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A simple system is used to illustrate the application of different extremum principles in
thermodynamics. The system consists of an ideal gas contained in an adiabatically isolated cylinder
interacting with a constant-pressure work device through an adiabatic movable piston. A kinetic
model is also used to analyze the time evolution of the system toward the final equilibrium state.
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I. INTRODUCTION

The thermodynamic extremum principles were formulated
by Gibbs in essentially two versions.1

I. For the equilibrium of any isolated system it is neces-
sary and sufficient that in all possible variations of the state
of the system which do not alter its energy, the variation of
its entropy shall either vanish or be negative~entropy maxi-
mum principle!:

~dS!U,V,n<0. ~1!

II. For the equilibrium of any isolated system it is neces-
sary and sufficient that in all possible variations of the state
of the system which do not alter its entropy, the variation of
its energy shall either vanish or be positive~internal energy
minimum principle!:

~dU !S,V,n>0. ~2!

Clearly, these theorems refer to hydrostatic closed systems
where the volumeV and the mole numbern remain constant.
These constraints, constantV and n, were not originally in
these statements, but were later added asequations of condi-
tion by Gibbs.1 Gibbs also proved the equivalence between
the statements by showing that a violation of one leads to a
violation of the other. A discussion of the above extremum
principles, including proofs of their equivalence, can be
found in most thermodynamics textbooks.2–5 A less known
third extremum principle, not considered by Gibbs, can be
formulated.

III. For the equilibrium of any isolated system it is neces-
sary and sufficient that in all possible variations of the state
of the system which do not alter its entropy and its energy,
the variation of its volume shall either vanish or be positive
~volume minimum principle!:

~dV!S,U,n>0. ~3!

Kazes and Cutler6 have demonstrated the validity of this vol-
ume minimum principle~see, also, Refs. 7 and 8!.

The thermodynamic extremum principles can only be fully
understood through the concept of acomposite system, first
introduced by Carathe´odory.9 A composite system is a set of
two or more subsystems separated bywalls avoiding the
transfer of work and/or heat and/or matter. The subsystems
must besimple, i.e., homogeneous, isotropic, and without
surface, electric, magnetic, or gravitational effects. The walls

provide internal constraints. Then, assuming the additivity
principle for the entropy, it is possible to associate an entropy
value with the equilibrium states of a composite system. The
relaxation of any internal constraint, keeping fixed the exter-
nal ones~conservation laws and environmental conditions!,
leads the composite system, by means of a spontaneous evo-
lution through nonequilibrium states, from an initial equilib-
rium state to a less restrictive final equilibrium state, i.e., to a
final equilibrium state defined by a number of independent
variables smaller than in the initial state. Both the initial and
the final states have a well-defined entropy. Therefore, in a
composite system, the entropy change between two equilib-
rium states linked by a spontaneous process is also well de-
fined. In these spontaneous processes the entropy of an iso-
lated composite system must always increase~a particular
case of theweak Clausius evolution principle10!.

At this point, one should be aware of the difference be-
tweenevolutionaryandvariational changes. An evolutionary
change brings the system from an initial equilibrium state to
a less restrictive final equilibrium state when an internal con-
straint is released, and energy or matter can flow between
subsystems during the process. However, the Gibbs state-
ments refer tovariational ~or virtual! changes. Variational
changes compare states of a system and can never involve
energy or matter flows. As Bailyn5 has pointed out, a varia-
tional change does not mean that the system interacts with
the environment; it means only that a comparison is to be
made between the variables of one state with those of other
possiblestates. Such variational changes are used to illustrate
the extremum principles.

Although the extremum principles are equivalent, we re-
mark that it is not always possible to use them indepen-
dently; i.e., they are related. For instance, a previous calcu-
lation of the entropy value of the final equilibrium state by
means of the entropy maximum principle is necessary for
using the internal energy minimum principle. This is shown
in Fig. 1 over the planeV5Veq5constant. One can see that,
given the initial state, one can reach different final equilib-
rium states if one fixesUeq5Ui for the entropy maximum
principle, orSeq* 5Si for the internal energy minimum prin-
ciple.

The aim of this work is to clarify, using a simple example,
the rather abstract ideas underlying the extremum principles
in thermodynamics. The example has the pedagogical value
of being mathematically tractable since the system consid-
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ered needs only one variable for describing its equilibrium
states. The work is structured as follows. In Sec. II the sys-
tem is described from a thermodynamic viewpoint. In Sec.
III we apply the extremum principles for the entropy~I!, the
internal energy~II !, and the volume~III ! in order to identify
the different equilibrium states. This allows us to obtain the
final equilibrium state and to analyze its extremum character.
Numerical results are reported for a particular case, illustrat-
ing the behavior of the system with different processes. In
Sec. IV we present a simple kinetic model for the system.
This model predicts the same final equilibrium state reported
in Sec. III and allows one to analyze the time evolution of
the system toward this equilibrium state.

II. BAZAROV’S PROBLEM

Let us consider the system proposed by Bazarov,11 consist-
ing of one mol of an ideal gas contained in an adiabatically
isolated cylinder with a movable, frictionless, adiabatic pis-
ton under constant external pressurePw , as illustrated in Fig.
2. The following expressions are assumed for the pressure,
Pg , the internal energy,Ug , and the entropy,Sg , of the gas:

Pg5
RTg

Vg
, ~4!

Ug5Ug,01cvTg , ~5!

Sg5Sg,01cv ln Tg1R ln Vg , ~6!

whereTg is the temperature of the gas,Vg its volume,cv its
molar heat capacity at constant volume, andUg,0 andSg,0 are
constants. Furthermore, we assume that the environment acts

as a constant-pressure work device, i.e., an adiabatic system
whose pressure,Pw , and entropy have constant values.12 On
the other hand, since the internal energy of the work device,
Uw , refers to the gravitational potential energy associated
with the hanging mass in Fig. 2, one has

dUw5
mwg

A Adhw52PwdVw , ~7!

where mwg is the weight of the hanging mass,hw is its
height,A is the area of the piston, andVw is the volume of
the right side in Fig. 2. Therefore, the internal energy,Uw ,
and the entropy,Sw , of the work device are given by

Uw5Uw,02PwVw , ~8!

Sw5Sw,0 , ~9!

whereUw,0 andSw,0 are constants.
Bazarov proposed to determine the equilibrium conditions

for the gas and to show that under such conditions the en-
tropy is a maximum. The solution of this problem was also
given by Bazarov.13 However, as we shall see below, the
system considered~gas plus work device! has only one inde-
pendent variable, while Bazarov’s work used two indepen-
dent variables.

III. APPLICATION OF THE EXTREMUM
PRINCIPLES

Let us assume that the gas is found in an initial equilib-
rium state with temperatureTg,i and volumeVg,i , the piston
being in a fixed position. IfPg,iÞPw , by removing the con-
straint fixing the piston, the gas evolves toward a final equi-
librium state with a pressure

Pg,eq5
RTg,eq

Vg,eq
5Pw . ~10!

Our aim is to analyze this final equilibrium state from the
viewpoint of the extremum principles for the total entropy,
internal energy, and volume.

A. Entropy maximum principle

From Eqs.~6! and ~9!, the entropy of the total system is
given by

S5Sg1Sw5S01cv ln Tg1R ln Vg , ~11!

where S05Sg,01Sw,0 is a constant. Furthermore, since the
internal energy and the volume of the total system remain
constant one has

Ug1Uw5constant, ~12!

Vg1Vw5constant. ~13!

Substituting Eqs.~5! and ~8! into Eq. ~12!, and taking into
account Eq.~13!, one obtains

cvTg1PwVg5A, ~14!

whereA is a constant that can be calculated from the initial
equilibrium state:A5cvTg,i1PwVg,i . Equation~14! shows
that the equilibrium states of the composite system can be
described by means of only one internal variable, i.e., in the
maximization process for the entropy~11! under external
constraints~12! and~13! there is only one independent vari-

Fig. 1. Constrained states withU5Ueq5Ui5constant (s). Constrained
states withS5Seq* 5Si5constant (3). Constrained states withS5Seq

5constant (L). The equivalence between the entropy maximum principle
and the internal energy minimum principle is only supported for the pro-
cesses denoted by~s! and by~L!.

Fig. 2. The system under study.
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able. Let us take the gas volumeVg as this variable. Then,
from Eq. ~14! one has

Tg5
A2PwVg

cv
, ~15!

which substituted into Eq.~11! gives

SU,V5S01cv lnS A2PwVg

cv
D1R ln Vg . ~16!

In order to investigate the behavior ofSU,V near the equilib-
rium state, we shall denotedVg[Vg2Vg,eq, and expand Eq.
~16! in a Taylor series around the equilibrium state,

~dS!U,V[SU,V~Vg!2SU,V~Vg,eq!

5S dS

dVg
D

eq

dVg1
1

2 S d2S

dVg
2D

eq

~dVg!21¯ , ~17!

where, from Eqs.~15! and ~16!,

S dS

dVg
D

eq

52
cvPw

A2PwVg,eq
1

R

Vg,eq
52

Pw

Tg,eq
1

R

Vg,eq
,

~18!

S d2S

dVg
2D

eq

52
cvPw

2

~A2PwVg,eq!
22

R

Vg,eq
2

52
Pw

2

cvTg,eq
2 2

R

Vg,eq
2 . ~19!

Condition~10! assures that the first derivative~18! is zero in
equilibrium, consistent with the extremum principle. Further-
more, substituting~10! into the second derivative~19! one
obtains

S d2S

dVg
2D

eq

52
gR

Vg,eq
2 , ~20!

where we have used the Mayer relationcp2cv5R, cp being
the molar heat capacity at constant pressure, andg5cp /cv is
the adiabatic coefficient of the gas. The second derivative
~20! is clearly negative, consistent with the extremum char-
acter~maximum! for the entropy.

From Eqs.~15! and ~10! one obtains

Tg,eq5
A2PwVg,eq

cv
5S cv1R

Pw

Pg,i
D Tg,i

cp
. ~21!

Substitution of Eq.~21! into Eq. ~10! yields

Vg,eq5
RTg,eq

Pw
5S cv1R

Pw

Pg,i
D RTg,i

cpPw
. ~22!

Equations~21! and ~22! give, respectively, the temperature
and the volume of the gas in the final equilibrium state in
terms of the pressure and the temperature of the gas in the
initial equilibrium state and the equilibrium condition~10!,
i.e., the external pressurePw . Results~21! and~22! can also
be obtained by applying the first law to the gas for an adia-
batic process under a constant external pressurePw and by
assuming that the initial and final states of the process are
equilibrium states.

B. Internal energy minimum principle

In order to apply the extremum principle for the internal
energy, it is necessary to know at least one state of the set of
equilibrium states where the minimization process is done.
This is the final equilibrium state obtained from the entropy
maximum principle and is given by Eqs.~21! and~22!. Then
we can proceed in the following way. From Eqs.~5! and~8!,
the internal energy of the total system is given by

U5Ug1Uw5U01cvTg2PwVw , ~23!

whereU05Ug,01Uw,0 is a constant. Now the external con-
straints fix the total entropy and volume. The closure relation
for the volume is given by Eq.~13! while the conservation
law for the entropy follows directly from Eq.~11!,

TgVg
R/cv5B, ~24!

whereB is a constant that can be calculated from the final
equilibrium state:B5Tg,eqVg,eq

R/cv, whereTg,eq and Vg,eq are
given by Eqs.~21! and ~22!, respectively. Equation~24!
shows that in the minimization process for the internal en-
ergy ~23! under external constraints~13! and ~24!, there is
only one independent variable. Taking the gas volumeVg as
this variable, from Eqs.~13!, ~23!, and~24!, one has

US,V5U0* 1
cvB

Vg
R/cv

1PwVg , ~25!

whereU0* is a constant. By expanding Eq.~25! in a Taylor
series around the equilibrium state, one obtains

~dU !S,V[US,V~Vg!2US,V~Vg,eq!

5S dU

dVg
D

eq

dVg1
1

2 S d2U

dVg
2 D

eq

~dVg!21¯ , ~26!

where, from Eqs.~10!, ~24!, and~25!,

S dU

dVg
D

eq

52
RB

Vg,eq
g 1Pw52

RTg,eq

Vg,eq
1Pw , ~27!

S d2U

dVg
2 D

eq

5
RBg

Vg,eq
g11 5

RgTg,eq

Vg,eq
2 . ~28!

From the preceding discussion, the first derivative~27! is
clearly zero in equilibrium, while the second derivative~28!
is positive, consistent with the existence of a minimum.

C. Volume minimum principle

As in the above case, the application of the extremum
principle for the volume requires one known state from the
set of equilibrium states where the minimization process is
done. Again, this is the final equilibrium state obtained from
the entropy maximum principle. Now the function to be con-
sidered is the total volume

V5Vg1Vw , ~29!

while the external constraints fix the total entropy and inter-
nal energy. The constraint for the entropy gives Eq.~24! and,
taking into account Eq.~23!, the constraint~12! for the in-
ternal energy leads to

ccTg2PwVw5C, ~30!
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whereC is a constant. Substituting Eqs.~24! and ~30! into
Eq. ~29!, one obtains

VS,U52
C

Pw
1Vg1

cvB

PwVg
R/cv

, ~31!

whereB is given by Eq.~24!. By expanding Eq.~31! in a
Taylor series around the equilibrium state, one obtains

~dV!S,U[VS,U~Vg!2VS,U~Vg,eq!

5S dV

dVg
D

eq

dVg1
1

2 S d2V

dVg
2D

eq

~dVg!21¯ , ~32!

where, from Eqs.~24! and ~31!,

S dV

dVg
D

eq

512
RB

PwVg,eq
g 512

RTg,eq

PwVg,eq
, ~33!

S d2V

dVg
2D

eq

5
RBg

PwVg,eq
g11 5

RgTg,eq

PwVg,eq
2 . ~34!

The first derivative~33! is clearly zero in equilibrium, while
the second derivative~34! is positive, consistent with the
existence of a minimum.

In summary, for the composite system considered~ideal
gas plus work device!, the extremum principles for the en-
tropy, internal energy, and volume consist in finding the ex-
trema of three one-dimensional functions. By taking the gas
volumeVg as the independent variable, these functions are:

SU,V2S05cv lnS A2PwVg

cv
D1R ln Vg , ~35!

US,V2U0* 5
cvB

Vg
R/cv

1PwVg , ~36!

VS,U1
C

Pw
5Vg1

cvB

PwVg
R/cv

, ~37!

with

A5cvTg,i1PwVg,i5S cv1R
Pw

Pg,i
DTg,i5cvTg1PwVg ,

~38!

and

B5Tg,eqVg,eq
R/cv5TgVg

R/cv, ~39!

wherePg,i andTg,i are the pressure and the temperature of
the gas in the initial equilibrium state,Pw is the external
pressure, andTg,eq andVg,eq are given by Eqs.~21! and~22!,
respectively.

In Fig. 3 we have plotted Eqs.~35!–~37! for the case of
one mol of a monoatomic ideal gas (cv53R/2) with Pg,i

52 bar andTg,i5300 K, and a constant-pressure work de-
vice with Pw51 bar. In this case, Eqs.~21! and ~22! give
Tg,eq5240 K andVg,eq50.02 m3, while Eqs.~38! and ~39!
give A54988.4 J andB517.66 m2 K. One can see that the
entropy function ~35! has a maximum atVg5Vg,eq

50.02 m3, while the internal energy function~36! and the
volume function~37! present a minimum for the same value
of the gas volume.

In Fig. 4 we have plotted in the (Tg ,Vg) plane the gas
states through which the maximization process for the en-

tropy is made, Eq.~38!, and through which the minimization
processes for the internal energy and for the volume are
made, Eq.~39!. Both functions share a common point, the
final equilibrium state (Tg,eq,Vg,eq), and the straight line
~38! is tangent to the curve~39! at this point. We remark that
these are the gas states, but not the states of the composite
system~gas plus work device!, along the different extremum
processes. We remember that the thermodynamic description
of the composite system is made in the space (Tg ,Vg ,Vw).
Therefore, in this space, the maximization process for the
entropy is made along the curve defined by Eqs.~13! and
~38!, the minimization process for the internal energy is

Fig. 3. Behavior of the functionsSU,V2S0 @Eq. ~35!#, US,V2U0* @Eq. ~36!#,
andVS,U1C/Pw @Eq. ~37!# for the system of Fig. 3 with 1 mol of a mono-
atomic ideal gas at initial conditions of 2 bar and 300 K, and an external
pressure of 1 bar.

Fig. 4. States of the gas through the process of maximization of the total
entropy ~solid line! for the system of Fig. 3 with 1 mol of a monoatomic
ideal gas at initial conditions of 2 bar and 300 K and an external pressure of
1 bar, and through the processes of the minimization of the total internal
energy and the total volume withSg5Sg,eq ~dashed line!.
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made along the curve defined by Eqs.~13! and~39!, and the
minimization process for the volume is made along the curve
defined by Eqs.~31! and ~39!.

IV. A KINETIC MODEL

In the previous section we have solved, from a purely
thermodynamic viewpoint, the problem of predicting the fi-
nal equilibrium state of the composite system. In the present
section we solve the same problem from a microscopic view-
point by using a simple kinetic model that can help students
to visualize the time evolution of the temperature and vol-
ume of the gas toward the final equilibrium state given by
Eqs. ~21! and ~22!. The present model is based on the one
proposed by Crosignaniet al.14 for the problem of two ideal
gases separated by an internal adiabatic movable piston. A
macroscopic approach to the time evolution of the piston in
the one-cylinder problem has been reported by Gruber.15

Let us consider the system of Fig. 2. There areNA , where
NA is Avogadro’s number, identical point particles of massm
inside an adiabatic cylinder with an adiabatic movable piston
of massM and areaA. A constant forceFw5PwA acts on
the right face of the piston. We denote byx the piston posi-
tion, so that the gas volume is given byVg5Ax. We assume
that the collisions between gas particles and between gas
particles and the piston are elastic. Furthermore, we assume
that the gas particles reach a Maxwellian molecular velocity
distribution on a time scale negligible in comparison with
that of the piston motion. Therefore, at any instant the tem-
peratureTg(t) is well defined, and the pressure and the in-
ternal energy of the gas are given, respectively, by Eqs.~4!
and ~5!.

The dynamics of the piston is described by

M
d2x

dt2
5Fg2Fw5~Pg2Pw!A, ~40!

whereFg is the force exerted on the piston by the gas. On the
other hand, the energy conservation law reads

dK

dt
1

dUg

dt
1

dUw

dt
5M

dx

dt

d2x

dt2
1cv

dTg

dt
1PwA dx

dt
50,

~41!

whereK5(M /2)(dx/dt)2 is the kinetic energy of the piston,
and we have used Eqs.~5! and ~8! and taken into account
that dVw52dVg52A dx. Now, following Bauman and
Cockerham’s kinetic model, which explicitly takes into ac-
count the influence of the finite piston velocity on the mo-
mentum change of the gas molecules,16,17 the gas pressure
Pg is given by

Pg5
mNA

Vg
S 1

3
^v2&2^v&ẋ1 ẋ2D

5
mNA

Ax S kBTg

m
2A8kBTg

pm
ẋ1 ẋ2D , ~42!

where the average values^v2& and ^v& for the molecular
velocity are obtained from Maxwell’s velocity distribution
law, andkB is Boltzmann’s constant. Substituting Eq.~42!
into Eq. ~40!, and Eq.~40! into Eq. ~41!, the complete set of
time evolution equations is

M
d2x

dt2
52PwA1

RTg

x
2A8RM

p

ATg

x S dx

dt D
1

M
x S dx

dt D
2

, ~43!

cv

dTg

dt
52

RTg

x

dx

dt
1A8RM

p

ATg

x S dx

dt D
2

2
M
x S dx

dt D
3

, ~44!

whereM5mNA is the molar mass of the gas. Equation~43!,
up to the first order in the piston velocity, is similar to the
one reported by Gruber.15

Equations~43! and ~44! allow one to obtain the equilib-
rium values ofx andTg , once the corresponding initial val-
ues are known. By setting bothd2x/dt250 anddx/dt50 in
Eq. ~43!, which corresponds to the final rest position, one has

Pw5
RTg,eq

Axeq
5Pg,eq, ~45!

independent of the mass of the piston. The result~45! is in
agreement with the mechanical equilibrium condition~10!.
Furthermore, assuming that the piston is initially at rest
@(dx/dt) i50#, integration of the energy conservation law
~41! allows one to obtain

cvTg,eq1PwAxeq5cvTg,i1PwAxi , ~46!

from which, taking into account Eqs.~4! and ~45!, one ob-
tains

Tg,eq5S cv1R
Pw

Pg,i
D Tg,i

cp
, ~47!

in agreement with Eq.~21!.
Introducing the dimensionless variablesj5x/xi , u

5Tg /Tg,i , and t5t/ta , with ta5(Mxi
2/RTg,i)

1/2

5(MRTg,i)
1/2/(Pg,iA), Eqs.~43! and ~44! can be rewritten

as

j̈52a1
u

j
2dAu

j̇

j
1

pd2

8

j̇2

j
, ~48!

u̇52~g21!u
j̇

j
1~g21!dAu

j̇2

j
2

pd2

8
~g21!

j̇3

j
,

~49!

where a5Pw /Pg,i , d5(8M/pM )1/2, g5cp /cv , and the
dot stands for differentiation with respect tot. From Eqs.
~47! and ~45!, the equilibrium values ofu andj are

ueq5
cv1Ra

cp
, ~50!

jeq5
ueq

a
5

cv1Ra

cpa
, ~51!

which are independent of the mass of the piston.
Figure 5 shows the numerical solution of Eqs.~48! and

~49! for the case of 1 mol of gas Ar~cv53R/2, cp55R/2,
M54031023 kg/mol!, M510 kg, andPg,i52Pw . In this
case,a50.5, d50.1, ueq50.8, andjeq51.6. We note that
we have chosen a piston mass so that the assumptiond!1
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underlying the kinetic model is verified.14 Since our equa-
tions were derived for 1 mol of gas a large value ofM is
required. One can see that both the dimensionless gas tem-
perature and the dimensionless piston position exhibit
damped oscillations toward the equilibrium position with
very similar relaxation times. The parameterd governs this
relaxation time and one can easily check that it decreases as
d increases, i.e., as the piston becomes less massive and the
molar mass of the gas increases. In order to give a numerical
meaning to thet values involved~see Fig. 5!, suppose that
Pg,i52 bar andTg,i5300 K. Then, considering a cylinder
with radius r 50.1 m and cross-sectional areaA53.14
31022 m2, one obtainsta50.025 s. In this case, a value of
t5200 ~the time scale in Fig. 5! corresponds tot5tat
55 s.

V. SUMMARY

In this paper we have applied three different thermody-
namic extremum principles to analyze the equilibrium state
in an isolated composite system consisting of an ideal gas
interacting with a constant-pressure work device through an
adiabatic movable piston. It is worth noting, however, that
the system considered here differs from the so-calledadia-
batic piston problem~APP! that is a composite system con-
sisting of two gases separated by an internal adiabatic mov-
able wall.14,15,18–20 In both cases, thermodynamics
establishes the equality of the final pressures. However, by
using only the laws of thermostatistics, while in the first case
the final gas temperature and volume can be obtained from
the initial conditions, in the second case, the final tempera-
tures and volumes cannot be determined.~The calculation of
the final volume and temperature in the APP is done in Ref.
14 using a microscopic model.! Mathematically, the differ-
ence between these systems lies in the fact that in the first
case there is only one independent internal variable, while in
the second case there are two independent internal variables.

We have also obtained the equilibrium state for the system
considered by means of a simple kinetic model. This model
does not take into account microscopic fluctuations in the gas
pressure. The role played by these fluctuations is an intrigu-
ing question.21 It is worth mentioning that this role in the
APP has been very recently studied by Gruberg and

Frachebourg22 and, in the mesoscopic regime, by Crosignani
and Di Porto.23 It has been argued that the stochastic motion
of the piston, induced by the pressure fluctuations, drives the
gas toward a final equilibrium state with the same pressure
and the same temperature in both sides,22,24,25 so that the
mechanical equilibrium state must be considered as a quasi-
equilibrium state. However, the time scale for this thermali-
zation process is very long~unobservable, in practice! for
macroscopic pistons.
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