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Application of thermodynamic extremum principles
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A simple system is used to illustrate the application of different extremum principles in
thermodynamics. The system consists of an ideal gas contained in an adiabatically isolated cylinder
interacting with a constant-pressure work device through an adiabatic movable piston. A kinetic
model is also used to analyze the time evolution of the system toward the final equilibrium state.
© 2001 American Association of Physics Teachers.
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[. INTRODUCTION provide internal constraints. Then, assuming the additivity
principle for the entropy, it is possible to associate an entropy

The thermodynamic extremum principles were formulatedyalue with the equilibrium states of a composite system. The
by Gibbs in essentially two versions. relaxation of any internal constraint, keeping fixed the exter-

I. For the equilibrium of any isolated system it is neces-nal ones(conservation laws and environmental conditipns
sary and sufficient that in all possible variations of the stateleads the composite system, by means of a spontaneous evo-
of the system which do not alter its energy, the variation ofiytion through nonequilibrium states, from an initial equilib-
its entropy shall either vanish or be negatitentropy maxi-  rjum state to a less restrictive final equilibrium state, i.e., to a
mum principle: final equilibrium state defined by a number of independent

(6S)y v 1=0. (1) variables smaller than in the init_ial state. Both the initial a_nd
o the final states have a well-defined entropy. Therefore, in a

Il. For the equilibrium of any isolated system it is neces-composite system, the entropy change between two equilib-
sary and sufficient that in all possible variations of the staterium states linked by a spontaneous process is also well de-
of the system which do not alter its entropy, the variation offined. In these spontaneous processes the entropy of an iso-
its energy shall either vanish or be positiliaternal energy lated composite system must always increésearticular
minimum principle: case of theweak Clausius evolution principi®.

(8U) ~0 @ At this po_int, one shOL_JId_ be aware of the differe_nce be-
SV.n= - tweenevolutionaryandvariational changes. An evolutionary

Clearly, these theorems refer to hydrostatic closed systenfdiange brings the system from an initial equilibrium state to
where the volum&/ and the mole numbarremain constant. & less restrictive final equilibrium state when an internal con-
These constraints, constavitand n, were not originally in ~ Straint is released, and energy or matter can flow between
these statements, but were later addedasmtions of condi- Subsystems during the process. However, the Gibbs state-
tion by Gibbs! Gibbs also proved the equivalence betweenMeNts refer tovariational (or virtual) changes. Variational
the statements by showing that a violation of one leads to §hanges compare states of a system and can never involve
violation of the other. A discussion of the above extremumenergy or matter flows. As Bailyrhas pointed out, a varia-
principles, including proofs of their equivalence, can petional change does not mean that the system interacts with
found in most thermodynamics textbodks.A less known  the environment; it means only that a comparison is to be
third extremum principle, not considered by Gibbs, can bemade between the variables of one state with those of other
formulated. possiblestates. Such variational changes are used to illustrate

IIl. For the equilibrium of any isolated system it is neces-the extremum principles. _
sary and sufficient that in all possible variations of the state Although the extremum principles are equivalent, we re-
of the system which do not alter its entropy and its energyMark that it is not always possible to use them indepen-
the variation of its volume shall either vanish or be positivedently; i.e., they are related. For instance, a previous calcu-

(volume minimum principlg lation of the entropy value of the final equilibrium state by
means of the entropy maximum principle is necessary for
(0V)suy,n=0. (3 using the internal energy minimum principle. This is shown

Kazes and Cutléthave demonstrated the validity of this vol- IN Fig. 1 over the plan&=Ve,=constant. One can see that,
ume minimum principlgsee, also, Refs. 7 and.8 given the |n|_t|al stat_e, one can reach different flnal_equmb-
The thermodynamic extremum principles can only be fully"ium states if one fixedJeq=U; for the entropy maximum
understood through the concept otamposite systeniirst ~ principle, orSg,=S; for the internal energy minimum prin-
introduced by Caraffwlory® A composite system is a set of ciple.
two or more subsystems separated Wglls avoiding the The aim of this work is to clarify, using a simple example,
transfer of work and/or heat and/or matter. The subsystemthe rather abstract ideas underlying the extremum principles
must besimple i.e., homogeneous, isotropic, and without in thermodynamics. The example has the pedagogical value
surface, electric, magnetic, or gravitational effects. The wallof being mathematically tractable since the system consid-
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Equilibrium as a constant-pressure work device, i.e., an adiabatic system

S states whose pressurd®,,, and entropy have constant valdé©n
\ the other hand, since the internal energy of the work device,
V- U, , refers to the gravitational potential energy associated
Seq o OO with the hanging mass in Fig. 2, one has
myg
dUW=7Ath=—PWdVW, (7)
g x| €d V=cte : : : o
eq % i where m, g is the weight of the hanging mash,, is its
/ height, A is the area of the piston, ang, is the volume of
the right side in Fig. 2. Therefore, the internal energy,,
and the entropyS,,, of the work device are given by
Ul U U= UW,O_ PuwVu, (8
Fig. 1. Constrained states with=U.4=U;=constant ). Constrained SW:SW,O, 9

states withS=S,4 =S =constant ). Constrained states witls= S,

=constant € ). The equivalence between the entropy maximum principleWhereuwv0 and SW’O are constar_ns. e .
and the internal energy minimum principle is only supported for the pro- Bazarov proposed to determine the equilibrium conditions

cesses denoted ) and by (). for the gas and to show that under such conditions the en-
tropy is a maximum. The solution of this problem was also
given by Bazarov? However, as we shall see below, the

ered needs only one variable for describing its equilibriumsystem considere@as plus work devigehas only one inde-

states. The work is structured as follows. In Sec. Il the syspendent variable, while Bazarov's work used two indepen-

tem is described from a thermodynamic viewpoint. In Secdent variables.

[l we apply the extremum principles for the entrofly, the

internal energyll), and the volumélll) in order to identify

the different equilibrium states. This allows us to obtain thelll. APPLICATION OF THE EXTREMUM

final equilibrium state and to analyze its extremum charactelPRINCIPLES

Numerical results are reported for a particular case, illustrat-

ing the behavior of the system with different processes. In Let us assume that the gas is found in an initial equilib-

Sec. IV we present a simple kinetic model for the systemrium state with temperaturg, ; and volumeV;, the piston

This model predicts the same final equilibrium state reportedbeing in a fixed position. 1P ; # P,,, by removing the con-

in Sec. Il and allows one to analyze the time evolution ofstraint fixing the piston, the gas evolves toward a final equi-

the system toward this equilibrium state. librium state with a pressure
, RT,,
Il. BAZAROV'S PROBLEM Pger= v =Py. (10

Y,
Let us consider the system proposed by Bazatognsist- &<

ing of one mol of an ideal gas contained in an adiabaticallyo.ur aim is to analyze this final equilibrium state from the

isolated cylinder with a movable, frictionless, adiabatic pis-y'eWpOInt of the extremum principles for the total entropy,

ton under constant external pressBig, as illustrated in Fig. internal energy, and volume.
2. The following expressions are assumed for the pressur%( £ . inciol
Py, the internal energy) 4, and the entropyg,, of the gas: - Entropy maximum principle

RT, From Eqgs.(6) and (9), the entropy of the total system is
Pg:v_g’ (4)  given by
S=S,+Sy,=S+¢,InTy+RInV,, 11
Ug=Ugotc, Ty, (5) SgTSw=So o g g .( )
where Sy=S; o+ S, is a constant. Furthermore, since the
Sg=Sg0tC, INTg+RINVg, (6)  internal energy and the volume of the total system remain
whereT, is the temperature of the gag, its volume,c, its ~ constant one has
molar heat capacity at constant volume, ahgh, andS;  are Ug+ U, = constant, (12
constants. Furthermore, we assume that the environment acts
Vy+V,,= constant. (13

Substituting Egs(5) and (8) into Eq. (12), and taking into

S account Eq(13), one obtains
“Ideal - Vacuum m
e C, Tyt PuVy=A, (14)
e Fpage whereA is a constant that can be calculated from the initial
g equilibrium stateA=c,T,;+P, Vg ;. Equation(14) shows
that the equilibrium states of the composite system can be
Adiabatic walls desc_rib_ed _by means of only one internal variable, i.e., in the
maximization process for the entrofitl) under external
Fig. 2. The system under study. constraintg12) and(13) there is only one independent vari-
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able. Let us take the gas volunwg as this variable. Then,
from Eq. (14) one has

A-P,V,
Tg_C—v' (15
which substituted into Eq11) gives
A—P,V,
Syv=Spt¢,In +RInVy. (16
[

In order to investigate the behavior 8f, , near the equilib-
rium state, we shall deno®/,=V,—V, o4, and expand Eq.
(16) in a Taylor series around the equilibrium state,

( 5S)U,VE SU,V(Vg) - SU,V(Vg,eq)

_( dS) sv L1 d2$> (Va2 n
= i
dVy o 9 21dvg o 9
where, from Eqgs(15) and (16),
(E)z_ SPu R __Pu R
dVy eq A=PuwVgeq Vgeq Tgeq Vaeq
(18
(dZS) c, P2 R
w2 T 2 2
dVi,  (A=PuVged® Vieq
P2 R
= . (19
Cst,eq Vé,eq

Condition(10) assures that the first derivatie8) is zero in

equilibrium, consistent with the extremum principle. Further-

more, substituting10) into the second derivativél9) one

obtains
dZS) vR 20
W2l T Tz o
dVg o Vg.eq

where we have used the Mayer relatoyr-c, =R, ¢, being
the molar heat capacity at constant pressurejand,/c, is

the adiabatic coefficient of the gas. The second derivative

B. Internal energy minimum principle

In order to apply the extremum principle for the internal
energy, it is necessary to know at least one state of the set of
equilibrium states where the minimization process is done.
This is the final equilibrium state obtained from the entropy
maximum principle and is given by Eq®1) and(22). Then
we can proceed in the following way. From E@S) and(8),
the internal energy of the total system is given by

U=Uy+Uy,=Uqg+c,Ty—PyVy, (23

whereUy,=Ug o+ U, ¢ is a constant. Now the external con-
straints fix the total entropy and volume. The closure relation
for the volume is given by Eq.13) while the conservation
law for the entropy follows directly from Eq11),

R/
TgVg “©=B, (24)

whereB is a constant that can be calculated from the final

equilibrium state:B=Tg,qungga, whereTg ¢q and Vg o4 are

given by Egs.(21) and (22), respectively. Equatior{24)

shows that in the minimization process for the internal en-

ergy (23) under external constraintd3) and (24), there is

only one independent variable. Taking the gas volifgeas

this variable, from Eqs(13), (23), and(24), one has
c,B

US,V=U§+W+PWV9, (25

9

whereU§ is a constant. By expanding E®5) in a Taylor

series around the equilibrium state, one obtains

(0U)gv= Us,v(Vg) - US,V(Vg,eq)

(du> 5v+1(d2U) (6Vg)2+ (26)
= oy g
dVg e 9 2 dVg o g
where, from Eqs(10), (24), and(25),
(d—u) __RB g = Rloen, (27)
w W
dVg e Vieq Vg eq
(dzuz) :RBylz Ry;rg,eq 28
- .
dvg eq ngrEQ Vgxeq

(20) is clearly negative, consistent with the extremum charFrom the preceding discussion, the first derivati2@) is

acter(maximum for the entropy.
From Egs.(15) and(10) one obtains

A_Png,eq ( Pw Tg,i
S v =
Substitution of Eq(21) into Eq. (10) yields
RT, Py\RTy:
_"~lgeq_ w g.i
Vg.e= P, (C”+R_Pg,i>cppw' (22

Equations(21) and (22) give, respectively, the temperature

and the volume of the gas in the final equilibrium state in
terms of the pressure and the temperature of the gas in the V=V+V,,

initial equilibrium state and the equilibrium conditid@0),
i.e., the external pressuf,. Results(21) and(22) can also

be obtained by applying the first law to the gas for an adia

batic process under a constant external presByrend by

assuming that the initial and final states of the process a

equilibrium states.

1162 Am. J. Phys., Vol. 69, No. 11, November 2001

clearly zero in equilibrium, while the second derivati\z8)
is positive, consistent with the existence of a minimum.

C. Volume minimum principle

As in the above case, the application of the extremum
principle for the volume requires one known state from the
set of equilibrium states where the minimization process is
done. Again, this is the final equilibrium state obtained from
the entropy maximum principle. Now the function to be con-
sidered is the total volume

(29

while the external constraints fix the total entropy and inter-
nal energy. The constraint for the entropy gives &4) and,
taking into account Eq(23), the constrain{12) for the in-

rteernal energy leads to

Cch_ PwVWw=C, (30

C. Fadtez-Pineda and S. Velasco 1162



whereC is a constant. Substituting Eq&4) and (30) into 36.0
Eg. (29), one obtains i
Vsy= c +V +ﬁ—C”B (32) < =l
SRy T RV 2 350}
0] |
whereB is given by Eqg.(24). By expanding Eq(31) in a > st
Taylor series around the equilibrium state, one obtains 5 S N
(5V)S,UEVS,U(Vg)_Vs,u(Vg,eo) 34.0 4
dav 1[/d?v 5 54001
=<d—vg> 5VQ+E(W) (5Vg) +-e., (32) 6 n

eq 9/ eq * o
= 5200

where, from Eqs(24) and (31), 5
o, i

dv RB RTg.eq =
d_ = 1— 5 = 1— . , (33) 5000
Vg eq PWVg,eq PWVQ,EQ }

=
o
v 3
'y

1

d?v RB RyT
( ) Y Y'lg.eq (34)
e

av2 q: PLVIET T PLVE

The first derivative(33) is clearly zero in equilibrium, while
the second derivativ€34) is positive, consistent with the
existence of a minimum.

In summary, for the composite system considefieiéal
gas plus work devige the extremum principles for the en-
tropy, internal energy, and volume consist in finding the ex-
trema of three one-dimensional functions. By taking the gas

volumeV, as the independent variable, these functions are; ) ]
Fig. 3. Behavior of the functionS, \,— S, [Eq. (35)], Usy—Ug [Eq. (36)],

VS,U+C/PW (m3)
o
o
N

ot
[wn)
v
(=]

T

\%

L 1 i &cq | |
0.01 0.015 0.02 0.025 0.03
Vy(m?)

A— PWVg andVg+ C/P,, [Eq. (37)] for the system of Fig. 3 with 1 mol of a mono-
Suv—S=¢,In —c +RInVg, (35 atomic ideal gas at initial conditions of 2 bar and 300 K, and an external
v pressure of 1 bar.
c,B
US,V_USZV_R/q+ PWVg, (36)
g tropy is made, Eq(38), and through which the minimization
c cB processes for the interna_l energy and for the volpme are
Vsut 5 =Vg+ ﬁc_, (37) made, Eq.(39). Both functions share a common point, the
Py PuVg ™ final equilibrium state Ty eq Vgeq. and the straight line
with (38) is tangent to the curved9) at this point. We remark that

these are the gas states, but not the states of the composite
w system(gas plus work devige along the different extremum
Co RF) Tgi=CTg+PuVy, processes. We remember that the thermodynamic description
o (39) of the composite system is made in the spatg,Vgy,V,,).
Therefore, in this space, the maximization process for the

A= Cng,i + PWVg'i =

and entropy is made along the curve defined by Ed®) and
B:Tg,qu;/ZS:TgVEIC”, (39) (38), the minimization process for the internal energy is

wherePg; andTg; are the pressure and the temperature of
the gas in the initial equilibrium statd,, is the external T (K[ T T T T
pressure, andly .qandV, ¢qare given by Eqsi21) and(22), g350_\ R
respectively. S,

In Fig. 3 we have plotted Eq$35)—(37) for the case of 300 N .
one mol of a monoatomic ideal gas,&3R/2) with Py 550l a eq ]
=2 bar andT4;=300K, and a constant-pressure work de-
vice with P,=1 bar. In this case, Eq$21) and (22) give 200 P TSR 4
Tg.eq= 240K andVy = 0.02 nt, while Egs.(38) and (39) ' . , y
give A=4988.4 J and=17.66nf K. One can see that the 0.01 0.015 002 0.025  0.03
entropy function (35) has a maximum atVy=V e, Vg(m?)

=0.02n?, while the internal energy functiof86) and the

volume function(37) present a minimum for the same value Fig. 4. Stat_es _of the gas through the process of maximization of the _total
entropy (solid line) for the system of Fig. 3 with 1 mol of a monoatomic

of the _gas volume. . ideal gas at initial conditions of 2 bar and 300 K and an external pressure of
In Fig. 4 we haye plotted In theT(:; ,Vg) plane the gas 1 par, and through the processes of the minimization of the total internal
states through which the maximization process for the enenergy and the total volume with=S; ¢, (dashed ling
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made along the curve defined by E¢E3) and(39), and the d2x RT, 8RM \/T_g(dx

minimization process for the volume is made along the curve M a2 PyA+— T
defined by Eqgs(31) and(39). X X
M [dx\? 23
ATk (43)
IV. A KINETIC MODEL dT, B RT, dx SRM \/T—g dx\ 2
In the previous section we have solved, from a purely Co dt x dt T x \dt
thermodynamic viewpoint, the problem of predicting the fi- 3
nal equilibrium state of the composite system. In the present _ M(d_x) (44)
section we solve the same problem from a microscopic view- x \dt)’

point by using a simple kinetic model that can help students B . ,
to visualize the time evolution of the temperature and Vol_whereM—mNA IS the; molar Mass of the. gas. Equ_at(d:?o),
up to the first order in the piston velocity, is similar to the

ume of the gas toward the final equilibrium state given byone reported by Grubd?
Egs. (21) and (22). The present model is based on the one Equations(43) and (44) allow one to obtain the equilib-

proposed by Crosignaseit al* for the problem of two ideal L
gases separated by an internal adiabatic movable piston. M values ofx and T, once the cozrrespondlng initial val-
macroscopic approach to the time evolution of the piston ir€s are known. By setting bottfx/dt?=0 anddx/dt=0 in

the one-cylinder problem has been reported by Grb%er. Eq. (43), which corresponds to the final rest position, one has

Let us consider the system of Fig. 2. There Hre where RT, .
N4 is Avogadro’s number, identical point particles of mass szﬁ: Pg.eqr (45)
eq

inside an adiabatic cylinder with an adiabatic movable piston
of massM and areaA. A constant forceF,,=P,.A acts on independent of the mass of the piston. The re6iH} is in

the right face of the piston. We denote kyhe piston posi- agreement with the mechanical equilibrium conditidi®).
tion, so that the gas volume is given b= Ax. We assume Furthermore, assuming that the piston is initially at rest
that the collisions between gas particles and between gd¢dx/dt);=0], integration of the energy conservation law
particles and the piston are elastic. Furthermore, we assuntél) allows one to obtain

that the gas particles reach a Maxwellian molecular velocit
distributign oF;] a time scale negligible in comparison withy CuTg,eqT PwAXeq=Cy Ty i+ PuAXi, (46)
that of the piston motion. Therefore, at any instant the temfrom which, taking into account Eq$4) and (45), one ob-
peratureTy(t) is well defined, and the pressure and the in-tains
ternal energy of the gas are given, respectively, by Efs.

and(5). I CU-I—Rﬂ)h, (47)
The dynamics of the piston is described by 9.¢4 Pg.i/ Cp
d2x in agreement with Eq21).

M W=F9—FW=(PQ—PW)A, (40 Introducing the dimensionless variabled=x/x;, 6

=Tg/Tyi, and 7=t/t,, with t,=(Mx?/RTy;)?
whereF is the force exerted on the piston by the gas. On the=(M RTg'i)l’Z/(Pg'iA), Egs.(43) and(44) can be rewritten

other hand, the energy conservation law reads as
dK dUy du, dx d?x dT, dx . 0 & 7o g2
at Pt T at Marae e tPeAG =0 fz_”g_wa?f?? (48)
(42) . . .
_ 2. I : : & &£ s &
whereK = (M/2)(dx/dt)“ is the kinetic energy of the piston, 0=—(y—1)0>+(y—1)Jb—— —(y—1) =,
and we have used Eq5) and (8) and taken into account 3 3 8 3 49

that dV,,= —dVy=—.Adx. Now, following Bauman and
Cockerham’s kinetic model, which explicitly takes into ac- where a=P,/Pg;, 5= (8 MI7M)¥2, y=cylc,, and the
count the influence of the finite piston velocity on the mo-dot stands for differentiation with respect to From Egs.
mentum change of the gas moleculés! the gas pressure (47) and (45), the equilibrium values of and ¢ are

P, is given b
g!SQ y ¢, +Ra

MmN, (1 ) o ed” ¢ ) (50
- 2y — p
Pq v, (3(0 y—(v)X+X
¢ feq C,tTRa 51
MN, [ kgT [8kgT eq— T ’
& which are independent of the mass of the piston.
where the average valuds?) and (v) for the molecular Figure 5 shows the numerical solution of E¢48) and

velocity are obtained from Maxwell's velocity distribution (49) for the case of 1 mol of gas Ac,=3R/2, c,=5R/2,
law, andkg is Boltzmann’s constant. Substituting E@2)  M=40x10"*kg/mo), M=10kg, andPg;=2P,,. In this
into Eq. (40), and Eq.(40) into Eq.(41), the complete set of case,a=0.5, 6=0.1, 6,,=0.8, andé.q=1.6. We note that
time evolution equations is we have chosen a piston mass so that the assumptioh
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@ Frachgbourf_:f and, in the mesoscopic regime, by Crpsignani
MM A o and Di Portc?® It has been argued that the stochastic motion
eq of the piston, induced by the pressure fluctuations, drives the
06 gas toward a final equilibrium state with the same pressure
0 and the same temperature in both sitfe¥;?> so that the
0.2 mechanical equilibrium state must be considered as a quasi-
equilibrium state. However, the time scale for this thermali-

zation process is very lon@unobservable, in practi¢eor
2 (b) macroscopic pistons.

g geq
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