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T < TA. That energy enters through a surface, heats the matter 
near that surface to a temperature greater than T, and subse-
quently energy spreads to other parts of the system at lower 
temperature. The system’s temperature is nonuniform during 
the ensuing energy-spreading process, nonequilibrium ther-
modynamic states are reached, and the process is irreversible.

To approximate reversible heating, say, at constant pres-
sure, one can put a system in contact with many successively 
hotter reservoirs. In Fig. 1 this idea is illustrated using only 
initial, final, and three intermediate reservoirs, each separated 
by a finite temperature change. Step 1 takes the system from 
temperature TA to the next reservoir temperature T1 > TA. En-
ergy Q1 > 0 is released by the reservoir, whose entropy change 
is DSres,1 = –Q1/T1, with , where the integrand 
is the system’s heat capacity. The system’s entropy change is

 

Thus, the total entropy change in step 1 is
 ∆ ∆

Because T   T1, the integrand and thus DStotal,i   0. Gener-
alizing to the ith step, we have

                                                                                                                   (1)
i

-1

Note that the equality in Eq. (1) holds only in the limit as 
the temperatures Ti and Ti–1 approach each another. This hap-
pens as we increase the number of steps keeping temperatures 
TA and TB fixed. This can be done by doubling the number of 
intermediate reservoirs from 3 to 6, to 12, . . . , reducing suc-
cessive temperature differences accordingly. In the limit of an 
infinite number of steps we have  i In this limit, 
the system and environment are always in equilibrium states, 
and the process can, in principle, be reversed.4 Some define a 
reversible process as one for which the entropy of the universe 
is unchanged.5

Extending the discussion to volume changes, the rapid 
adiabatic expansion or compressions of a gas is irreversible.2 
For a rapid expansion, the gas develops a lower-density region 
near a receding piston and, subsequently, particles and energy 
spread spatially, increasing the entropy. For the infinitely 
slow reversible adiabatic expansion, the work done by the gas 
causes a decrease of internal energy sufficiently large to offset 
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Questions and Answers

 • What is a reversible process?    Recall that a 
reversible process is specified in the Clausius algorithm,  
dS = đQrev /T. To appreciate this subtlety, it is important to un-
derstand the significance of reversible processes in thermody-
namics. Although they are idealized processes that can only be 
approximated in real life, they are extremely useful. A revers-
ible process is typically infinitely slow and sequential, based on 
a large number of small steps that can be reversed in principle. 
In the limit of an infinite number of vanishingly small steps, all 
thermodynamic states encountered for all subsystems and sur-
roundings are equilibrium states, and the process is reversible.

By definition, a process that proceeds solely through equi-
librium thermodynamic states is called quasistatic, and all 
reversible processes are quasistatic. Although most quasistatic 
processes are reversible—namely, can be reversed, with the 
surroundings also reversing the original path—some are not. 
Examples that are nearly quasistatic, but clearly irreversible, 
are air flowing from a slowly leaking tire, and any ultra-slow 
frictional mechanical process that converts mechanical to 
internal energy. Reversibility is required in the Clausius algo-
rithm. If nonequilibrium states are encountered and if T is well 
defined, then dS  đQ/T.1

Any heat process that transfers energy through a finite 
temperature difference—e.g., heating water on a stove—is ir-
reversible. Suppose energy is transferred from a reservoir with 
temperature TA to the system, which is initially at temperature 
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Fig. 1. (a) A system (sys) is heated using five sequential, progres-
sively hotter reservoirs. Each step entails a finite temperature 
difference and is irreversible. (b) Sequentially hotter states (A, 1, 2, 
3, B) for a system shown on an S-vs-H plot. Temperatures are the 
reciprocals of the line slopes. Reversibility is achieved in the limit 
of an infinite number of reservoirs with successive temperature 
differences approaching zero.
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This is the well-known Carnot efficiency. Note that the 
temperature-versus-entropy diagram shows clearly that the 
Carnot engine’s efficiency is independent of the minimum 
and maximum entropy values Smin, Smax because in calculat-
ing h, the ratio of the work (white area) to the input energy 
(white+shaded areas), the difference (Smax – Smin) cancels 
out. Thus, Carnot cycles producing any amount of work must 
have the same thermal efficiency for given Tc and Th. Note 
that Eq. (2) is independent of the working substance.

If the cycle is run in the reverse order, 43214, it is a refrig-
erator that removes energy Qc from the colder region and 
delivers energy Qh = Qc + Wext to the higher temperature 
region, where each quantity here is defined to be positive. In 
particular, Wext = –W > 0, namely the negative of the nega-
tive work done by the heat engine’s working fluid. There is no 
violation of the second law of thermodynamics here because 
external work is needed to move energy “uphill”; it does not 
occur spontaneously, and the entropy of the universe does not 
decrease. If the reversed Carnot engine is intended to heat the 
hotter region, it is called a heat pump. If it is intended to cool 
the colder region, it is called a refrigerator.

An important characteristic of reversible heat engines that 
is not well appreciated is that each cycle must take an infinite 
amount of time and therefore must generate zero power! In 
contrast, real heat engines are useful only if they generate 
sufficient nonzero power levels—e.g., an automobile’s inter-
nal combustion engine. Similarly a reversible engine run in 
reverse will have zero heating rate at Th and zero cooling rate 
at Tc.

Key Point 4.2:   Reversible processes enable graphs of well-
defined thermodynamic paths, consideration of helpful heat 
engine models, determination of maximum efficiencies for heat 
engines, and calculations of entropy changes.

the effect of energy spreading to a larger volume, and the sys-
tem’s entropy is unchanged.

For a rapid adiabatic compression, a higher-density region 
is generated near the piston. Subsequently, the “extra” energy 
in that region spreads spatially, increasing entropy. In the 
reversible limit, the energy gain from work done on the gas 
offsets the decrease in spatial spreading because of the volume 
decrease, leaving the entropy unchanged. A straightforward 
mathematical treatment linking irreversible compressions and 
expansions to entropy increase is in Ref. 6. 

Key Point 4.1:  Reversible processes do not exist in nature, but 
are a useful limiting case for envisaged infinitely slow processes 
that entail only equilibrium states of a system and surroundings. 
Because DStot = 0 for a reversible process, the reversed process 
can be executed without violating the second law of thermody-
namics. Irreversible, variable-volume work processes either add 
internal energy (compression) or spread energy to new spatial 
regions (expansion), increasing energy spreading and total en-
tropy. When DStotal > 0, there is no way to recover the initial en-
tropy values of the system and surroundings because the entropy 
of an isolated system cannot decrease. 

• Why are reversible processes important?   Revers-
ible processes are staples of thermodynamics. Because they 
are quasistatic, they make it possible to draw diagrams of 
pressure versus volume, temperature versus entropy, and 
other useful diagrams. And because they can be reversed, 
they enable the treatment of systems such as refrigerators and 
heat pumps, simply by running reversible heat engines “back-
wards.” Reversible processes also give us the ability to establish 
a limit on the thermal efficiency of heat engines that operate 
between specified higher and lower constant-temperature res-
ervoirs. Finally, reversible processes are needed in the Clau-
sius entropy calculation algorithm. We may use any reversible 
path to connect thermodynamic equilibrium states A and B to 
calculate DS = SB – SA. Because entropy is a state function, the 
latter DS is valid even when states A and B are connected by 
any irreversible path.  

The importance of reversible processes is evident if one  
examines the well-known reversible Carnot cycle using the 
temperature-versus-entropy diagram in Fig. 2. Applying the 
first law of thermodynamics to the heat engine cycle 12341, 
we know that DU = 0 (initial and final states are the same), so 
DU = Q – W implies Q = Qin – Qout = W, where each quantity 
is defined to be positive. Along isothermal segment 12, dS = 
đQ/Th, which leads to Qin = Th(Smax – Smin), the area of the 
combined white+shaded rectangles. Similarly, along 34, Qout 
= Tc(Smax – Smin), the area of the shaded rectangle, and the 
thermal efficiency is

 
                                (2)
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Fig. 2. Reversible Carnot cycle heat engine 12341. Segments 12 
and 34 are isothermal, and 23 and 41 are adiabatic processes. 
The shaded+white area represents the input energy Qh at the
higher temperature Th, and the shaded area is the output energy 
Qc to the colder reservoir at Tc. The work done in one cycle W is 
the white rectangular area and the thermal efficiency h = W/Qh
is (white area)/(white+shaded area).
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The corresponding entropy production rate is between zero 
and the above maximum entropy production rate.8 The ef-
ficiency h* also arises in the context of some reversible heat 
engine models.9

Key Point 4.3:   An irreversible heat engine, operating be-
tween two reservoirs, has an efficiency less than the correspond-
ing Carnot efficiency. The expression h* = 1 –(T–/T+)1/2 is a 
good guide to the efficiencies of electrical generating plants. This 
seems fortuitous because the model from which it is derived 
entails a reversible cycle to be operated in finite time. Despite 
this lack of realism, the irreversible model is valuable because 
it indicates, albeit roughly, a way that maximum power output 
can arise.

In Part V, we discuss interpretations of entropy and the 
concept of “equity” in thermodynamic equilibrium.10
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• How can irreversibility be taken into account?   To 
get around the zero power limitation of a reversible heat en-
gine, some have proposed7 combining a reversible Carnot 
cycle with irreversible heat processes at the hotter and colder 
temperatures, as in Fig. 3. The temperatures T+ and T– repre-
sent high and low reservoir temperatures. The reversible Car-
not cycle runs between hotter and colder temperatures 
Th < T+ and Tc > T–.  For example, T+ could be chosen as the 
temperature of a burning fuel-air mixture in an internal com-
bustion engine; T– could be the outdoor air temperature.

Each cycle, though treated as reversible, must occur in 
finite time, with finite rates Q

. 
c and Q

. 
h (in J/s = watts) that are 

assumed to be proportional to (Tc – T–) and (T+ – Th), respec-
tively.  If Tc approaches T– and Th approaches T+, the transfer 
rates Q

. 
c and Q

. 
h approach zero and the power output vanishes. 

In this limit the efficiency is maximum, namely, the Carnot 
efficiency, hc = 1 – T–/T+.  Also, the entropy production rate 
from the two reservoirs, S

.
 = Q

. 
c /T– – Q

. 
h /T+ → 0; i.e., the pro-

cess becomes reversible.
On the other hand, if Tc approaches Th, the Carnot cycle’s 

area approaches zero and, again, the power output approaches 
zero. Here, Q

. 
h is finite but W

.
 → 0, so the thermal efficiency 

approaches zero. In this limit, the Carnot cycle “vanishes,” 
there is zero power output, and the heat process takes energy 
at rate Q

. 
h  from the reservoir with T+ and delivers it to the res-

ervoir with T–, maximizing the entropy production rate, 
S
.
 = Q

. 
h (1/T– – 1/T+) > 0.

Between these zero power limits, there is a pair (Tc , Th) 
for which the power output is maximum and the thermal ef-
ficiency lies between zero and the Carnot efficiency, namely,7

 h* = 1– (T–/T+)1/2    1 – T–/T+.            (3)
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Fig. 3. A reversible Carnot cycle with irreversible heat processes 
at its hotter and colder temperatures. The temperatures Tc and Th 
are assumed to be variable and can be chosen to maximize the 
output power W

.
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