Lasers lecture 4

Czesław Radzewicz

Dicke effect

The Effect of Collisions upon the Doppler Width of Spectral Lines

R. H. DICKE Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received September 17, 1952)

Dicke effect in optical lattice

 \square an atom is radiating em wave of frequency ω measured at its own reference system

- □ the atom moves in the *x* direction: $x(t) = a \sin(\Omega t)$, $v(t) \equiv \frac{dx}{dt} = \Omega a \cos(\Omega t)$, harmonic oscillations
- classical approach, linear Doppler effect, the observer is located on the x axis
- $\Box \omega'(t) = (1 + \frac{v(t)}{c})\omega$ with v(t) being the velocity of atom

 $\Box \ \Delta \omega(t) = \omega'(t) - \omega = \frac{v(t)}{c} \omega = \frac{2\pi\Omega a}{\lambda} \cos(\Omega t) - \text{pure phase modulation of the radiation}$

u the phase $\phi(t) = \int \omega'(t) dt = \omega t - \frac{2\pi a}{\lambda} \sin(\Omega t)$

Dicke effect in optical lattice, 2

$$\phi(t) = \omega t - \frac{2\pi a}{\lambda} \sin(\Omega t)$$

$$E_{out}(t) = E_0 e^{-i[\omega t - \delta \sin(\Omega t)]\omega t}, \delta = \frac{2\pi a}{\lambda}$$

$$E_{out}(t) = E_0 \sum_{n=-\infty}^{\infty} J_n(\delta) e^{-i(\omega t - n\Omega)t}$$

 J_n - Bessel function type 1 order n

If $\delta \ll 1$ then $J_n(\delta) \ll J_0(\delta)$ for n = 1,2,3...

mixed line-broadening, 1

Voigt's profile is a convolution of Lorentz and Gauss functions

absorption coefficient α

 $\alpha \propto p \times \frac{1}{\Delta \nu}$

mixed line-broadening, 2

Doppler broadening: $\alpha \propto p$ pressure broadening: $\alpha \propto p \times 1/p = \text{const}$

FIGURE 7.9. Absorption coefficient in CO₂ at 10.6 μ m as a function of CO₂ pressure. (After E. T. Gerry and D. A. Leonard, *Appl. Phys. Lett.* 8, 227, 1966.)

"typical" linewidths

	effect	gas	liquid	condensed matter
homogenous	natural	0.001Hz-10MHz	n *	n
	atomic collision	5-10MHz/mbar	≈ 300 cm ⁻¹	
	phonons			≈ 10 cm ⁻¹
inhomogeneous	Doppler	50MHz-1GHz	n	
	Local fields		≈ 500 cm ⁻¹	1-500 cm ⁻¹

*n - negligible

cm⁻¹ units are often used in spectroscopy

 $\tilde{v} \equiv \frac{1}{\lambda[\text{cm}]}$ $\tilde{v} \equiv \frac{1}{\lambda}[\text{cm}^{-1}] = \frac{v}{c\left[\frac{\text{cm}}{\text{s}}\right]} = 10^{-2}\frac{v}{c}$ numbers: $\lambda = 1 \,\mu\text{m} \Leftrightarrow 10\,000\,\text{cm}^{-1}$ for $\lambda = 1 \,\mu\text{m}: 1\,\text{cm}^{-1} = 30\text{GHz}$

gain saturation in media with different line broadening

We will concentrate on the case $\tau_p \gg T_1$. Similar reasoning can be extended to other cases as well.

$$\gamma(F) = \frac{\gamma_0}{1 + F/F_s}$$

Homogenous broadening dominates. As the population inversion decreases the gain drops for all frequencies because all atoms interact with the em wave in the same way. – Saturation requires higher intensities for frequencies far away for the resonance.

gain saturation in media with different line broadening, 2

inhomogeneous broadening dominates. A monochromatic em wave of frequency v inetracts only with atoms that have their resonant frequencies close to v (closer than homogenous linewidth). The saturation affects only this selected group of atoms – other groups "do not see" the em field.

$$\gamma_{0}(\nu) \propto \int_{-\infty}^{\infty} d\nu_{0}' \frac{\Delta\nu}{2\pi [(\nu - \nu_{0}')^{2} + (\Delta\nu/2)^{2}]} g(\nu_{0}')$$

$$g_{h}(\nu, \nu_{0}')$$

 $g_j(v, v_0')$ homogenously broaden line centered at v_0' .

Saturation "burns a hole" in the gain profile. Its width corresponds to the homogenous linewidth. The depth of the hole scales with saturation (em field intensity).

laser amplifier efficiency

Definition:

surface energy density (energy stored in the amplifier per unit area of its cross-section)

$$\mathcal{E} \equiv \hbar \omega_{12} \Delta N l = \frac{\hbar \omega_{12}}{\sigma} \sigma \Delta N l = E_s \cdot \gamma_0 \cdot l \quad \text{for } \tau_p \gg \tau_1$$

$$\mathcal{E} \equiv E_s \cdot \gamma_0 \cdot \frac{l}{2}$$
 for $\tau_p \ll \tau_1$

surface power density (power that can be extracted from the amplifier per unit area of its cross-section)

$$\mathcal{P} \equiv \frac{\hbar \omega_{12} \Delta N l}{\tau_{21}} = I_s \cdot \gamma_0 \cdot l$$

with

$$E_s = \frac{\hbar\omega_{12}}{\sigma_{21}},$$

$$I_s = \hbar\omega_{12}/(\sigma_{21}\tau_{21})$$

saturating fluence saturating intensity

The definition of efficiency depends on the pulse duration:

□ for short pulse $\tau_p << \tau_{21}$ we use surface energy density $\eta = \frac{\mathcal{E}_{out} - \mathcal{E}_{in}}{\mathcal{E}}$

 \Box long pulse $\tau_p \gg \tau_{21}$

The medium can adiabatically follow the photon flux – we should consider intensity. For simplicity, let's assume stationary case

$$\eta = \frac{I_{out} - I_{in}}{\mathcal{P}}$$

"in" and "out" correspond to the input and output of the amplifier, respectively.

long pulse laser amplifier efficiency

A note that is <u>always</u> valid:

The stronger the saturation the higher the efficiency.

Let's take the eqs. describing long pulse amplifier:

$$\ln \frac{I_{out}}{I_{in}} + \frac{I_{out} - I_{in}}{I_s} = \gamma_0 l$$

calculate

$$I_{out} - I_{in} = I_s \left(\gamma_0 l - \ln \frac{I_{out}}{I_{in}} \right)$$

in deep saturation we have in $I_{out} \cong I_{in}$ and thus

$$I_{out} - I_{in} \cong I_s \gamma_0 l = \mathcal{P}$$

and

$$\eta = \frac{I_{out} - I_{in}}{\mathcal{P}} \cong 1$$

★ The other limit (unsaturated amplifier):

$$I_{in}, I_{out} \ll I_s \implies I_{out} = e^{\gamma_0 l} I_{in}$$

 $\eta = \frac{I_{out} - I_{in}}{\mathcal{P}} = \frac{\gamma_0 l - \ln \left(\frac{I_{out}}{I_{in}}\right)}{\gamma_0 l} = 0$

long pulse laser amplifier efficiency, 2

the dilemma of a laser master: gain or efficiency?

laser amplifier efficiency, practical remarks

Can you eat the cake and keep it? Yes, you can have both in laser amplifiers!

ns and longer pulses:
 <u>MOPA</u> (Master Oscillator Power Amplifier

examples of amplifying media

name	formula	$\sigma[10^{-19} \text{cm}^2]$	λ[μm]	$ au_{21}[\mu s]$	E[J/cm ²]	\mathcal{P} [10 ⁶ W/cm ²]
Rhodamine 6G	$C_{28}H_{31}N_2O_3CI$	2000	≅ 0.59	0.022	0.002	0.33
Nd:YAG	Nd ³⁺ :Y ₃ Al ₅ O ₁₂ 1% - 1.38×10 ²⁰ /cm ³	2.8	1.064	230	0.89	
Ti:Sapphire	Ti ³⁺ :Al ₂ O ₃	3.8	0.75 ÷ 1.1	2.4	0.66	0.2
LiSAF	Cr ^{3+:} LiSrAlF ₆	0.5	0.8 ÷ 0.9	67	5.2	0.08
Yb:KYW	Yb ³⁺ :KY(WO ₄) ₂ 0.5-100%	0.3	1.03 ÷ 1.06	300	7	
alexandrite	Cr ^{3+:} BeAl ₂ O ₄	0.1	0.75	~200	26	0.13

structure of Rhodamine 6G molecule

Nd:YAG

alexandrite

Ti:Sapphire

pumping of gain media

we need population inversion: $N_2 > N_1$. In thermodynamic equilibrium we have Boltzman distribution of the populations: $\frac{N_2}{N_1} = \exp\left(-\frac{\hbar\omega_{12}}{kT}\right) < 1$. Heating of the medium does not work because temperature increase can, at most, equalize the populations. We need to put energy selectively so it results in mowing the atom/ion to the upper level of the laser transition. The methods:

- electric current
- em radiation light
- exothermic chemical reaction

*

2-level system, let's consider optical pumping: $\frac{dN_2}{dt} = -A_{21}N_2 - \sigma F(N_2 - N_1)$ $N_2 - N_1 = 2N_2 - N$

 $\frac{dN_2}{dt} = -(A_{21} + 2\sigma F)N_2 + \sigma FN$

 $\frac{N_2 - (A_{21} + 2\sigma F)}{(A_{21} + 2\sigma F)}$ in the high intensity limit $\lim_{F \to \infty} N_2 = N/2$

3-level system

assumptions:

- $\tau_{21} = 1/A_{21}$,
- $\tau_{32} \ll \tau_{21}$
- $\frac{dN_3}{dt} = P \cdot N_1$

rate equations:

 $N_{3} = 0$ $\frac{dN_{2}}{dt} = PN_{1} - A_{21}N_{2} - \sigma F(N_{2} - N_{1})$ $N_{1} = N - N_{2}$

stationary solutions $\left(\frac{dN_2}{dt} = \frac{dN_1}{dt} = 0\right)$

for small light intensity (we neglect the term $\sigma F(N_2 - N_1)$):

$$N_{2} = \frac{P\tau_{21}}{1 + P\tau_{21}}N$$
$$N_{1} = \frac{1}{1 + P\tau_{21}}N$$

population inversion:

 $\Delta N_0 = \frac{P\tau_{21} - 1}{1 + P\tau_{21}} N$

gain possible for :

$$\Delta N_0 > 0 \Leftrightarrow P > \frac{1}{\tau_{21}} = A_{21}$$

3-level system, an example

ruby – Cr³⁺:Al₂O₃ chromium concentration 0.05% $N \cong 2 \times 10^{19} \text{cm}^{-3}$ $\tau_{21} \cong 2 \times 10^{-3} \text{s}$

minimum pump rate:

$$P_{min} = \frac{1}{\tau_{21}} \cong 500 \mathrm{s}^{-1}$$

pump power density needed to reach $\Delta N > 0$: $\mathcal{P} = P_{min} \cdot N \cdot \hbar \omega_{12} \cong (0.5 \times 10^{-3} \text{s}^{-1})(2 \times 10^{19} \text{cm}^{-3})(3.6 \times 10^{-19} \text{J}) = 3.6 \text{kW/cm}^3$

heat dissipation:

 $\mathcal{P}_{cieplo} = \frac{\omega_{p-}\omega_{21}}{\omega_{p}}\mathcal{P} \cong 0.8 \text{kW/cm}^{3}$

pulsed operation

3-level system, saturation

population equations with light $\frac{dN_2}{dt} = PN_1 - A_{21}N_2 - \sigma F(N_2 - N_1) = 0$ $N_1 = N - N_2$

gives $P(N - N_2) - A_{21}N_2 - \sigma F(2N_2 - N) = 0$

algebra...

$$\Delta N = \frac{A_{21} + \sigma F}{P + A_{21} + 2\sigma F} N$$

more algebra...

$$\Delta N = \Delta N_0 \frac{1}{1 + F/F_s}$$

$$\gamma(v, I, P) = \gamma_0 \frac{1}{1 + F/F_s}$$

$$\gamma_0 = \sigma(v) \frac{P\tau_{21} - 1}{P\tau_{21} + 1} N$$

$$F_s(v, P) = \frac{1}{\sigma(v)\tau_{21}} \frac{1 + P\tau_{21}}{2}$$

$$I_s(v, P) = \frac{\hbar\omega_{12}}{\sigma(v)\tau_{21}} \frac{1 + P\tau_{21}}{2}$$

remember this formula

4-level system

Assume:

• $\tau_{21} = 1/A_{21}$,

•
$$\tau_{32} \ll \tau_{21}$$

• $\frac{dN_3}{dt} = P \cdot N_1$

rate equations again:

$$\begin{split} N_3 &= 0\\ \frac{dN_2}{dt} &= PN_1 - A_{21}N_2 - \sigma F(N_2 - N_1)\\ \frac{dN_1}{dt} &= A_{21}N_2 - \frac{1}{\tau_1}N_1 + \sigma F(N_2 - N_1)\\ N_0 &+ N_1 + N_2 = N \end{split}$$

Stationary solutions for small light intensity:

$$\Delta N_0 = \frac{P(\tau_{21} - \tau_1)}{1 + P(\tau_{21} + \tau_1)} N$$

gain possible if :

 $\Delta N_0 > 0 \Leftrightarrow \tau_{21} > \tau_1$

independently of the pumping rate

4-level system, gain saturation

Assumptions:

- $\tau_{21} = 1/A_{21}$,
- $\tau_{32} \ll \tau_{21}$ • $\frac{dN_3}{dt} = P \cdot N_1$

rate eqs.:

$$\begin{split} N_3 &= 0\\ \frac{dN_2}{dt} &= PN_0 - A_{21}N_2 - \sigma F(N_2 - N_1)\\ \frac{dN_1}{dt} &= A_{21}N_2 - \frac{1}{\tau_1}N_1 + \sigma F(N_2 - N_1)\\ N_0 &+ N_1 + N_2 &= N \end{split}$$

Stationary solutions:

$$\gamma(\nu, F, P) = \gamma_0(\nu) \frac{1}{1 + F/F_s}$$
$$\gamma_0(\nu) = \sigma(\nu)\Delta N_0$$
$$F_s(\nu, P) = \frac{1}{\sigma(\nu)} \frac{1 + P(\tau_{21} + \tau_1)}{1 + 2P\tau_1}$$

