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Pha,se diagrams are generally represented
in textbooks as mere geometrical intersections of lines.
This geometrical emphasis makes the subject lifeless.
Normally phase diagrams are presented as ‘horo-
scopes’” where all the details of the system (i.e., melting
points of the components, eutectic and triple point,
ete.) are concisely presented. The elegance of the
phase rule is lost when the phase diagrams are treated
in the usual routine way. Phase diagrams have a
thermodynamic basis and they can, under favorable
conditions, be made to yield thermodynamic data.
The purpose of this paper is to give a comprehensive
aceount of phase equilibria from this point of view.

Phase Equilibria in Multicomponent Mixtures (1)

We consider a phase having r components. We
take the system under consideration to be an open one,
i.e., a system which can gain or lose matter as well as
heat and work. The Gibbs function for the system, an
extensive property, will depend on temperature 7T,
pressure P, and the amounts ny, ng, . . . , n, (expressed in
moles) of the various components of the system. We
have for the most general variation

dG = —8dT + VdP + Z.ﬂ-idni (1)
i=1
where § and V are the entropy and volume and g, is the
chemical potential for the species ¢.

From the definition of the chemical potential, it
follows that it is an intensive property of the phase in
question. Expressed differently we can represent p; as
a function of T, P, and mole fractions z;, @, ..., &
Since Y z; = 1, the number of independent variables z,

i=1
would be r — 1. For the most general variation, the
change in chemical potential of a component is given by
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i=r
where x; represents all the quantities of the type
except x; itself.
Using Maxwell’s relations it follows that
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where V; and S; are partial molar volume and partial
molar entropy for the species 7 and respectively denote
the increase in volume and entropy of the system due to
unit increase in the number of moles of type ¢; the
pressure, temperature, and the amounts of other com-
ponents remain unaltered. If the number of moles of
the respective components is fixed, the mole fraction of
the respective species is also automatically fixed and

hence,
NN 7 ——
oT Pning oT P2y ¥
SO W
oP T\ning oP T\x;, xj *

Equation (2) ecan now be written for the phase « in the
following way,
 Jamt

(- S o ol a %1) o
dur S dT' + Vi* dP + t_; D) wopad O (6)

(k=1,2...,7)

A similar expression can be written for the phase 8 and
all others.
Now for equilibrium at a constant T and P,
= b (7)

Similarly, for equilibrium at temperature T 4+ d7T and
pressure P -+ dP we have

w4 du® = b + dub (8)
I'rom equations (7) and (8) it follows that
dpx® = duf (9)

On proper substitution, equation (9) yields the following
set, of r equations (for each component)

r—1 du®
—Q,a o - J—
8y* dT + Vi dP + i; (axﬂ) 7.5, &

Ourf
dzi8) TP, x;

r—1
—S8BdT + ViBdP + ( dx:# (10)

i=1

The above equations give the relationship between

variables 7', P, and z;. One of the variables z;* or 2/
can be eliminated in the following way. If we multiply
the set of r equations (10) by =%, z.% ..., =, respec-
tively and add and apply the Gibbs-Duhem relation, we
get

r—1 au % r—1 Dus®
1 2
e dz;® 4 .~ ( dxi®
! 1221 bx;-“) T,Paw® + o 5:21 dzi®) T,Px® +

r—1

a,u.,-a
a O —
v s B £=§1 bx.-“) . g de:* = 0 (11)

and recognizing that S = AH/T, we get
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Similarly when the set of equations (10) is multiplied
by x,% x5, ..., x,® and added we have

Z (CE;ﬂAaﬂH) dT + Z (zﬁA.,sV,)dP—
i=1 1=l

—1
Q™
8 e
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iZ:l b:cs“) rpse W (18)

AygH: may be defined as the increase in enthalpy
during the transformation of one mole of the species %
from the phase « to phase 8. (A.pH; is equal to the
latent heat of phase transformation only when the
mixture isideal.) Similarly A, gV ;1s the corresponding
volume change during the transformation of one mole of
the species 7 from phase a to phase 8. Equations (12)
and (13) can further be simplified provided it is as-
sumed that the mixture isideal. Under this condition,

r—1

b,uk) RT
. L 14
z'z; (aa:, T,P; o Z o (14)

(k=1,2,...,7)

and hence equations (12) and (13) reduce to

"
- Z (z AaﬁH)dT + 20 (@i BapVi)dP =
i=1 i=1

}: o dx.ﬂ (15)
and a corresponding equation for phase 8.
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Equation (15) cannot be integrated and it is not of
much use beyond giving a general relationship for the
way in which 7, P, and x; vary simultaneously. This
has been used for analyzing ternary phase equilibrium
data (2). For isobaric changes in the case of ideal
ternary mixtures involving liquid-vapor equilibria

2 AHy + 22’ AHy + a3'AHs (_m _ _) 5:51) +
RT? T \m oT'

zs! 5"\ {02

(5«"2 - };)(O_T P (17)
where the primed quantities refer to the vapor phase
and unprimed quantities refer to the liquid phase.
AH; (¢ = 1,2,3) is the latent heat of evaporation of

the species 7. Particularly useful results are obtained
for isothermal-isobaric processes. Thus, we have

(?TZ)T.P - i Hxs /( - ae

which reduces to
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0:
(5")-2) P =@ = p)/(p® — ps°) (19)

where p,* (z = 1, 2, 3) is the vapor pressure of pure
component ¢. The phase equilibrium data (3, 4) for
the carbon tetrachloride-toluene-ethylene dibromide
system satisfies equation (17). In Figure 1 the mole
percentage of toluene is plotted against the mole per-
centage of ethylene dipromide, at several temperatures.
Straight lines are invariably obtained and the slope is
found to be in reasonable agreement with equation (19).

We shall see below that equations (15) and (16) yield
various well-known relations for ideal binary mixtures,

MOLE PERCENTAGE OF TOLUENE

[o) 10 20 30 40 50 60 70 80 9o
MOLE PERCENTAGE OF ETHYLENE DIBROMIDE

Figure 1. Test of equation (19) for carbon tetrachloride-tcluene-
ethylene dibromide system (2).

Ideal Binary Mixtures

For ideal binary mixtures, equations (15) and (16)
reduce to

_ (11 Agpll + 22%A0.8H3)

7 dT +
(21%a,6V1 + 12%0a,5V2) dP =
T 0%

and

_ (2’2]-8 AQ.BH[ :‘; .A",‘Qﬁ Aa,.ﬁ'HzJ dr +

(21PAq,8V1 + 228Aq,8V32) dP =
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since dx; + dzy = 0.
For isobaric changes we have,
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(23)

where the superscript ° refers to the pure components.
When vapor-liquid equilibria are considered and 8 is
the vapor phase, Pr = z:p". These equations
show how the boiling point of the mixture varies with
composition in either phase. When the equilibrium
between solid and liquid phases is involved, equations



(22) and (23) simply show the variation of melting point
with the change in composition in either phase. These
can be readily reduced to van’t Hoff’s relations for the
depression of freezing point and the elevation of boiling
point for the particular case where one of the components
does not exist in a particular phase.

Phase Equilibrium in Ideal Binary Condensed Systems

When the equilibrium between solid (s) and liquid (7)
phases is involved, equations (20) and (21) reduce to

_ oy wAHe (& = B0y 0 (24)
i=1 RT? T \a® s/ dT
and
i xi® Aqujo _ 3_?_&' _ Jli' d:l’lll (25)
RT* - 31'! Izz dT

i=1

where A H s the latent heat of fusion of the component
7. In a binary mixture the above equations give the
slopes of the phase boundaries when melting point is
plotted against composition. The maxima or minima
in the melting point composition curve would occur
when z;' = ="

From equation (25) a rule similar to that of Kono-
waloff for liquid-vapor systems can be deduced for the
present case. Thus, if dz,!/dT is positive, the solid
phase will become richer in the first component as the
temperature is increased, showing thereby that frac-
tional erystallization is possible.

If the solid phase consists exclusively of the solvent,
i.e., component 1, we obtain from equation (25)

dzit = 1‘11 AJ'HID
daT RT?

(26)

which on integration yields van’t Hoff’s law for the
depression of freezing point. On the other hand, if the
solid phase consists of only the solute, i.e., component 2,
equation (25) yields

dle ot AH

ir = RTT @D

which shows how the solubility varies with tempera-
ture. Here A H is the heat of solution.
From equations (26) and (25) it also follows that if
both the phases are ideal,
EL’E:' ﬂflejH]_n + :rg’Ang“ T15T2*

d?:t - TP ArH L + 2ofApH 0 2itaet (28)

On integration, we get the following relation between
the composition of the two phases at any instant

AHR In Z5 = A HOIn Z
JH In 25 = AsHL-In 5 + constant (29)

Thus, if In (z:°/2:") is plotted against In (2%/2.!), a
straight line should be obtained. This can be a con-
venient test for the ideality of a binary solid solution.
More useful conclusions can be drawn from equation
(10) for solid-liquid equilibria. If ;is the activity co-
efficient of the component 7, we have on integration (5),

L (1 1Y M0, Y
o =g \r-m)t g Iptl-7%

mia,h.a
(30)

where

T
AIH;‘: = A;f],‘o =+ f (Cp,i! e (“p..’") drT (31)
7o

and
Afcpuiu = Cy.t'l = Cp.i‘ (32)

Here €, ;' is the molar heat capacity at constant pres-
sure of the component ¢ in the liquid state and €, is
that for the same component in the crystalline state.
For the purpose of integration, it is assumed that the
molar heat capacities are independent of temperature.
The chemical potential of the component ¢ is given by
the following relation,

wi = u® + RT In xivs (33)

where v; is the activity coefficient. Equations similar
to (28) are also obtained for isobaric changes in the
case of vapor-liquid equilibria.

We shall see below that the above considerations give
a more meaningful interpretation to phase diagrams and
phase boundaries. We shall illustrate this by confining
our attention to solid-liquid equilibria.

Eutectic Systems

Equation (10) would represent the two coexistence
curves in a binary eutectic diagram. On integration
one would obtain

AHO (11 )
= dapl = e e
In ztys B (T T

MO (128 11— T2)
R In T +1 T (34)

Ideal phase boundaries can be predicted by using the
above equation from which the liquidus temperatures
can be calculated for different mole fractions. If the
temperature and concentration dependence of activity
coefficients are known, this can be done even for non-
ideal mixtures. Alternatively, activity coefficients can
be determined from phase diagrams (6). But there is
one limitation. It is not possible to evaluate activity
coefficients for different compositions of mixtures at
the same temperature. TFor a regular mixture,® the
activity coefficients are given by

RT In ¥ = a' z2*

where «’ is a constant which may be supposed to be
independent of temperature within a small temperature
range. Actually, &’ is temperature dependent (7, 8).
For testing whether an eutectic mixture is regular or
not, In v, is plotted against 2,*/T or In v, against
x2/T. Tor a regular mixture, a straight line passing
through the origin should be obtained. For naph-
thalene-phenanthrene and naphthalene-a-naphthyla-
mine mixtures, the two curves have practically the same
slope and pass through the origin indicating only slight
deviation from regular behavior (9).

If the mixture behaves ideally, it is possible to pre-
dict the eutectic composition and temperature from

1We define two types of regular solutions: symmetrical
regular and unsymmetrical regular. Symmetrical regular solu-
tions are defined as solutions for which the logarithms of the
activity coefficients are expressible as symmetrical functions of
the mole fractions. This is not the case for unsymmetrical regu-
lar solutions. Both types of solutions have ideal entropy of mix-
ing. The activity coefficients of unsymmetrical regular mixtures
are given by the following equations,

RTIn v = z:2[A + B(1 — 4z) + C(1 — 2z)(1 — 621)]
RT In Y1 = Ilz[A. + B(3 —_ 4331) + C(l == 23."1) (5 == 62’!1)]

where A, B, and C are constants.
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equation (34) for the two components. If the subseript
e denotes the corresponding quantities at the eutectic
point, the following relations must be satisfied for ideal
mixtures at the eutectic point.

AHY® (1 1 e
—In (&) = =5* (T_. T L
and
0
—1In (z2t). = &II;L (%e = T}q“) (36)

For the sake of simplicity we assume that the latent
heat of fusion is independent of temperature. Remem-
bering that (v1"). + (). = 1, we find, on solving
equations (35) and (36)

oty = SV/P/TR-1/TS (37)
2" Je

and
—(AJHO/R)(1/Te — 1/T0) 4 g—(AfH0/R)(1/Te — 1/T0) = 1  (38)

From these the eutectic temperature and the eutectic
composition can be easily calculated.

Systems Exhibiting Complete Miscibility
in Solid and Liquid Phases

The slopes of the liquidus and solidus curves of phase
diagrams for systems exhibiting complete miseibility in
solid and liquid phases would be given by equations
(24) and (25) so that

de  (zm'AH® + 2'AHY)

ar - RTYx!f21® — ! /2e%) (39)

and

[_fﬂf _ (= A H,O 4 I;]’Angn)

dT RTZ(JQE/.'L']Z = :L'z"/x'zz)
Equations (39) and (40) hold only for ideal systems
What follows would apply to all systems in the category
under discussion.

Equation (30) ecan be used for predicting phase
boundaries (10, 11) in the following manner. Putting
\; for the right hand side of equation (30) gives, for the
coexistence curve for each component,

(40)

| E 4 Tl

T Z ’
In > = —n and In 2_2:2 = e (41)

1771 2 Y2

These can be solved for z»t and 2,°. Thus,

Wi bl — T B Kisgidmpal s 1n,.8
gt = eMYLYe ' - eMy1ye Ye'yr (42)
2 eMyqlyyt — g— A2 721713' eMT R gy lyst — yplyye

TFor ideal mixtures, equation (42) reduces to

e — 1 e — 1
T T (43)

2t =
This equation is due to Seltz. It gives a method of
predicting the composition of liquid and solid phases in
equilibrium at each temperature provided melting
points and heats of fusion of the two components are
known.?
Equally interesting results are obtained when we con-
sider mixtures having maximum and minimum melting

2In a similar manner boiling and condensation curves for
completely miscible liquids can be drawn (5, p. 351). When two
components which are immiscible in the liquid state are con-
sidered, the coexistence curves resemble that obtained in the
case of eutectie systems.
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points. IFrom equations (39) and (40) it follows that by
applying the condition of maxima or minima, viz.,
dT/dr,! = 0 and dT/dx® = 0 we obtain 2, = "
When we apply this result in equation (41), we find that
the necessary and sufficient condition for its occurrence
is

ehe = % (44)
and
eM = Il-s
71t

In other words, we have

2 0
In 25 "-‘fg* (TL,,, _ %) (i=1,2) (45)
where T,, is the maximum or minimum temperature.

Further, if RT In v = 8’(2,")% and RT In v,! =
a’(22Y)? where «’ and B’ are constants for a mixture
which i8 regular both in the solid and liquid phase, we
have at the maxima or minima

Ly ot _ AH
(8" = o) Lm0 (

1 :
~ 7 (46)

1
T

and

1y, 2 0
where the subseript m refers to the maximum or mini-
mum temperature and 8’ and a’ refer to solid and liquid
phase respectively. Thus, if the mixture is regular in
both the phases, the difference in the value of inter-
change energies in the two phases which is related to o’
and 8’ ean be readily estimated.

From equation (45) it is clear that minima in such
two-phase equilibria (temperature-concentration dia-
grams) occeur when the solid is more positively deviating
from the ideal than the liquid solution and when the
solid solution is less negatively deviating from ideality
than the liquid solution. I'or maxima, the converse is
true.

Phase diagrams of the type under discussion are
obtained in anthracene-acenaphthene (12), diphenyl-
acetylene-diphenylethylene (72), and germanium-tin
(13). The ideal and experimental phase boundaries for
a typical case are shown in Figure 2. A mere visual
comparison of experimental and ideal phase boundary
does not give any definite idea about the extent of
departure from ideality. Tor instance, the system
diphenylacetylene-diphenylethylene gives evidence of
considerable deviation from ideality when the solid-
liquid equilibrium data are subjected to analysis which
may not be otherwise obvious. For a regular solid and
liquid mixture,

7
RT In I—ix = a'(z:})* — B'(2x)? (48)

which can be written as,

(zo1)? _ -3,' (z0°)2 @ R
T In(vit/v®) & Tln (y1t/v%)

o (49)
The value of In v,*/9,° can be determined from equation
(30) provided the necessary data are available. Equa-
tion (49) can be used for the test for regular behavior
and for estimating the values of o’ and 8’ by simply
plotting (2292 T In (m!/r*) against (2.°)%/T In (r!/r).



When such a plot is made for a diphenylacetylene-di-
phenylethylene system, a straight line is obtained
showing that the system is regular (12).

A good recent example of a system having a minimum
melting point for which accurate data are available is
the nickel-manganese system (74) which appears to be
unsymmetrical regular (15).
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Figure 2. Phase diagram of dipheny! acetylene-diphenyl ethylene;
----- , eXperimental curve; , ideal curve.

When changes at constant composition are considered,
i.e., when 2;* = 2,%, and the equilibrium between liquid
and vapor phases is involved, we have from equations
(12) and (13)

dIn P x1 AHL® 4 29 AHS

77 o RT? (50)

where A,H1" and A H.° are the heat of evaporation of
the two components 1 and 2. Equation (50) shows how
the boiling point of an azeotropic mixture changes with
total pressure P.

Mixtures Having a Congruent Melting Point

The equilibrium diagram for a mixture having a con-
gruent melting point is shown in Figure 3. A and B
respectively represent the melting points of A and B,
the two components, C and E are the eutectic points,
and D is the congruent melting point. The composi-
tion of the addition compound can be read from the
phase diagram. The coexistence curves AC and EB
should be given by equations similar to (34). The
equation for the phase boundary CDE can be obtained
in the following way.

For the sake of simplicity we consider the case when
compound AB alone is formed. On mixing the two
components, the following reaction takes place,

A 4+ B = AB — AB (solid)
Let us start with a mixture of x; moles of A and 22

moles of B such that x; + 2; = 1. We further suppose
that x moles of AB are formed. Then

X s, the mole fraction of AB = z/(1 — z)
(r1 — 2)/(1 — =)
= (z: — 2)/(1 — =)

The equilibrium constant K of the first stage of the re-
action is given by

X4, the mole fraction of A

Xy, the mole fraction of B

_ TAB

ot (51)
for an ideal system.  But
dlnk AH
dT ~ RT* (52)

where AH is the heat of formation of AB in the liquid
phase. Combining equations (51) and (52), we have
dlnzyp  dlnzy, dlnzs AH

Td4r T 4T T 4T " RT (58)

Since the sum of the mole fractions is unity, the con-
dition for equilibrium for the overall reaction is
paB® = pap! = pal + pp' (54)

where pas®is the chemical potential of the compound in
the solid phase and pag’, pa', and s’ are the chemical
potentials of AB, A and B in the liquid phase.
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Figure 3. Phase diagram for a mixture having a congruent melting
point.

Further
duap® = dpan' = dua® + dus’ (55)

and since dP = 0, we have

Qual
- & — — [4 ety ;
Saw* dT % SatdT + = (ax‘l)”m ! E +

Oup!
; —8sidT + 3 (aﬁ) _— dzﬁf (56)
If the mixture behaves ideally, we have
(Sap® — Sal — Sp!)dT = —RT[d In z4' + d In z8'] (57)

(Sa' 4+ Se! — Sar®) would be equal to AH/T where
AH is the heat of fusion. This would be equal to the
hypothetical heat of fusion of AB if there were no dis-
sociation. Equation (59) yields

d].ll IA'IBI s A_,'H
dT " RT:

(58)
On integration we obtain,
B (5= 1) = —InG@a)ant) + In (m)etastlo (59)

where 7'c denotes the congruent melting point and the
quantities with the subseript C denote the mole fraction
corresponding to that which would exist in molten
addition compound. If the compound is completely
dissociated, z.! and xs' may be put equal to the stoi-
chiometric mole fraction £, and £&.  If equation (60) is
valid, the plot of (1/T — 1/T:) against In (£4)(¢s)
should yield a straight line. Such straight line plots are
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obtained for a number of systems (16), but nothing more
can be safely inferred in the absence of any definite
information regarding the complete dissociation of the
compound.

If there is no dissociation of the complex, the con-
gruent melting point would correspond to the hypo-
thetical melting point 7. In this case, the phase
diagram would show a sharp maximum. However,
when dissociation occurs in the molten state, the
products of dissociation lower the effective mole fraction
of the solute and the curve would be flattened. Thus,
the flatness of the maximum is indicative of the extent
of dissociation in the liquid state.

Similar consideration can be employed for interpret-
ing the phase boundaries in the case of incongruent
melting points.

Partial Miscibility in the Solid Phase

So far we have discussed the cases in which the com-
ponents were completely miscible in the solid and liquid
phases. Cases oceur where there is a region of limited
solid solubility. Such phase diagrams are shown in
Figure 4. The point C in Figure 4a is a euteetic and D
in Figure 4b is a peritectic point. The solidus and
liquidus curves would be deseribed by equation (30).
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2, * s a, o, » 43 o,
1 A (e]
00/, Composition 1 o/ﬁ /oa/A C‘om/gosrffon 100/5
Figure 4. Phase diagram of a system showing a peritectic point.

One important, characteristic of such phase diagrams
is that for the particular liquid composition at a certain
temperature one has two different compositions in the
solid phase which can be in equilibrium with the liquid

phase. Thus, from equation (30), it follows that
(z*In(n*)p = (217)e(v1*)E (60)
and
(22" )p(v2")p = (22" )E(r2*)m (61)

These considerations have been employed for checking
the internal consistency of solid-liquid equilibrium data
for ecarbon tetrachloride-cyclohexane system which
appears to have a eutectic point (8).

Critical Mixing Separation in Two Phases

We include the phenomenon of eritical mixing for dis-
cussion here for the sake of completeness. There are
certain liquid mixtures which are miscible in all pro-
portions at ordinary pressure provided the temperature
is above or below a certain temperature called the
critical solution temperature.
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A quantitative interpretation of the phenomenon
can be given as follows. TFor a binary mixture to be
stable and not to separate into two phases, the following
conditions have to be satisfied.

Ou;i/dx; = O%ui/dx:® = 0 (62)
These conditions can be used for predicting the eritical
solution temperature for a regular mixture. The

chemical potential of component 1 for a binary regular
mixture is given by

wmo=wm"+ BT Inz + a'zs? (63)

where u;° is a constant which depends only on tempera-
ture and pressure. Remembering that z; + z» = 1, we

have
owmY _  RTe ; N
(B?z) 1= (2 + 2a/(rs)er = 0 (64)
and
Owy _ _ Rl o r
axﬁ) = 1 — (2)a]® + 22" =0 (65)

where ()., denotes the mole fraction of second com-
ponent at the eritical solution temperature, T... On
solving equations (64) and (65), we have,

(Z2)er = 0.5 (66)

and
T C{" —_
ey = R (6")

Thus for a regular mixture the eritical point oceurs at
the equimolar mixture.
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