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The Microcanonical Ensemble

ARrRTHUR V. TOBOLSKY
Department of Chemistry, Princeton University, Princeton, New Jersey
(Received 9 April 1964)

In the usual development of quantum statistical mechanics the microcanonical ensemble is
introduced in order to present the basic postulates of this subject with utmost clarity. However
practical calculations of elementary problems using the microcanonical ensemble directly are
seldom carried out. Either the method of the most probable distribution is introduced, or the
canonical ensemble is introduced. Both of these methods require the development of further

mathematical and physical concepts.

It is shown here that very elementary methods can be used to develop the thermodynamic
properties of monatomic crystals and the “corrected” Boltzmann monatomic gas directly from
the basic concepts of the microcanonical ensemble.

For more complex problems, it is shown that the microcanonical ensemble emphasizes the
relation between basic concepts in statistical mechanics and certain unsolved problems in the

theory of numbers.

N the development of quantum statistics, the
textbooks usually start with a macroscopic
system at constant E, V, and N. For a large
number N of particles (atoms, molecules), the
number of accessible quantum states Q consistent
with these constraints is enormously large and
is a very significant property of the assembly.
The microcanonical ensemble consists of the
array of all of these @ quantum states. The basic
assumption of statistical mechanics is that all of
these accessible quantum states are equally
probable, i.e., the probability of quantum state
7 in the microcanonical ensemble is P;=1/Q. The
average value of any mechanical variable, i.e.,
the pressure, is given by

73:-2; Popi=Ypi/2. (1)

At this point, two definitions of the entropy
are introduced

S=kInQ, (2)
S=—kY P;InP;. (3)

In Egs. (2) and (3) k is Boltzmann's constant.
For a microcanonical ensemble, Egs. (2) and (3)
are equivalent since P;=1/4Q.

Equation (2) is shown to be reasonable, be-
cause as additional quantum states are made
available by removal of a barrier, the entropy
and @ both increase. This correlates with the
behavior of an isolated system undergoing a
spontaneous process.

At this point it is usual to say that although
the concepts of quantum statistics are clearly
brought to the fore by the microcanonical
ensemble the calculation of @ is quite difficult.
For example, Hill* says “In practice, except in
very simple systems, & is not available and the
microcanonical equations cannot be utilized. In
particular the restriction to constant energy is
usually a difficulty. This can be avoided by
passing to the canonical ensemble.” Hill then
uses the canonical ensemble rather than the
microcanonical ensemble to make his calcula-
tions of the thermodynamic properties of various
systems. Mayer and Mayer (Chap. 5 of Ref. 2),
on the other hand, calculate Q for the perfect
monatomic gas for the Bose—-Einstein, Fermi-
Dirac, and Boltzmann cases by using the method
of the most probable distribution.

In a sense, the continuity of the argument is
somewhat broken by these devices. Either one
turns from a consideration of Q to the considera-
tion of the canonical ensemble partition func-
tion; or, one computes ¢ somewhat indirectly
by the method of the most probable distribution.

It is, however, quite easy to compute Q directly
for an Einstein crystal or for a Boltzmann
monatomic gas. From these calculations we can
readily define the temperature and also obtain
the other thermodynamic properties of these

YT, L. Hill, Tutroduction to Statisiical Thermodynamics
{Addison-Wesley Publishing Company, Reading Massa-
chusetts, 1960), p. 29.

2 J. E. Mayer and M. G. Mayer, Siatistical Mechanics
{John Wiley & Sous, Inc., New York, 1940), p. 438.
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800 ARTHUR V.
substances. The meaning of Eq. (2) and its true
importance are therefore clarified for the student
of quantum statistical mechanics.

The derivations presented below for the
Einstein crystal and the Boltzmann gas are not
new in principle, but are presented here in a more
explicit, direct, and complete manner than in the
available textbooks.

This approach makes it possible to formulate
Q for more complex microcanonical ensembles.
This results in very simply stated but as yet un-
solved problems in the theory of numbers. These
rather intriguing relationships are presented in a
supplement.

THE EINSTEIN CRYSTAL

Consider first a set of N distinguishable
oscillators among which are partitioned N,
quanta of magnitude 4». Each oscillator can have
0,1,2, 3,4 quanta corresponding to energies
0, hv, 2hv, 3hv, 4hv, etc. For the moment the
zero-point energy is neglected. The total energy
of the assembly is

E=Ngh. )

The total number of quantum states € is equal
to the number of different ways that N, indis-
tinguishable balls can be placed in NV numbered
cells. This is a well-known combinatorial
problem.2?3 '

9 (N+No—1)1 (N4Ny)!

C(N=1)INyl NN

By substituting Eq. (5) in (2) using Stirling’s
formula for factorials of large numbers, one
obtains

S/k= (N+No)ln(N+No)—NInN—Ny InN, (6)

The thermodynamic formula most appropriate
to the microcanonical ensemble is

dS=(@dE/T)+(P/T)dVi—(u/T)AN, (7)

where p is the chemical potential per molecule.
Combining (4) and (7) one obtains

1 (63) 1< aS>
T \oE/v.x hv\aNo/y.x.

Introducing the value of S from Eq. (6), then

(5)

(8)

3. Feller, An Iniroduction to Probability Theory and
Its Application (John Wiley & Sons, Inc., New York, 1957),
p. 36.
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utilizing (4), there results

1 k N
—ta(14—), ©)

T hv N,
E=Nhy/(e?!*T—1), (10)

Equation (10) is the Planck—Einstein equa-
tion, neglecting zero-point energy.

By substituting Eqgs. (10) and (4) into (6), one
obtains

S=[Nhv/T(e"/* —1)]
: —NEIn(l—e®/*T),  (11)

From (10) and (11) and the thermodynamic
formula A =E— TS there results

A=NET In(1—ew/4T), (12)

The formulas for the vibrational contribution
to the thermodynamic properties of an Einstein
crystal of NV atoms are given by replacing N by
3N in Egs. (10), (11), and (12); and by adding
the zero-point energy 3Nhp/2 to the resulting
equations for E and 4.

Morset utilizes Eq. (5) to obtain the formula
for the entropy shown in (6). However he obtains
Eq. (10) relating energy and temperature some-
what indirectly by minimizing the Helmholtz
free energy. The use of Eq. (8) is much more
direct and natural..

THE BOLTZMANN GAS

Now consider the problem of computing @ for
a Boltzmann monatomic gas. It is first necessary
to introduce the formula for the surface of an
n-dimensional sphere defined by the equation

wlPtxl o xl’ =1 (13)

The surface S, of such a sphere is given by the
following approximate formula® for large #.

InS,=1inlnQ2rert/n)+In(n/7), (14)

where e is the base of the natural logarithms. The
first term on the right-hand side is in fact the
logarithm of the volume of an #n-dimensional
sphere. The surface area is derived therefrom by
differentiating with respect to 7, which gives rise
to the second term on the right-hand side. For

+P. M. Morse, Thermal Physics (W. A. Benjamin, Inc.,
New York, 1964), pp. 260-264.

5 J. E. Mayer and M. G. Mayer, Statisticel Mechanics
(John Wiley & Sons, Inc., New York, 1940), p. 433.



MICROCANONICAL

large n the second term is completely negligible
compared with the first term.

Consider a gas of IV distinguishable atoms of
mass m, occupying a volume V, and whose total
energy is E. The 3N quantum numbers satisfy
the relation

niltnl 4 Fngyt =

E

e, (13)
hB/8m Vi

For distinguishable atoms all values n#,- - -
nsn that satisfy Eq. (15) are allowed. Every set
of numbers corresponds to a distinguishable
quantum state of the assembly. The total num-
ber of quantum states @p corresponding to con-
stant (E,V,N) is therefore the surface area of the
positive “‘octant” of the “‘sphere” defined by
Eq. (15). We must therefore divide S;x by 23¥
or by 42512,

In@p=3(3N)In(4rem V3E/3NRY).  (16)

One must now correct for the fact that the
atoms are really indistinguishable by dividing by
N!This is valid only if the average occupancy of
any molecular level is very low; otherwise the
Fermi—Dirac or Bose—Einstein treatment must
be used. If however the ‘“classical” approxi-
mation of dividing by N!is valid, one can eval-
uate the entropy by Eq. (2).

S=kInQ=Fk1n(Qp/N!), a7
S=31(3NE)In(dre’sm/IN33h?)
+NEInV+ENEInE. (18)
The temperature can be obtained as follows:
1/T=(385/0E)y x=3Nk/2E; E=3NET. (19)
The pressure can be obtained as follows:
p/T=(0S/8V)g,xn=Nk/V; pV=NET. (20)

Equations (18), (19), and (20) represent the
significant thermodynamic relations for the
classical monatomic gas. Equations (19) and
{(20) are particularly significant since they relate
T as defined by @, E, V, and N to the ideal gas
thermometer.

The classical analog of the calculations for the
Boltzmann gas shown here in Eqs. (15)—(20) are
carried out by integration in classical phase-
space. This calculation is indeed presented in
many of the well-known textbooks.®

8 Reference 5, p. 116.
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In summary the properties of gases and crys-
tals can be obtained directly from the number of
distinguishable quantum states € of macroscopic
assemblies.

APPENDIX: OTHER MICROCANONICAL
ENSEMBLES

If the number of quanta N, to be distributed
amongst N distinguishable oscillators is very
large compared to NV, i.e., if No/N is very large,
then it is easy to show that Eq. (5) reduces to

Q=N¥1/(N—1)1~No¥/N! 21)

Equation (21) can also be derived by con-
sidering @ to be the area of the base of N dimen-
sional pyramid whose edge has a length N,.

Under these conditions, the formulae for &
and S corresponding to Egs. (10) and (11)
become

E=NET, (22)

S=Nk[1+1In(kT/kv)]. (23)

Now consider the number of ways Q of distribut-
ing N, indistinguishable quanta amongst N
indistinguishable oscillators, This is a number
theory or partition problem which has no exact
analytic solution. However for No/N approach-
ing infinity, there is an asymptotic solution

Q=N¥1/(N=1)INI= N/ (N)%  (24)

For this value of @, the following thermo-
dynamic formulas result:

E=NkET, (23)
S=Nk[2+In{kT/hv)—1nN]. (26)

It is interesting to speculate as to whether any
actual physical system corresponds to the mathe-
matical solution given in Egs. (24)-(26), or to
the more general problem where No/N is not
necessarily large.

The problem cited above can be phrased as a
problem in number theory: in how many ways
can we add exactly NV integers to give a sum Ny,
if permutations amongst the integers are not
counted as different. For example, if N=3 and
Ny=6, and if we exclude zeros, the distinguish-
able sets are 114, 123, and 222; therefore Q= 3.

For one dimensional bosons, the computation
of @ can also be considered as a problem in
number theory: in how many ways can we add
the squares of exactly N integers to give a sum
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Ny; in this problem permutations of the integers
are also not counted as distinct configurations.
The quantity N, is equal to E/ (h?/8mL?), where
L is the length of the one-dimensional box.

For one-dimensional fermions, the problem
would be phrased as above, with the additional
restriction that no integer can be used more than
once.

For three-dimensional bosons and fermions,
the integers discussed above would be replaced
by vectors. That is one would consider the sum
of squares of exactly N vectors (%ui#yi%.:)

TOBOLSKY

adding up to exactly Nq. The vector components
are, of course, integers.

All of these problems in number theory are
very complex. However since the entropy for the
B-E. and F.~-D. cases have been evaluated by
other methods, it may be possible to obtain
asymptotic solutions to these number-theory
problems for large values of N utilizing the in-
verse relation @ =exp(S/k).

The microcanonical ensemble emphasizes the
relation between basic concepts in statistical
mechanics and certain number-theory problems.

Emission Spectroscopy as an Elective for Science Majors and Engineers

J. THEODORE PETERS
Drexel Imstitute of Technology, Philadelphia 4, Pennsylvania
(Received 9 January 1963; in revised form 28 January 1964)

This is a condensation of a paper given at the Physics Section Meeting of the American
Association for the Advancement of Science in Philadelphia, 29 December 1962, by J. Theodore
Peters and M. Lalevic of the Drexe! Institute of Technology.

A plea is made for more colleges and universities to offer emission or atomic spectroscopy
as an undergraduate elective. So much of our knowledge today of the mechanism of radiation,
of atomic structure, and of properties of atomic nuclei resulted from spectroscopic research.
It seems only natural then to expect more course offerings in this field. Further evidence is
given for the need for more work in higher reaches of theoretical spectroscopy. There is still
much to be discovered and checked and tabulated as to emission lines for many of the 102

elements.

OR several years a course in emission spec-
troscopy—Physics 16-540—has been offered
as an elective for science majors and engineers,
juniors and seniors with prerequisites in wave
motion, sound and light and, also, atomic
physics, by the physics department of Drexel
Institute of Technology. For a few years this
course was required for graduation for all those
majoring in chemistry and physics.

Since 1959, eighty-six students have taken the
course in day college. One group of seven from
neighboring industries took the course in evening
college. Another such course is planned for fall
of 1964.

Topics covered usually include:

A brief history of spectroscopy

A study of the prism and grating spectro-
graphs and derivation of equations for resolving
power and dispersion for each

A review of lens defects and their corrections

Spectral excitation sources

Limitations of spectroscopy

Cyanogen bands and their control or elimi-
nation by use of controlled atmospheres

Balmer equations and others

Spectral series, energy levels, emission and
absorption spectra compared

Hurter—Driffield or plate calibration curves
and working curves

Exclusion principles and term symbols

Grotrian energy level diagrams

Echelon gratings and Fabry-Perot inter-
ferometers

Zeeman and Stark effects.

Two hours of lecture and two of laboratory per
week carry three term credits.

The purpose of the laboratory work is three-
fold:

To acquaint the student with the instruments
used (Fig. 1).

To apply principles of spectrographic analysis
in actual qualitative and quantitative work.



