
Phase diagrams are generally represented 
in textbooks as mere geometrical intersections of lines. 
This geometrical emphasis makes the subject lifeless. 
Normally phase diagrams are presented as "horo- 
scopes" where all the details of the system (i.e., melting 
points of the components, eutectic and triple point, 
etc.) are concisely presented. The elegance of the 
phase rule is lost when the phase diagrams are treated 
in the usual routine way. Phase diagrams have a 
thermodynamic basis and they can, under favorable 
conditions, he made to yield thermodynamic data. 
The purpose of this paper is to give a comprehensive 
account of phase equilibria from this point of view. 

Phase Equilibria in Multicomponent Mixtures ( I )  

We consider a phase having r components. We 
take the system under consideration to he an  open one, 
ie., a system which can gain or lose matter as well as 
heat and work. The Gibbs function for the system, an 
extensive property, will depend on temperature T ,  
pressure P, and the amounts n,, np, . . . , n, (expressed in 
moles) of the various components of the systen~. We 
have for the most general variation 
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dG = -SdT + VdP + C pidni 

i = 1  
(1) 
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where S and V are the entropy and volume and p, is the 
chemical potential for the species i. 

From the definition of the chemical potential, it 
follows that it is an intensive property of the phase in 
question. Expressed differently we can represent p, as 
a function of T, P, and mole fractions XI, x2, . . . , x7. 
Since GI = 1, the number of independent variables s t  

< = I  

where V c  and 8% are partial molar volume and partial 
molar entropy for the species i and respectively denote 
the increase in volume and entropy of the system due to 
unit increase in the number of moles of type i; the 
pressure, temperature, and the amounts of other com- 
ponents remain unaltered. If the number of moles of 
the respective components is fixed, the mole fraction of 
the respective species is also automatically fixed and 
hence, 

Equation (2) can now be written for the phase a in the 
following way, 

A similar expression can be written for the phase P and 
all others. 

Now for equilibrium a t  a constant T and P, 

P P  = P X ~  (7) 

Similarly, for equilibrium a t  temperature T + dT and 
pressure P + dP we have 

prZ + dpk= = + &ke (8) 

From equations (7) and (8) it follows that 
dm" = dpxs (9) 

On proper substitution, equation (9) yields the following 
set of r equations (for each component) 

would be r - 1. For the most general variation, the 
change in chemical potential of a component is given by 

where x, represents all the quantities of the type xi  
except x i  itself. 

Using Maxwell's relations it follows that 

The above equations give the relationship between 
variables T, P,  and x,. One of the variables xr" or x? 
can be eliminated in the following way. If we multiply 
the set of r equations (10) by xl", x2", . . . , x," respec- 
tively and add and apply the Gibhs-Duhem relation, we 
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- 5 (2-) dT + ,5 (z iaL.sV,)  dP = 

i = 1 T , = I  
,-I - {  = ( )  b z i ~  T,P,Z,B w,+ . . .+ z; 

,-I c (y) 3 ~ . ~  T , P . % ~  
,=I 

Similarly when the set of equations (10) is multiplied 
by x18, XP, . . . , x,@ and added we have 

- 
i = l  

8 ' ( )  dzie + . . . + z$ 
az- T.P,z~= 

"-1 (w) dzim (13) 
= , azP T , P , Z ~ ~  

A.,@Ht may be defined as the increase in enthalpy 
during the transformation of one mole of the species i 
from the phase or to phase 8. (Aor,&I, is equal to the 
latent heat of phase transformation only when the 
mixture is ideal.) Similarly A.,nV1 is the corresponding 
volume change during the transformation of one mole of 
the species i from phase or to phase 8. Equations (12) 
and (13) can further be simplified provided it is as- 
sumed that the mixture is ideal. Under this condition, 

and hence equations (12) and (13) reduce to 

and a corresponding equation for phase 8. 

Equation (15) cannot be integrated and it is not of 
much use beyond giving a general relationship for the 
way in which T, P ,  and xi vary simultaneonsly. This 
has been used for analyzing ternary phase equilibrium 
data (9). For isobaric changes in the case of ideal 
ternary mixtures involving liquid-vapor equilibria 

where the primed quantities refer to the vapor phase 
and unprimed quantities refer to the liquid phase. 
AJ3, ( i  = 1,2,3) is the latent heat of evaporation of 
the species i. Particularly useful results are obtained 
for isothermal-isobaric processes. Thus, we have 

which reduces to 

where p p  (i = 1, 2, 3) is the vapor pressure of pure 
component i. The phase equilibrium data (3, 4) for 
the carbon tetrachloride-toluene-ethylene dibromide 
system satisfies equation (17). I n  Figure 1 the mole 
percentage of toluene is plotted against the mole per- 
centage of ethylene dipromide, a t  several temperatures. 
Straight lines are invariably obtained and the slope is 
found to be in reasonable agreement with equation (19). 

We shall see below that equations (15) and (16) yield 
various well-known relations for ideal binary mixtures. 

MOLE PERCENTAGE OF ETHYLfNE DISROMIDE 

Figure 1. Test of equation (191 for carbon tetrachloride-toluene- 
ethylene dibromide system 12). 

Ideal Binary Mixtures 

For ideal binary mixtures, equations (15) and (16) 
reduce to 

- (ztY & , ~ H I  f z P A ~ H z )  dT + 
T 

and 

since dxl + dxz = 0. 
For isobaric changes we have, 

and 

where the superscript 0 refers to the pure components. 
When vapor-liquid equilibria are considered and 8 is 

the vapor phase, Px18 = xlaplO. These equations 
show how the boiling point of the mixture varies with 
composition in either phase. When the equilibrium 
between solid and liquid phases is involved, equations 
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(22) and (23) simply show the variation of melting point 
with the change in composition in either phase. These 
can be readily reduced to van't Hoff's relations for the 
depression of freezing point and the elevation of boiling 
point for the particular case where one of the components 
does not exist in a particular phase. 

Phase Equilibrium in Ideal Binary Condensed Systems 

When the equilibrium between solid (s) and liquid (1) 
phases is involved, equations (20) and (21) reduce to 

and 

where A,HP is the latent heat of fusion of the component 
i. In a binary mixture the above equations give the 
slopes of the phase boundaries when melting point is 
plotted against composition. The maxima or m i n i  
in the melting point composition curve would occur 
when xl' = XI'. 

From equation (25) a rule similar to that of Kono- 
waloff for liquid-vapor systems can be deduced for the 
present case. Thus, if dxlydT is positive, the solid 
phase will become richer in the first component as the 
temperature is increased, showing thereby that frac- 
tional crystallization is possible. 

If the solid phase consists exclusively of the solvent, 
i.e., component 1, we obtain from equation (25) 

which on integration yields van't Hoff's law for the 
depression of freezing point. On the other hand, if the 
solid phase consists of only the solute, i.e., component 2, 
equation (25) yields 

which shows how the solubility varies with tempera- 
ture. Here ASH is the heat of solution. 

From equations (26) and (25) it also follows that if 
both the phases are ideal, 

On integration, we get the following relation between 
the composition of the two phases a t  any instant 

Thus, if in (xlS/xl') is plotted against in ( X ~ ~ / X ~ ~ ) ,  a 
straight line should be obtained. This can be a con- 
venient test for the ideality of a binary solid solution. 

More useful conclusions can be drawn from equation 
(10) for solid-liquid equilibria. If 7 ,  is the activity co- 
efficient of the component i, we have on integration (5), 

A,Hi = AIHio + f (C,.ir - C,.P) dT 
I;' 

(31) 

and 
A ~ C ~ , P  = c9,.l - c *.. .a (32) 

Here C,.,' is the molar heat capacity a t  constant pres- 
sure of the component i in the liquid state and C,. f is 
that for the same component in the crystallime state. 
For the purpose of integration, it is assumed that the 
molar heat capacities are independent of temperature. 
The chemical potential of the component i is given by 
the following relation, 

pi = pio + RT In zi~i (33) 

where y, is the activity coefficient. Equations similar 
to (28) are also obtained for isobaric changes in the 
case of vapor-liquid equilibria. 

We shall see below that the above considerations give 
a more meaningful interpretation to phase diagrams and 
phase boundaries. We shall illustrate this by confining 
our attention to solid-liquid equilihria. 

Eutectic Systems 

Equation (10) would represent the two coexistence 
curves in a binary eutectic diagram. On integration 
one would obtain 

Ideal phase boundaries can be predicted by using the 
above equation from which the liquidus temperatures 
can be calculated for different mole fractions. If the 
temperature and concentration dependence of activity 
coefficients are known, this can be done even for non- 
ideal mixtures. Alternatively, activity coefficients can 
be determined from phase diagrams (6). But there is 
one limitation. It is not possible to evaluate activity 
coefficients for different compositions of mixtures a t  
the same temperature. For a regular mixture,' the 
activity coefficients are given by 

RT In yt = a' zzP 

where a' is a constant which may be supposed to be 
independent of temperature within a small tenlperature 
range. Actually, a' is temperature dependent (7, 8). 
For testing whether an eutectic mixture is regular or 
not, in y, is plotted against x22/T or ln y2 against 
xZ/T. For a regular mixture, a straight line passing 
through the origin should be ohtained. For naph- 
thalene-phenanthrene and naphthalene-ar-naphthyla- 
mine mixtures, the two curves have practically the same 
slope and pass through the origin indicating only slight 
deviation from regular behavior (9). 

If the mixture behaves ideally, it is possible to pre- 
dict the eutectic composition and temperature from 

1 We define two types of regular solutions: symmetricd 
regular and unsymmetrical regular. Symmetrical regular solu- 
tions are defined ss solutions for which the logarithms of the 
activity coefficients are expressible as symmetrical functions of 
the mole fractions. This is not the case for unsymmetrical regu- 
Iar solutions. Both types of solutions have ideal entropy of mix- 
ing. The activity coefficients of unsymrnetrird regular mixture6 
are given by the following equations, 

RT In 7% = d [ A  + B ( l  - 421) + C(l  - 221)(1 - 6x1)) 

RT In y, = xtP[A + B(3 - 42,) + C(1 - 221) (5  - 62111 

where A, B, and C are constants 
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equation (34) for the two components. If the subscript 
e denotes the corresponding quantities a t  the eutectic 
point, the following relations must be satisfied for ideal 
mixtures a t  the eutectic point. 

and 

For the sake of simplicity we assume that the latent 
heat of fusion is independent of temperature. Remem- 
bering that (xll), + (xzL), = 1, we find, on solving 
equations (35) and (36) 

From these the eutectic temperature and the eutectic 
composition can he easily calculated. 

Systems Exhibiting Complete Miscibility 
in Solid and Liquid Phases 

The slopes of the liquidus and solidus curves of phase 
diagrams for systems exhibiting complete miscibility in 
solid and liquid phases would he given by equations 
(24) and (25) so that 

and 

Equations (39) and (40) hold only for ideal systems 
What follows would apply to all systems in the category 
under discussion. 

Equation (30) can be used for predicting phase 
boundaries (10, 11) in the following manner. Putting 
X, for the right hand side of equation (30) gives, for the 
coexistence curve for each componcnt, 

These can be solved for xdand xzS. Thus, 

For ideal mixtures, equation (42) reduces to 

This equation is due to Seltz. It gives a method of 
predicting the composition of liquid and solid phases in 
equilibrium a t  each temperature provided melting 
points and heats of fusion of the two components are 
known.z 

Equally interesting results are ohtained when we con- 
sider mixtures having maximum and minimum melting 

' I n  s. similar manner boiling and condensation curves for 
completely miscible liquids can he drawn (6, p. 351). When two 
components which are immiscible in the liquid state are con- 
sidered, the coexistence curves resemble that obtained in the 
case of eutertic systems. 

points. From equations (39) and (40) it follows that !~y 
applying the condition of maxima or minima, via., 
dT/dxlL = 0 and dT/dxlJ = 0 we obtain xlL = XI'. 

When we apply this result in equation (41), we find that 
the necessary and sufficient condition for its occurrence 
is 

and 

In  other words, we have 

where T, is the maximum or minimum temperature. 
Further, if RT In ylS = @ ' ( x ~ ~ ) ~  and RT In yl' = 

a ' ( ~ ~ ' ) ~  where a' and p' are constants for a mixture 
which is regular both in the solid and liquid phase, we 
have a t  the maxima or minima 

and 

where the subscript m refers to the maximum or mini- 
mum temperature and @' and or' refer to solid and liquid 
phase respectively. Thus, if the mixture is regular in 
both the phases, the difference in the value of inter- 
change energies in the two phases which is related to a' 
and @' can he readily estimated. 

From equation (45) it is clear that minima in such 
two-phase equilibria (temperature-concentration dia- 
grams) occur when the solid is more positively deviating 
from the ideal than the liquid solution and when the 
solid solution is less negatively deviating from ideality 
than the liquid solution. For maxima, the converse is 
true. 

Phase diagrams of the type under discussion are 
obtained in anthracene-acenaphthene (12), diphenyl- 
acetylene-diphenylethylene ( I t ) ,  and germanium-tin 
(1 3). The ideal and experimental phase boundaries for 
a typical case are shown in Figure 2. A mere visual 
comparison of experimental and ideal phase boundary 
does not give any definite idea about the extent of 
departure from ideality. For instance, the system 
diphenylacetylene-diphenylethylene gives evidence of 
considerable deviation from ideality when the solid- 
liquid equilibrium data are subjected to analysis which 
may not be otherwise obvious. For a regular solid and 
liquid mixture, 

which can he written as, 

The value of In -ylL//rl%an be determined from equation 
(30) provided the necessary data are available. Equa- 
tion (49) can be used for the test for regular behavior 
and for estimating the values of a' and @' by simply 
plotting ( X ~ ' ) ~ / T  in ( ~ ~ ~ / r , ~ )  against ( X ~ ) ~ / T  111 (r1'/rI1). 
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When such a plot is made for a diphenylacetylenedi- 
phenylethylene system, a straight lime is obtained 
showing that the system is regular (18). 

A good recent example of a system having a minimum 
melting point for which accurate data are available is 
the nickel-manganese system (14) which appears to be 
unsymn~etrical regular (1 5). 

MOLE FRACTION O F  DIPHENVLACETYLENE 

Figure 2. Phore diagram of diphenyl acetylene-diphsnyl ethylene, 
..... , experimentdcurve; - , idealcurve. 

When changes a t  constant composition are considered, 
i.e., when x," = xl@, and the equilibrium between liquid 
and vapor phases is involved, we have from equations 
(12) and (13) 

where A a 1 0  and A,Hao are the heat of evaporation of 
the two components 1 and 2.  Equation (50) shows how 
the boiling point of an azeotropic mixture changes with 
total pressure P. 

Mixtures Having a Congruent Melting Point 

The equilibrium diagram for a mixture having a con- 
gruent melting point is shown in Figure 3. A and B 
respectively represent the melting points of A and B, 
the two components, C and E are the entectic points, 
and D is the congruent melting point. The composi- 
tion of the addition compound can be read from the 
phase diagram. The coexistence cnwes AC and EB 
should be given by equations simiiar to (34). The 
equation for the phase boundary CDE can be obtained 
in the following way. 

For the sake of simplicity we consider the case when 
compound AB alone is formed. On mixing the two 
components, the following reaction takes place, 

A + B AB - AB (solid) 

Let us start with a mixture of xl moles of A and xz 
moles of B such that xl + xz = 1 .  We further suppose 
that x moles of AB are formed. Then 

XAB, the mole fraction of AB = z / ( l  - I) 
XA,  the mole fraction of A = (XI - z)/( l  - x) 
XB, the male fraction of B = (zl - s)/(l - x) 

The equilibrium constant K of the first stage of the re- 
action is given by 

for an ideal system. But 

dink  AH - = -  
dT RT" 

where AH is the heat of formation of AB in the liquid 
phase. Combining equations (51) and (52), we have 

d In XAB d In z~ d i n  ze AH = -  
dT dT dT RT1 (53) 

Since the sum of the mole fractions is unity, the con- 
dition for equilibrium for the overall reaction is 

NAB' = PAB' = PA' + BB' (54) 

where rmqs  the chemical potential of the compound in 
the solid phase and and fig' are the chemical 
potentials of AB, A and B in the liquid phase. 

Figure 3. Phase diagram for a mixture hoving o congruent melting 
point. 

Further 

and since dP = 0, we have 

If the mixture behaves ideally, we have 

(SnL + SB1 - SABs) would he equal to A p / T  where 
A,H is the heat of fusion. This would be equal to the 
hypothetical heat of fusion of AB if there were no dis- 
sociation. Equation (59) yields 

On integration we obtain, 

where Tc denotes the congruent melting point and the 
quantities with the subscript C denote the mole fraction 
corresponding to that which would exist in molten 
addition con~pound. If the compound is completely 
dissociated, zni and xaL may be put equal to the stoi- 
chiometric mole fraction En and ee. If equation (60) is 
valid, the plot of ( 1 / T  - l / T o )  against in (a(&) 
should yield a straight line. Such straight line plots are 
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obtained for a number of systems (1 6), hut nothing more 
can he safely inferred in the absence of any definite 
information regarding the complete dissociation of the 
compound. 

If there is no dissociation of the complex, the con- 
gruent melting point would correspond to the hypo- 
thetical melting point To. In  this case, the phase 
diigram would show a sharp maximum. However, 
when dissociation occurs in the molten state, the 
products of dissociation lower the effective mole fraction 
of the solute and the curve would he flattened. Thus, 
the flatness of the maximum is indicative of the extent 
of dissociation in the liquid state. 

Similar consideration can be employed for interpret- 
ing the phase boundaries in the case of incongruent 
melting points. 

Partial Miscibility in the Solid Phase 

So far we have discussed the cases in which the com- 
ponents were completely miscible in the solid and liquid 
phases. Cases occur where there is a region of limited 
solid solubility. Such phase diagrams are shown in 
Figure 4. The point C in Figure 4a is a eutectic and D 
in Figure 4b is a peritectic point. The solidus and 
liquidus curves would be described by equation (30). 

A quantitative interpretation of the phenomenon 
can he given as follows. For a binary mixture to be 
stable and not to separate into two phases, the following 
conditions have to be satisfied. 

These conditions can be used for predicting the critical 
solution temperature for a regular mixture. The 
chemical potential of component 1 for a binary regular 
mixture is given by 

PI = MO + RT ln ZI + a'z? (63 )  

where PP is a constant which depends only on tempera- 
ture and pressure. Remembering that s, + s2 = 1, we 
have 

and 

and 

where (s2),, denotes the mole fraction of second com- 
ponent a t  the critical solution temperature, T,,. On 
solving equations (64) and (65), we have, 

Figure4. Phase diogrom of a system showing a peritectic point. 

One important characteristic of such phase diagrams 
is that for the particular liquid composition a t  a certain 
temperature one has two different compositions in the 
solid phase which can be in equilibrium with the liquid 
phase. Thus, from equation (30), it follows that 

These considerations have been employed for checking 
the internal consistency of solid-liquid equilibrium data 
for carbon tetrachloride-cyclohexane system which 
appears to have a eutectic point (8). 

Critical Mixing Separation in Two Phases 

We include the phenomenon of critical mixing for dis- 
cussion here for the sake of completeness. There are 
certain liquid mixtures which are miscible in all pro- 
portions a t  ordinary pressure provided the temperature 
is above or below a certain temperature called the 
critical solution temperature. 

Thus for a regular mixture the critical point occurs a t  
the equimolar mixture. 
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