which is a property of the 
quantum energy-level spectrum implied by the intermolecu-
lar forces, which differ from system to system. Note that this 
spectrum is for the total system and not individual molecules.

Using quantum terminology, if the system is isolated and 
E is assumed to be known exactly, there are W degenerate 
states—i.e., independent quantum states with the same en-
ergy. The quantum state of the system is a linear superposition 
of these degenerate quantum states. Only if a measurement 
were possible (alas, it is not) could we know that a specific 
state is occupied. In a sense, the system state is “spread over” 
all the degenerate states. This suggests that in an equilibrium 
state, entropy reflects the spread of the system over the pos-
sible quantum microstates. Although different from spatial 
spreading in a thermodynamic process, this suggests that en-
tropy is a “spreading function,” not only for processes, but also 
(albeit differently) for equilibrium states.

For actual (nonideal) systems there is never total isolation 
from the surroundings and the energy E is known only to be 
in a “small” energy interval d E << E. Equation (1) still holds,10 
and energy exchanges with the environment cause the sys-
tem’s occupied state to spread over accessible states from 
moment to moment. Thus when the system is in thermody-

Fig. 2. Two identical systems have the same S vs H curve. One is 
initially in state 1 and the other in state 2. When put into thermal 
contact at constant pressure, equilibrium is ultimately reached, 
with each system in state f. Concavity assures that the second 
law of thermodynamics is satisfied; i.e., DS1 + DS2 > 0.
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first law as dU + PdV = TdS, add VdP to both sides, and use the 
denition of enthalpy H  U + PV, we obtain dH = TdS + VdP. 
This implies S = S(H, P). An argument similar to that above 
then shows that

						             (3)

The second inequality holds if (dH /dT )P  CP > 0 (positive 
constant-pressure heat capacity) for T > 0.
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graph shows that DSres = slope 3 DH = DH/Tres. If the ideal 
reservoir instead had a lower temperature than the finite sys-
tem’s initial temperature, a similar argument shows that the 
second law of thermodynamics is again satisfied because of 
the concave downward property of the finite system’s entropy.

Key Point 3.4:    A constant temperature reservoir is an ideal-
ized system whose entropy versus energy (at constant volume) 
or versus enthalpy (at constant pressure) curves are linear. No 
such system actually exists, but the S versus U (or H) graphs for 
a very large real system can be well approximated as linear over 
limited internal energy (or enthalpy) intervals. When a heat 
process through a finite temperature difference occurs between a 
system and reservoir, the total entropy of the system plus reser-
voir increases.

Reversibility, irreversibility, equity, and interpretations of 
entropy are discussed in Parts IV-V.14,8

Appendix
Apply the first law of thermodynamics to a reversible pro-

cess, using Eq. (2) of Part I and the work expression  
đW = PdV to obtain dU =  đQ – đW = TdS – PdV. Holding V 
constant, this implies dS = dU/T and thus

						             (2)
U U U

The derivatives are partial derivatives holding the volume 
fixed.15 The inequalities follow assuming T > 0 and (dU/
dT )V = CV > 0 (positive constant-volume heat capacity) for 
T > 0. The equality holds only for the exceptional case of a 
first-order phase transition during which “heating” gener-
ates a change of state rather than a temperature increase. For 
example, during a liquid-vapor transition, S(U) ~ U, which 
violates concavity.

Because it is common to make laboratory measurements 
under (nearly) constant atmospheric pressure, it is convenient 
to consider entropy as a function of (H, P). If we rewrite the 
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Fig. 3. (a) Curves of entropy vs enthalpy at constant pressure. 
The enthalpy H for successively larger systems, approaches 
linearity. (b) A linear S(H) curve for a so-called ideal reservoir, 
and concave downward S(H) for a typical finite system, initially in 
thermodynamic state A. It is then put in contact with the reservoir 
as described in the text. As before, the slope at each point is 1/T. 
Note that the ideal reservoir does not require infinite enthalpy or 
entropy values. Also, in (a) and (b), the H axis is at S > 0.
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