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The general thermodynamic structure of equations of
state is discussed. It 1s pointed out that empirical equations
of state always involve o double set of assumptions. A
recipe for producing thermodynamically consistent em-
pirical equations of state is presented and is tlustrated in
the step-by-step production of yet another equation of
state.

The problem of finding a sufficiently accurate
approximation to the equation of state for a gas
for the purposes in hand is still very much with
us'?; the art of empirical equation of state con-
struction is still a necessary art.? In this paper we
wish to point out some elementary thermodynamie
relations that, in our opinion, have not been
adequately exploited in the practice of empirical
equation of state construction.

The thermodynamic bases of all equations of
state are the relations

(8U/aV)r=T(8P/oT)v—P, 1)
—(8H/3P)r=T(8V/aT)p—V, (2)

[P+ (aU/aV) ][V — (0H /8P)r]=T(Cr—Cv),
(3)
where we are referring all extensive quantities

(V, U, H, ete.) to a 1 mole basis. Equation (3)
is a simple combination of Eqgs. (1) and (2). Note
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that if we had exact expressions for the internal
energy U=U(T,V) and the enthalpy H=
H(T, P) we could recover from these two ex-
pressions the exact equation of state via Eq. (3).
We shall now manipulate Egs. (1) and (2) so
as to produce more convenient expressions. Note

that
728U /aV)r=[a(P/T) /0T ]y (4)

and

—T-*(0H/8P)r=[8(V/T)/8T1e;  (5)
we can, consequently, integrate Eqs. (4) and (5)
to obtain (with some rearrangement—see the
Appendix) the relations

[P+&£(T, V) Jo(V) =RT, (6)
LV—x(T, P) }(P)=RT, (")
where
g§T, VY=—T[T2(8U/3V)rdT
(integration at const. V), (8)
x(T, P)=—T{T-2(3H /oP)dT
(integration at const. P), (9)

and ¢(V) and ¢ (P) are arbitrary functions of the
indicated arguments.

In the remainder of the paper we shall limit
ourselves to the discussion of pressure-explicit
equations of state: P=P(7, V). If a pressure-
explicit equation is to be consistent with the laws
of thermodynamies, it must be expressible in the
form of Eq. (6). If we had exact expressions for
U=U(T,V) and ¢(V), we could recover from
them the exact equation of state via Eq. (6).

If we wanted an equation of state that was valid
ail the way down to 0°K (we normally do not
require this muech), the third law of thermody-
namics in the form

0= lim (88/8V)r= lim (8P/0T)v (10)
0 750



would supply us with a relationship between the
functions ¢(V) and (7T, V):

R/¢(V) = lim (8¢/0T)v.

70

(11)

We shall ignore the constraint imposed by Eq.
(11); we are thus limiting ourselves to tempera-
tures in excess of a few degrees Kelvin (this
restriction will prove uncomfortable only in the
cases of *He and ‘He). With this understanding,
then, we may treat the functions ¢(V) and
£(7,V) as independent of one another, and we
see that approximate equations of state involve
(from the thermodynamic point of view) two
distinet assumptions—one for U=U(T, V) [or
for £=£(T, V)] and another for ¢(V).

PATTERNS

The choices U=U%T) and ¢(V)=V lead to
the ideal gas equation PV =RT, whereas the
choices U=U(T)—aV~! and ¢(V)=V—b lead
to the van der Waals equation (P+aV-2)(V—b) =
RT. The results of the many studies, both experi-
mental and theoretical, on the equation of state
for gases since the time of van der Waals indicate
that

o(V)=V+---
and

U=0(T+A(T)V1+-- o (12)

the leading terms in the series expansions for ¢ (V)
and U(T, V) are well known, and much research
has taken the form of extending the expansions in
Eq. (12),
¢(V)=V+ 3 b,V
=0

and

U=U0(T)+ X Au(T)V,

=1

(13)

either by adding on terms or by using expressions
developable into infinite series in terms of re-
ciprocal volumes.

Efforts to improve upon the van der Waals
equation have led to equations such as the
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Beattie—Bridgeman!-34

PV=[RT(1—e)(V4B)/V]-A/V, (14)
where A=A4,(1—aV1), B=By(1-bV™1), and
e=¢/V T3 and the Hirschfelder-Buehler-McGee—
Sutton?

I:P+ (C]_+CzT_1) V_2+ (CsT—C4T_1) V_3]

X(V=b+bV1)=RT. (15)

Equation (15) is clearly of the form of Eq. (6).
Equation (14) can be rearranged into the form of
Eq. (6) with ¢(V)=V/(1+B,V1—bB,V~2) and

_ A0+RCT—2 aAo_RBoCT_ R.B()bCT_2
o O Tl

£
(16)

Equation (14) contains five adjustable constants
and Eq. (15) contains six.

Surprisingly good results have been obtained
with equations as simple as the Redlich~-Kwong,!-2

{P+La/T*V(V+b) 1(V—b) =RT, (17)

and the Wohl,?

{P+[a/TV (V—b)]— (c/T*V3)}(V—b) =RT.
(18)

All the equations of state that we have looked at
thus far are consistent with the thermodynamic
requirements of Eq. (6) ; each equation represents
a different choice for the functions £(7', V) and
¢(V). Consider now the Dieterici equation!-

P(V—b)=RT exp(—a/VT»). (19)
Upon trying to cast Eq. (19) into the form of
Eq. (6), we find that £= — P. It is thus not possible
to make the Dieterici equation conform to the
thermodynamic requirements of Eq. (6). In
spite of occasional laudatory remarks to the
contrary, then, the Dieterici equation is an
invalid equation of state; and, indeed, it performs
rather poorly when put to the test.! 3+
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The trouble with the Dieterici equation, of
course, is that the cohesive energy effect is
introduced via a multiplicative factor rather than
by means of an additive term; any equation that
treats a (temperature-dependent) cohesive energy
effect in such a manner will fail to meet the
requirements of Eq. (6).

If we use Eq. (6) to screen empirical equations
of state, we find that although it passes an infinite
number of such equations it does occasionally
reject one as of unsuitable form.

EQUATION OF STATE ARTISTRY

The gist of our message is simply this: Since we
know a good deal about the expected behavior of
the functions ¢(V) and U(T, V) [Egs. (12) and
(13) ], let us, in constructing empirical equations
of state, make reasonable guesses as to the
functional forms of ¢(V) and U(T, V) and then
let us parlay our guesses into a finished equation
of state via Eq. (6). We here give an example of
how such a program might be put into effect.

We know that the internal energy of a gas at a
given temperature is very nearly a linear function
of the density at low to moderate densities.?#* We
guess, then, that an internal energy function of the
form

U=U%T)—[a(T)/(V+a) I+[&(T)/(V+8)]
(20)

will fit the data over a rather wide range of
densities. Equation (20) leads to an expression for
£(T, V) which we may write in the following form:

§(T, V) =[RTA(T)/(V+a)]

—[RTB(T)/(V+8)*]. (21)

If we now couple Eq. (21) with the simple choice
o(V) =V, we get as a new equation of state the

relation

{P+[RTA(T)/(V+a)?]
—[RTB(T)/(V+8)?]}V=RT. (22)

Equation (22) ean be expressed in virial form in
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the following way:

— —_ 2R __ o2
PV _  B=A _2(8Bod) A 3(FB—aid)

RT 14 Ve Ve

_MEB—aa)

- (23)

‘Finally, if (guided by experimental studies of the

second virial coefficient) we set A (T') =a/RT and
B(T)=bexp(—cT), we end up with a five
constant (a, B, @, b, ¢) equation of state which
has temperature-dependent virial coefficients of
approximately the right form?*:

{P+La/(V+a)*]1-[RTb exp(—cT)/(V+8)*]}
XV=RT. (24)

CONCLUSION

We have shown that from the thermodynamic
point of view the construction of empirical equa-
tions of state always involves two independent
assumptions: we need assumptions for U(T, V)
and ¢(V) or H(T, P) and ¢{(P). In the case of
pressure-explicit equations of state we showed that
Eq. (6) was the basic form for all thermodynami-
cally consistent equations; we also showed by this
test that the Dieterici equation was an invalid
equation of state. As an illustrative exercise, we
constructed a new equation of state. Although we
have not tested our new equation extensively, we
feel about it as Fortinbras felt about Hamlet®:

For he was likely, had he been put on,
To have prov’d most royal.

APPENDIX

‘We here fill in the missing steps in the derivation
of Eq. (6) and comment on some additional
points. Upon integrating Eq. (4),

[a (P/T) /aT]V = T_z(aU/aV) Ty
at constant V, we get
P/T=[T*aU/aV)rdT+Rf(V), (25)

where we have set the function of integration equal



to Rf(V). Rearranging the terms of Eq. (25), we
have

P—T{T2(8U/oV)rdT=RTf(V). (26)

So, setting £(T, V)=—TJT2(0U/dV)rdT and
o(V)=1/f(V), we arrive at Eq. (6). Equation
(7) is derived in a similar fashion.

Writing Eq. (26) as

P+&(T, V) =RT/(V), (27)

we note that the isothermal requirement

lim PV/RT=1

Vo0

(28)

can be satisfied by requiring that
lim Vf(V) =1
V-+>w
and
lim V&(T, V) =0

Vo

(29)

under isothermal conditions. Equation (29) is our

1 K. K. Shah and G. Thodos, Ind. Eng. Chem. 67, No. 3,
30 (1965).

2J. J. Martin, Ind. Eng. Chem. §9, No. 12, 34 (1967).

3F. H. Crawford, Heat, Thermodynamics, and Statistical
Physics (Harcourt, Brace and World, New York, 1963),
Chap. 3, 12.
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justification for expecting that

FV) =Vt

ET, V)=A*¥(T)V24-.-. (30)

We wish now to display the virial equation of
state in the form of Eq. (6). Let us write the
virial equation as

P=RTV-+ 3 RTC.V—,

=2

(31)

where C; is the ¢th virial coefficient. Let C)/=
dC;/dT, then we find that

1/6(V) = V-4 3 V-(Cim [C/AT), (32)

=2

§r,V)=- fj RTV—[C/dT.

=2

(33)

Thus we see that any constant terms in the C;
enter into the ¢(V) function, whereas tempera-
ture-dependent terms enter into £(7, V).

+E. F. Obert, Concepts of Thermodynamics (McGraw-
Hill, New York, 1960), Chap. 10.

5 R. H. Fowler and F. A. Guggenheim, Statistical Thermo-
dynamics (Cambridge U. P., Cambridge, 1939), p. 275.

¢ W. Shakespeare, Hamlet, Act V, Scene ii, lines 400-401.
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