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The fluctuation-compressibility theorem of statistical mechanics states that fluctuations in particle

number are proportional to the isothermal compressibility. Given that the compressibility of a

photon gas does not exist, this seems to suggest that fluctuations in photon number similarly do not

exist. However, it is shown here that the fluctuation-compressibility theorem does not hold for

photons and, in fact, that fluctuations do exist. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4904322]

I. INTRODUCTION

The goal of this paper is to investigate fluctuations in a
photon gas that is contained in a box of interior volume V
and wall temperature T. The emission of photons by the
walls generates the photon gas, and in thermodynamic equi-
librium, fluctuations in the number of photons occur because
of ongoing photon emission and absorption. The average
number hNi of photons adjusts in accord with V and T, and
the resulting pressure is solely a function of T; i.e., P¼P(T).

The relevant equations of state for a photon gas of volume
V and temperature T have been examined extensively.1 The
average number of photons hNi, pressure P(T), entropy S(T,
V), and internal energy (average total energy) U(T, V) are:

hNi ¼ aVT3; (1)

P Tð Þ ¼ 1

3
bT4; (2)

S T;Vð Þ ¼ 4

3
bVT3; (3)

UðT;VÞ ¼ bVT4; (4)

with

a ¼ 16pk3f 3ð Þ
h3c3

¼ 2:03� 107 m�3 K�3 (5)

and

b ¼ 8p5k4

15h3c3
¼ 7:56� 10�16 m�3 J K�4: (6)

In Eqs. (5) and (6), h, c, and k are Planck’s constant, the
speed of light, and Boltzmann’s constant, respectively, and
fðsÞ ¼

P
nn�s is the Riemann zeta function.

Because the pressure depends only on temperature, any
slow, isothermal change of volume will leave the pressure
unchanged, so the isothermal compressibility,

jT � �
1

V

@V

@P

� �
T

; (7)

does not exist.2 Meanwhile, the fluctuation-compressibility
theorem states that3–5

hN2i � hNi2

hNi2
¼ kT

V
jT : (8)

It is therefore tempting to combine the non-existence of jT,
deduced from Eq. (7), with Eq. (8) to conclude that the var-
iance of N does not exist.6,7

Two specific objectives here are to show that the
fluctuation-compressibility theorem does not hold for the
photon gas, and that in fact, the fluctuations in photon num-
ber are well defined. It is difficult to find a discussion of ei-
ther of these points in the existing literature.8

In the subsequent sections, I first review ways to obtain
average occupation numbers and corresponding variances
and then calculate relevant averages and show why the
fluctuation-compressibility theorem fails to apply to the pho-
ton gas. Following this, I discuss a Gedanken experiment
that illustrates how an attempt to measure jT fails, consistent
with the known non-existence of jT. Brief concluding
remarks are in Sec. VI.

II. CANONICAL AND GRAND CANONICAL

AVERAGES

As preparation for the calculation of fluctuations in the
number of photons in Sec. III, here I review relevant aver-
ages and variances and emphasize that the canonical and
grand canonical ensembles give the same results.

Suppose that a photon gas has allowable single-photon
energies {�s}; i.e., �s is the (single-particle) energy of a pho-
ton in state s. Denote the corresponding occupation numbers
by {ns}. Then the possible energies for the gas are
Eðn1; n2;…Þ ¼

P
sns�s, where the sum is over the set {s} of

all single-particle states.
The canonical partition function for the photon gas is

ZðT;VÞ ¼
X
fnsg

e�
P

s
ns�s=kT ¼

Y1
s¼1

X1
ns¼0

e�ns�s=kT : (9)

The last step in Eq. (9)—replacement of a sum of products
by a product of sums—is understandable for a finite number
M of states, i.e., when s¼ 1,2,…M, in which case,

ZðT;VÞ ¼
X1
nM¼0

e�nM�M=kT � � �
X1
n2¼0

e�n2�2=kT
X1
n1¼0

e�n1�1=kT

¼
YM
s¼1

X1
ns¼0

e�ns�s=kT : (10)

Assuming that the interchange of sum and product in the last
step holds in the limit M!1, Eq. (9) results.
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For material particles, whose number is conserved, the
sum over the set {ns} would carry the constraint

P
sns

¼ N ¼ constant. Thus, the canonical partition function is
sometimes written as ZN(T,V). However, for the photon gas,
no such constraint applies, and each occupation number ns

can run from 0 to1 without constraint, so the partition func-
tion is denoted simply by Z(T, V).

Notably, Z(T, V) in Eq. (9) is identical to the correspond-
ing grand canonical partition function Z for a photon gas
with zero chemical potential.9,10 To see this, group together
all terms in Eq. (9) with

P
ini ¼ N, and then sum over all

possible N, namely from N¼ 0 to 1. I insert a (cosmetic)
factor zN in the summation expression—with the specifica-
tion that z¼ 1. Here, z plays the role of fugacity in the grand
canonical ensemble, defined by z � el=kT ¼ 1; this is consist-
ent with l¼ 0, the known chemical potential for the photon
gas. For each positive integer value of N with

P
ini ¼ N, the

sum over {ni} is then formally ZN, the canonical partition
function for a fictitious system of N particles with the photon
energy spectrum, but with N fixed. The result is that

ZðT;VÞ ¼
X1
N¼0

zNZN ¼ Z ¼ the grand partition function:

(11)

Equation (11) is the standard form of the grand canonical
partition function. The appearance of the canonical fixed-N
partition function ZN arises solely from mathematical consid-
erations and does not contradict the fact that actual photon
gases have fluctuating numbers of photons.

Retaining the condition z¼ 1 in the remainder of this sec-
tion, it is convenient to use the following notation and
approach. As implied by Eq. (9) and used explicitly in Ref.
11, the average numbers of photons in the canonical and
grand canonical ensembles, respectively, are

�ns¼�kT
@ lnZ

@�s

� �
T;V

and hnsi¼�kT
@ lnZ
@�s

� �
T;V

: (12)

Because ZðT;VÞ ¼ Z from Eq. (11), this implies12

�ns ¼ hnsi ¼
e��s=kT

1� e��s=kT
: (13)

Given that �ns ¼ hnsi, it follows that the variances of ns in the
canonical and grand canonical ensembles are equal; i.e.,

hn2
s i � hnsi2 ¼ �kT

@hnsi
@�s

� �
T;V

¼ �kT
@ �ns

@�s

� �
T;V

¼ n2
s � �n2

s : (14)

These equalities of average occupation numbers and their var-
iances for a single-particle state in the two ensembles mean
that I need use only one notation. In what follows I choose to
retain only the grand ensemble notation h i for averages.

The average total number of photons can be written as

hNi ¼
X

s

hnsi ¼
X

s

e��s=kT

1� e��s=kT
: (15)

Meanwhile, inserting Eq. (13) into the derivative in Eq. (14)
gives for the variance

hn2
s i � hnsi2 ¼ hnsið1þ hnsiÞ : (16)

Notably, the variance of ns is expressible solely in terms of
the average, hnsi. This is curious because one expects a var-
iance to entail hn2

s i. A similar property can be corroborated
directly for the variance of N using the ensemble-
independent variance expression

hN2i � hNi2 ¼
X

s

ns

 !2* +
�

X
s

hnsi
 !2

¼
X

r

X
s

½hnrnsi � hnrihnsi�

¼
X

s

½hn2
s i � hnsi2�

¼
X

s

hnsi½1þ hnsi�: (17)

In Eq. (17), ns is an occupation number for single-particle
state s and should not be confused with the average occupa-
tion number hnsi. The second line arises by writing each
summation squared as a sum over s followed by a sum over
r. The third line follows because of the statistical independ-
ence of nr and ns, namely hnrnsi � hnrihnsi ¼ 0 for r 6¼ s,
leaving only those terms with r¼ s. The last line comes
about using Eq. (16). Evidently, it is the latter statistical in-
dependence that leads to the variance in N being dependent
only on the set fhnrig and not on fhn2

r ig.
In view of the third line in Eq. (17), the variance in the total

number of photons is the sum of the variances of the occupa-
tion numbers for all the single-particle states. It is useful to
define the relative root-mean-square (rms) fluctuation fs for
state s, and the corresponding rms fluctuation f for the total
number of photons. These are, respectively,

fs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn2

s i � hnsi2
q

hnsi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hnsi
hnsi

s
> 1; (18)

and

f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2i � hNi2

q
hNi : (19)

Although fs> 1, no such property emerges for f, and in
fact—as we shall see—typically, f� 1.

III. FLUCTUATIONS IN THE NUMBER OF

PHOTONS

To calculate the average number of photons and its var-
iance, I first use the grand canonical ensemble with z¼ 1
(i.e., l¼ 0). I combine Eqs. (13), (15), and (17) and convert
the sums over microstates to integrals following a standard
technique3 for an assumed three-dimensional container of
volume V. Note that there is no Bose condensation for a pho-
ton gas,13 so it is not necessary to split off a term from the in-
tegral, which is necessary for a material ideal gas of bosons
in a three-dimensional box. Using the abbreviations

x � �

kT
and A � 8pV kTð Þ3

hcð Þ3
; (20)
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the average number of photons is

hNi ¼
X

s

e��s=kT

1� e��s=kT
! A

ð1
0

x2e�x

1� e�x
dx

¼ A 2f 3ð Þ½ � ¼ 2:028� 107 m�3K�3ð ÞVT3: (21)

Similarly, converting the sum to an integral in Eq. (17) and
using Eq. (21) leads to

hN2i � hNi2 ¼
X

s

e��s=kT

1� e��s=kT
þ e�2�s=kT

1� e��s=kTð Þ2

! A

ð1
0

x2e�x

1� e�xð Þ2
dx

¼ 1

3
Ap2 ¼ 2:776� 107 m�3K�3ð ÞVT3

¼ 1:369hNi: (22)

An alternative procedure is to write

hNi ¼ z
@lnZ
@z

� �
T;V

" #
z¼1

(23)

and

hN2i � hNi2 ¼ z
@hNi
@z

� �
T;V

" #
z¼1

: (24)

With this procedure, I first assume general z 6¼ 1, take the
needed z derivatives of ln Z ¼ �

P
s lnð1� z e��s=kTÞ and

hNi, then set z¼ 1, and finally, convert the sums to integrals.
This leads, once again, to Eqs. (21) and (22).

Clearly, the average and variance given by Eqs. (21) and
(22) both exist for finite T and V and are of the same order of
magnitude. Using Eqs. (21) and (22) in Eq. (19), the relative
rms fluctuation in N is

f ¼ 2:597� 10�4 m3=2K3=2ffiffiffiffiffiffiffiffi
VT3
p ¼ 1:170ffiffiffiffiffiffiffiffi

hNi
p : (25)

Equations (22) and (25) show that hN2i � hNi2 is propor-
tional to hNi, and the relative fluctuation f is proportional to
1=

ffiffiffiffiffiffiffiffi
hNi

p
. These same properties hold for material gases that

satisfy the fluctuation-compressibility theorem, Eq. (8). For
example, applying Eq. (8) to air, treated as a classical ideal
gas with jT ¼ 1=P; ðkT=VÞjT ¼ 1=hNiair, and one finds

hN2iair � hNi
2
air ¼ hNiair, or fair ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
hNiair

p
. More gener-

ally, Eq. (8) can be written as hN2i � hNi2 ¼ hNi� intensive
thermodynamic variable.

Returning to the ideal gas, to gain a sense of what this
means numerically, consider a room with dimensions 3 m�
4 m� 2:5 m and thus V¼ 60 m3. At a typical room tempera-
ture of 300 K, the number density of photons is hNi=V ¼
5:5� 1014 m–3 and the total photon number is
hNi ¼ 3:3� 1016. In contrast, the number density of air mol-
ecules at the same temperature and atmospheric pressure is
hNiair=V ¼ 2:5� 1025 m–3 and the total number of molecules
is hNiair ¼ 1:5� 1027. The relative rms fluctuation for pho-
tons and air, respectively, are f ¼ 5:5� 10�9 and
fair ¼ 2:6� 10�14. The average number of air molecules

exceeds that for photons by eleven orders of magnitude, and
therefore the relative fluctuation for air is much smaller.

The main point is that the variance hN2i � hNi2 exists for
the photon gas, and for any finite temperature T the relative
fluctuation f vanishes in the thermodynamic limit V!1.

IV. INAPPLICABILITY OF FLUCTUATION-

COMPRESSIBILITY THEOREM

Given that the fluctuations in photon number exist, but
the isothermal compressibility does not, it is clear that the
fluctuation-compressibility theorem, Eq. (8), fails for the
photon gas. To understand why, I outline a proof of the
fluctuation-compressibility theorem, modeled after Pathria’s
proof for material particles (not photons).3

Consider a macroscopic, open sub-volume of material gas
particles embedded within a larger gas. Particles can freely
flow into and out of this volume; i.e., N is variable. Because
z ¼ el=kT is a variable, kTð@=@lÞT;V ¼ zð@=@zÞT;V , and thus
the variance expression in Eq. (24) can be written as

hN2i � hNi2

hNi2
¼ kT

hNi2
@hNi
@l

� �
T;V

: (26)

The remainder of the proof proceeds by assuming that V is
fixed, but the volume per particle v � V=hNi is variable. The
right side of Eq. (26) can be written as

kT

hNi2
@hNi
@l

� �
T;V

¼ kT
v

V

� �2 @ V=vð Þ
@l

� �
T;V

¼ � kT

V

@v

@l

� �
T;V

¼ �kT

V

@v

@P

� �
T;V

@P

@l

� �
T;V

: (27)

Finally, a more useful expression for ð@P=@lÞT;V can be
obtained using the Gibbs-Duhem equation,

dl ¼ v dP� s dT; (28)

where v and s are the volume and entropy per particle. It fol-
lows from Eq. (28) that ð@P=@lÞT;V ¼ v�1, and therefore
Eqs. (26) and (27) lead to the fluctuation-compressibility
theorem:

hN2i � hNi2

hNi2
¼ kT

V
� 1

v

� �
@v

@P

� �
T;V

¼ kT

V
jT :

This completes the proof, which I emphasize holds for a ma-
terial gas.

However, for a photon gas, the proof above fails. Equation
(26) must be evaluated at l¼ 0 and thus has no remaining l
dependence. Thus, the steps in Eq. (27) that were used for
material particles cannot be executed. Further, in the Gibbs-
Duhem equation (28), v and P are independent of l, so the
expression, ð@P=@lÞT;V ¼ v�1 that was useful for the mate-
rial gas does not hold. In fact, for the photon gas P is not a
function of l and Eq. (28) reduces to dP/dT¼ s/v¼ S/V. The
latter equation is consistent with the result obtained by dif-
ferentiating Eq. (2) and comparing the result with Eq. (3) but
is of no help with the proof being attempted.
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Other proofs4,5 of Eq. (8) fail similarly for the photon gas,
and the conclusion is that the standard proofs cannot be used
for the photon gas. Moreover, there cannot exist any other
proof because, as shown explicitly in Sec. III, for the photon
gas the variance of N definitely does exist, and as shown in
Sec. I, the isothermal compressibility jT does not exist.
Clearly, Eq. (8) does not hold for the photon gas.

V. A GEDANKEN EXPERIMENT

The non-existence of the isothermal compressibility can
be understood at least in part by envisaging a Gedanken
experiment where the photon gas is contained within a verti-
cal cylinder in a gravitational field. A floating (frictionless)
piston is the container’s ceiling, and the walls are maintained
at temperature T. Begin with the piston fixed such that the
container volume is V. The number of photons hNi adjusts,
and the equilibrium pressure P(T) is established in accord-
ance with Eq. (2). If the piston is released so that it can float,
thermal equilibrium exists only if the piston weight provides
an external pressure equal to P(T).

To measure the compressibility, add an arbitrarily light
grain of sand to the piston. One might hope to calculate an
approximate value of the compressibility using
jT � �V�1DV=DP. However, with the walls at fixed tem-
perature, the equilibrium pressure of the photon gas does not
change and the extra sand grain causes the piston to drop
precipitously to the container floor; i.e., the unstable photon
gas collapses to zero volume. During the collapse, the photon
gas follows an irreversible path through non-equilibrium
states. Once equilibrium is re-established, there are zero pho-
tons in a zero-volume container.

Thus, an arbitrarily small change in P does not lead to a
correspondingly small DV and there is no way to approxi-
mate the isothermal compressibility. The fact that a measure-
ment of the isothermal compressibility jT is not possible is
consistent with the non-existence of jT established on theo-
retical grounds in Sec. I.

VI. CONCLUDING REMARKS

Because all matter radiates, photons are ubiquitous in the
universe. The oldest photons, those in the cosmic microwave
background radiation, go back to the big bang. In this
respect, photons are indeed special. The photon gas is special
too in that it is a relatively simple quantum mechanical, rela-
tivistic, and thermal model, as evidenced by the occurrence
of the fundamental constants h, c, and k in Eqs. (1)–(6).
Because photons can be, and are, continually created and
annihilated by matter, their total number in a closed box fluc-
tuates continually. Those fluctuations are finite, and the sug-
gestion that the variance of hNi does not exist because the
isothermal compressibility does not exist is incorrect. I have
shown here that specific assumptions used for a material gas
to prove the fluctuation-compressibility theorem, namely the
proportionality of the variance of hNi with the isothermal
compressibility, do not hold for photons.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x þ s2
y þ s2

z

q
, and where sx, sy, and sz run over

the positive integers. The ground state g has sx¼ sy¼ sz¼ 1 and sg ¼
ffiffiffi
3
p

.

Using the result that the average total number of photons hNi / V, it fol-

lows that the ratio hngi=hNi / V�2=3 ! 0 in the thermodynamic limit V

!1; i.e., the fraction of photons in the ground (or any other single) state

is zero. Note: This argument requires that we set l¼ 0 before taking the

thermodynamic limit, which is the correct order. If we were to take (incor-

rectly) the thermodynamic limit first, we would mistakenly “discover” an

actually nonexistent singularity for the ground (or any other) state.
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