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laser amplifier

from lecture 2 we have

1. photonflux F = hL [ ] evolves according to:

W cm?2s

)
5 F = 015(w) - AN - F

2. the populations inversion AN [Cﬁ] evolution is governed by:

I AN AN 2 AbDN - F

R = ———/720 . .

ot T, 12
notel: in more realistic models we will go beyond note2: we switch from 0 to 12 when indexing
the two-level model and the second equation will the cross-section. From now on we will use
be modified accordingly. In systems with a short 01, to signify a typical energy level system
lifetime of the lower level (the most common with 1 and 2 being the lower and upper level
case) the factor 2 is missing. of laser transition.

2 variables and 2 first order differential equations. The problem is that the equations
are nonlinear — there are no general analytic solutions.

options:

* numerical integration
* approximate solutions



simple dynamics of the laser amplifier

d
EF(t’ Z) — O'lZAN(t, Z)F(t, Z)

0 AN(t, z)
—AN(t,z) = —————=
Ty

5% — 209,AN(t,2)F (¢, 2)

Note that, for the amplifier to work, we need some initial population inversion AN,.
This modifies the second equation which now reads (time and space dependence are

dropped for clarity):
Opn =22, ANF
—_— -_— —_—,e,————— o
ot T, 12
We formally transform the two equations as follows: From the first one we calculate

oOF . . :
AN = E/(JMF) and insert it into the second equation

F ol F (L mE — oan, ) = 0
ataz T P12, T\ T 91280 | =

There are 2 characteristic time scales involved in this problem: (1) the population
decay time T; and (2) light pulse duration (t,). Wee will attempt to solve those
equations in two limiting cases



,short” pulse laser amplifier

»short” pulses (t, < T;). They actually cannot be too short — we have
previously neglected the transverse relaxation time so we need t, > T,

O oF 4205 L F 42 ( L inF — gyian, ) = 0
ataz T 02t T\ T 001 | =

\ )

this term is small;
we will drop it

solutions
F(O,t)
Ft) = 1 soa = ooy
AN(z,0)e~ 6@
AN(z,t) = 50 106@ 1

t

S(t) = Zlef F(0,t")dt
Z—oo

G(z) = lef AN(Z',0)dZz’

0
L.M. Frantz and J.S. Nodvik, Theory of pulse propagation

in a laser amplifier, ). Appl. Phys. 34, 2346 (1963)



»,short” pulse laser amplifier, 2
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gain saturation leads to pulse shaping.

I [a.u.]

bleaching

. B F(0,1)
@0 = TSm0 = e o@)
AN(z,0)e~¢®
AN(z,t) =

eSt) +e-6G(2) —1

t
S(t) = 20’12f F(0,t")dt’
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G(z) = lef AN(Z',0)dZz’
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»long” amplified pulses (t,, » Ty, T). ,long” pulse laser amplifier

0 InF + 0 F + 1(9 InF AN 0 Note: no factor 2 in
n 012 = —|=—InF —o = :
0tdz 209z° Ty \0z 1270 this eq. -
J explanation will be
small —we drop it given later.

0 . YoF
0z  1+F/F,
F; = (01,77t

the formal solution is
F(z,t) F(zt)—F(0,¢t)

+
"F0,0 F,

= YoZ

two limits:
| LI, = F(z,t)=e¥?F(0,t) unsaturated laser amplifier

I>»1, = F(zt)=F(@,t) completely saturated laser amplifier

Yo = 012AN, - unsaturated gain coefficient
_ 1 . 1
= To - saturating photon flux [S_sz]

o : w
I, = hwF; - saturating intensity [Cm—z]

S



»long” pulse laser amplifier, 2

F(z,t) F(z,t)-F(0,t)

In 0,0

/ F(z,t) = F(0,t)

F, Yoz

F; = (0p1T1) ™1
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F(z,t) = eY?F(0,t)
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yintermediate” pulse laser amplifier

O ,intermediate” pulses (t, = T, ). The equation has to be integrated
numerically in its full splendor

62

Jtoz

0 1/0
InF + 20'01 &F +T_1<EIHF — O-OlANO) =0



a simpler picture for light-matter interaction; Einstein coefficients

a two-level atom/ion. There are 3 radiative transitions:
a. spontaneous emission

b. absorption

c. stimulated emission

A 2
populations: Ny + N, = N (a)
c
\ 2 hwy;
density of atoms/ions (b)
A\ 4 1
Simple properties of the radiative transitions:
O spontaneous emission
dN . -
d—tz = —A,1N,, A,qisa constant (coefficient)
 before  after
— 2
h(l)lz

...........................................................................................



another picture ....

O absorption

dN, _ dNy . . .
TS = B, 0(wq2)N; B;, — coefficient, o(w;,) power density of em filed
2 —_——
hws
—— 1

[ stimulated emission

dN; dNZ
W = dt = By 0(w12)N;
before - after
Y W— 2 h(l)lz I
hwq,



an alternative picture ....

A 2
relations between Einstein coefficients (a)
By1 = By (©) Awy,
h(l)213
Azq 73c3 21 (b)
\ 4 1
population evolution:
dN,
T —A1Ny + By0(wy1)(Ny — Np)
N;+N,=N

consequences:
O the same speed of stimulated transitions
O stimulated transitions dominate at low frequencies

O at high frequencies the spontaneous emission dominates

Ocr [ﬁ] - critical spectral density and critical intensity of the em field:

h(l)213 h(l)213
Az = B10r(w) = WBM = Ocr(W) =

3
hw,q

m3c3

dw

I(w) = cop(w)dw = I (w) =

X

in vacuum

3c?



energy transport equation AN(z.t)

I(z,t) = 0om(z, t)dw - Uy _r\>
A “’
spectral density of I(zt)
em field [ 3]H ] group velocity (2, l{z+dz.t)
e v, = dw/dk

Pz t)

em field propagates in thez direction. consider a slice with area S and thickness dz. em field
energy change within the slice:

d
d—‘: dwSdz = [I(z,t) — I(z + dz, )]S + hwBy,0dwAN(z,)Sdz  /(Sdz)

l_Y_)
dl 1
dt Vg

ol (6 =hwBy1/c)

a1 _
0z vgat

o-AN -1

—+——=0¢g-AN-F - the same as in lecture 2



populations

from Einstein’s eqgs.:

dN,

T —A31N; + By10(wy1)(Ny — Ny)

N, +N, =N

(b)

P
<«

A

hw1,

which gives

AN = N, — N, = 2N, — N
d

dN,
AN = ZW = —A1(AN + N ) — 2B,;0(wz1)AN

Y J ¢ Y
spontaneous emission oF

something is wrong; we know from lecture 2 that

d 1
— AN = —— (AN — AN,) — 20ANF
dt T1( 0) o

O the rate of stimulated emission is OK
O In lecture 2 we have ignored sponatneous emission!




spontaneous emission

Again, consider a thin slice of the amplifying medium. The (©)
thing we measure is intensity and the detector cannot (b)
distinguish between photons from stimulated and

spontaneous emission. 1

polarizer

detector

A
A 4

spectral filter

AI(v) = oc(v)ANI(v) + hv X A, X g(v)Av X % X Z—f: X N,dz
I U
tralr'\;tlgon S?aecct:fl polarization angle  of atoms
coherent light - ' ! '
amplification sp;?]ctz:z;euztgfq?:s_ion in the laser amplifier:

spontaneous emission = noise

energy of
a plk'moton




Amplified Spontaneous Emission (ASE)

when the medium is long and/or amplification coefficient
large yol > 1 the spontaneous emission can be amplified (b)
to macroscopic intensities

A

A

GI + ASE
] AN >0 N

ANV
R IR LN

A
A 4

No simple and convenient formulas for accounting for ASE. The spontaneous emission rate is
. 1 , .
given by > hv for every spatio-temporal mode of the amplifier.

Consequences of ASE:

) Noise at the output of the amplifier

) In extreme cases ASE can saturate amplifier

Simple rule: to avoid problems with ASE the input intensity has to be much larger than the
spontaneous emission intensity



homogenous line-broadening (we cannot address atoms by spectral methods)

L Natural broadening (always present). At least one of the two energy levels involved in light

amplification corresponds to an excited state which has a finite life-time because atoms

spontaneously drop to lower energy levels while emitting photons. In addition, in condensed

phase, the life-time can shortened by non-radiative transition which increase the total

transition rate.

A 2
h
Ay w12
A\ 4 1

FWHM — Full Width at Half-Maximum

spontaneous emission leads to the Lorentzian

line — shape
Av

IW) = oz 9@ = 2mg ()

with FWHM line-width
Av = 222,
2 0.8

0.4

T

[g(v-vs) Avf,]

Avg

0.2

T

[

V- Vg
Av, /2

]



homogenous line-broadening, 2

ey [ INAAN \ |
O Pressure broadening © ’ n ﬂ 1
t
probability density for atomic collisions in gas phase >
(0 =
p(0) = RIRAARRRIAR
T
p(t)dt — the probability for that the atom to undergo < >
a collision in the time interval 7,7 + dt
calculations..... : . I
20—
(V) _ Av
IV = Sl v=ve)2+av/2)?]
16 |-
with Av = /7, Ruby

l=0.6943¢um

in glasses and crystals the interrupting events are phonons

Linewidth (cm _1)
o

[+4]

for gases = MHz/mbar

0 100 200 300
Temperature (0 K )



inhomogenous line-broadening (we can address atoms by spectra methods)

( Doppler broadening absorption
Doppler shift; if the atoms moves slowly compared to the speed of hw é
light in vacuum (v K c) the largest shift comes form linear j\/\/\/\/\/\‘ ®
Doppler effect, which depends on the velocity component parallel
to the direction of observation (we assume v,):

emission

v = (1 +2)V = v, == (' —v)
c VU,
the convention is that v, > 0 for atom moving towards the light
source (absorption) or the observer (emission).
For gas at the temperature T the velocity distribution is given by Maxwell function
1/2

M
p@) = (57=)  expl-(Mu2/T)]

Let’s mark the resonant frequency in atom is by v ; and let’s assume that homogenous line-broadening
is small. Then the line-shape function id given by Gaussian function:

hw é
observer ANV @

1/2

Mc? (v — vo)zl
2

exP [_ 2kT g

glv) = v—t(%)

with FWHM:

2kT In 2)1/2

Av = 21/0( Y



Gauss vs Lorentz

Lorenlzian ACravussian [hstributions

{30 — 1 T 1T T 1T v T T ] | .
- m
0.40 '
-
(130
B Craussian
T | T
I
0.0 | Lorentzian
.00




mixed line-broadening

example: Doppler broadening + collisional broadening

Atoms with a given value of v , are characterized by homogenously broadened
Av

I = 2l —ve ) + @2
Index h signifies homogenous (in this example collisional broadening), Av is the linewidth of

homogenous broadening, and vy’ = (1 + %)y o the Doppler shifted resonance frequency .
Cc

The probability of atom having a given value of v, is given by Maxwell’s distribution , we integrate over
the possible values of v’

(00)

1/2 ; Av Mcs (v —vy')
90 = (5277) f Y0’ 22l —v)? + @v/2)7] © p[‘ZkT ]

gy (v) is Voigt’s profile.

In(v; vo")

v




Voigt’s profile is a convolution of Lorentz and Gauss

mixed line-broadening, 1 functions
9@ = [ GG LE - 2'57)
e ;
_ e_m — )4
G(X, O') = = , L(x,]/) = 7'[(x2—+)/2)

n ]H-I " L i " M a L B A E i L K 4 " B
——a=153 y=000 |
0.25 = ——a=130 y=050 F
] g=1.00 y=100 [
] ——a=000 ¥=1.80 [
(.20 = B
0.15 - -
01,100 - .
005 — B
0.00 s : r . d

-10 -5 0 5 I



absorption coefficient axXpXl/y,

mixed line-broadening, 2
Doppler broadening: a X p

pressure broadening: a « p X 1/, = const

10 I T I

AVDoppler = AVm]lisim at 5.2 torr
where v, = 5.33 x 107 5!

\ o

Combined Dopper and

colhision contour for

de= 5.7 x 1OF® cm?

7,=47s —

10

Absorption coefficient (cm™!) at 273 K

10°°

| ! t
0.1 1.0 10 100 1000
(Gias pressure (torr}

FIGURE 7.9. Absorption coefficient in CO, at 10.6 um as a function of CQ, pressure.
(After E. T. Gerry and D. A. Leonard, Appl. Phys. Lent. 8, 227, 1966.)



"typical” linewidths

effect gas liquid condensed
matter
natural 0.001Hz-10MHz n* n
homogenous - —
atomic collision 5-10MHz/mbar =~ 300 cml
phonons —-- --- =~ 10 cm?
Doppler 50MHz-1GHz n ---
inhomogeneous
Local fields —-- =500 cm™? 1-500 cm?

cm™ units are often used in spectroscopy

.1
V= Alcm]
1 v
7= -[cm™1] = =10"2—
A c

<

“Is

numbers: A =1um < 10000 cm™!
forA=1um:1cm ! = 30GHz

*n - negligible




gain saturation in media with different line broadening

We will concentrate on the case 7, > T;. Similar reasoning can be extende to other cases as

well.
Yo

y(F) = 1+ F/E

J Homogenous broadening dominates. As the population inversion decreases the gain
drops for all frequencies because all atoms interact with the em wave in the same way. —
Saturation requires higher intensities for frequencies far away for the resonance.

Av
Vo(v) 2rt[(v —vy)? + (Av/2)?]

Yo(V)

Fv) =




gain saturation in media with different line broadening, 2

U inhomogeneous broadening dominates. A monochromatic em wave of frequency v inetracts
only with atoms that have their resonant frequencies close to v (closer than homogenous

linewidth). The saturation affects only this selected group of atoms — other groups ,,do not
see” the em field.

=

Ood ! Av !
)/O(v) X _j VO 27'[[(1/ _ VOI)Z + (AV/Z)Z] g(VO )

\ J
Y

In(v,vo") gn(v; vo')

9;(v,vo")
homogenously broaden line centered at v,'. =

v

Saturation ,burns a hole” in the gain
profile. Its width corresponds to the
homogenous linewidth. The depth of the
hole scales with saturation (em field
intensity).

v



