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Gaussian pulses note: do not mistake those for Gaussian beams

a light pulse with a Gaussian envelope 𝐸 𝑡 = 𝐴𝑒−𝑎𝑡2
𝑒𝑖𝜔0𝑡 (𝑎 > 0) can be modified by adding a 

quadratic phase

𝐸 𝑡 = 𝐴𝑒−𝑎𝑡2
𝑒𝑖𝜔0𝑡+𝑖𝑏𝑡2

= 𝐴𝑒−Γ𝑡2
𝑒𝑖𝜔0𝑡, with a single complex parameter Γ = 𝑎 − 𝑖𝑏 describing 

both the envelope and nonlinear phase.

𝑎 =  1 60 ; 𝜔0 = 3

𝑏 = 0

𝑏 = 0.1

𝑏 = −0.1

intensity: 𝐼 = 𝐸 2 = 𝐴2𝑒−2𝑎𝑡2

𝛿𝑡(𝐹𝑊𝐻𝑀) =
2ln2

𝑎

𝛿𝑡𝐹𝑊𝐻𝑀

phase and frequency: 𝜑 = 𝜔0𝑡 + 𝑏𝑡2, 𝜔 𝑡 ≡
𝑑𝜑

𝑑𝑡
= 𝜔0 + 2𝑏𝑡

linear chirp

𝑡

an example of a nonlinear chirp 𝐸 𝑡 = 𝐴𝑒−𝑎𝑡2
𝑒𝑖 𝜔0𝑡+𝑏𝑡2+𝑐𝑡3

𝑎 =  1 60 ; 𝜔0 = 3

𝑏 = −0.1, c = 0.07

FWHM - Full Width at Half Maximum

positive chirp

negative chirp



 𝐸 𝜔 ≡
1

2𝜋
 
−∞

∞

𝐸 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡 =
𝐴

2𝜋
 
−∞

∞

𝑒−Γ𝑡2
𝑒−𝑖 𝜔−𝜔0 𝑡𝑑𝑡

lemma: for any complex 𝑃, 𝑄 if Re𝑃 > 0 then  

 −∞

∞
𝑒−𝑃𝑦2−2𝑄𝑦𝑑𝑦 =

𝜋

𝑃
𝑒𝑄2/2𝑃

 𝐸 𝜔 =
𝐴

2Γ
𝑒

− 𝜔−𝜔0
2

4Γ

and thus I 𝜔 =  𝐸(𝜔)
2

=
𝐴2

2 Γ
𝑒

− 𝜔−𝜔0
2

2 Γ

the product of time and frequency uncertainties:

𝛿𝑡 ∙ 𝛿𝜔 = 4ln2 1 + 𝑏/𝑎 2

𝛿𝑡 ∙ 𝛿𝜈 =
2ln2

𝜋
1 +

𝑏

𝑎

2

≅ 0.44 1 +
𝑏

𝑎

2

if  𝑏 = 0 we have Fourier limited pulses; their spectra width results 
solely from finite time duration

note: other envelope shapes
result in a slightly different 
Fourier limit
𝛿𝑡 ∙ 𝛿𝜈 = 𝐾

𝛿𝜔(𝐹𝑊𝐻𝑀)

𝜔

𝜔0

𝛿𝜔 𝐹𝑊𝐻𝑀 = 2 2ln2 𝑎2 + 𝑏2

Gaussian pulses, 2



example: propagation in a medium with a given 𝑛(𝜔):

 𝐸 𝜔, 0 =
𝐴

2Γ
𝑒

− 𝜔−𝜔0
2

4Γ

 𝐸 𝜔, 𝑧 =  𝐸 𝜔, 0 𝑒−𝑖𝑘 𝜔 𝑧

if 𝑘 varies slowly in the range of the pulse spectrum then we can write it as a Taylor series up to the quadratic term:

𝑘 𝜔 = 𝑘0 + 𝑘1 𝜔 − 𝜔0 +
1

2
𝑘2 𝜔 − 𝜔0

2 + ⋯ ; 𝑘0 = 𝑘(𝜔0),  𝑘1 =   𝑑𝑘
𝑑𝜔 𝜔0

, 𝑘2 =   𝑑2𝑘
𝑑𝜔2

𝜔0

which leads to

 𝐸 𝜔, 𝑧 =  𝐸 𝜔, 0 𝑒−𝑖 𝑘0𝑧+𝑘1𝑧 𝜔−𝜔0 +𝑘2𝑧 𝜔−𝜔0
2/2

back to the time domain:

𝐸 𝑡, 𝑧 =
1

2𝜋
 
−∞

∞

 𝐸 𝜔, 𝑧 𝑒𝑖𝜔𝑡𝑑𝜔 =
𝐴

4𝜋Γ
𝑒𝑖 𝜔0𝑡−𝑘0𝑧  

−∞

∞

𝑒
−

1
4Γ

+𝑖
𝑘2𝑧
2

𝜔−𝜔0
2+𝑖 𝜔−𝜔0 𝑡

𝑑𝜔

we still have a Gaussian pulse with a new Γ′ parameter 
1

Γ′
=

1

Γ
+ 𝑖2𝑘2𝑧

propagation of a Gaussian pulse in a dispersive system

− 𝜔 − 𝜔0
2

4Γ′

we can calculate 𝑘1 and 𝑘2:

𝑘 =
𝑛(𝜔)𝜔

𝑐

𝑘1 ≡
𝑑𝑘

𝑑𝜔
=

𝑛+𝜔
𝑑𝑛

𝑑𝜔

𝑐

𝑘2 ≡
𝑑2𝑘

𝑑𝜔2 =
2

𝑑𝑛

𝑑𝜔
+𝜔

𝑑2𝑛

𝑑𝜔2

𝑐



general rule: for a system which has a given spectral phase 𝛽(𝜔):

 𝐸𝑖𝑛 𝜔 =
𝐴

2Γ
𝑒

− 𝜔−𝜔0
2

4Γ

 𝐸𝑜𝑢𝑡 𝜔 =  𝐸 𝜔, 0 𝑒−𝑖𝛽 𝜔

Again, if 𝛽 varies slowly in the range of the pulse spectrum then we can write it as a Taylor series up to the quadratic 

term …  and we end up with a Gaussian pulse described by a new parameter Γ′;
1

Γ′ =
1

Γ
+ 𝑖2𝛽2,  with

𝛽2 =  𝑑2𝛽/𝑑𝜔2
𝜔0

some examples of optical system with non-

trivial 𝛽(𝜔):

diffraction grating compressor, optical path is 

frequency dependent. 

𝜔0

𝜔0 − Δ𝜔

𝜔0 + Δ𝜔

DG1

DG2

flat
mirror

BS

propagation of a Gaussian pulse in a dispersive system, 2

for a diffraction grating with grove spacing 𝑑

sin 𝛼 + sin 𝛽 = 𝑛
𝜆

𝑑



first order diffraction: sin𝛼 + sin𝛾 =  𝜆 𝑑 = 2𝜋
𝑐

𝑑

1

𝜔
⇒ sin𝛾 = 2𝜋

𝑐

𝑑

1

𝜔
− sin𝛼

phase (definition): 𝛽 𝜔 =
𝜔

𝑐
𝐿(𝜔)

with 𝐿(𝜔) being the optical path: 𝑃(𝜔) = 𝐴𝐵 + 𝐵𝐶 = ⋯ =
𝑙

cos𝛾
1 + sin𝛾sin𝛼

𝑃(𝜔 + 𝑑𝜔) =
𝑙

cos𝛾′
1 + sin𝛾′sin𝛼 with a new angle 𝛾′ such that:   sin𝛾′ = 2𝜋

𝑐

𝑑

1

𝜔+𝑑𝜔
− sin𝛼

for small 𝑑𝜔: sin 𝛾′ ≅ sin 𝛾 −
2𝜋𝑐

𝑑

𝑑𝜔

𝜔2

𝑃 𝜔 + 𝑑𝜔 − 𝑃 𝜔 =
𝑙

cos′𝛾
1 + sin𝛾′sin𝛼 −

𝑙

cos𝛾
1 + sinγsin𝛼 ≅ −2𝜋

sin𝛼

cos𝛾

𝑙𝑐

𝑑

𝑑𝜔

𝜔2

𝑑𝑃

𝑑𝜔
≅ −2𝜋

sin𝛼

𝑑cos𝛾

𝑙𝑐

𝜔2

𝑑2𝑃

𝑑𝜔2
≅

4𝜋sin𝛼

𝑑cos𝛾

𝑙𝑐

𝜔3

𝛼
𝛼

𝛾

𝑙

𝐴

𝐵

𝐶

𝐷

𝑑

full calculations in : Tracey, IEEE, J. Quant. Electron. QE-5,454 (1969)

diffraction grating compressor



general formula (𝑃 is optical path):

is simplified upon assumption of Brewster 
prisms and minimum deviation condition:

prismatic compressor



a given spectral phase 𝛽(𝜔) leads to:
1

Γ𝑜𝑢𝑡
=

1

Γ𝑖𝑛
+ 𝑖2𝛽2

𝛽2 =  𝑑2𝛽/𝑑𝜔2

𝜔0

let’s  use the notation: Γ𝑖𝑛 = 𝑎0 − 𝑖𝑏0, Γ𝑜𝑢𝑡 = 𝑎 − 𝑖𝑏

1

Γ𝑜𝑢𝑡
=

1

Γ𝑖𝑛
+ 𝑖2𝛽2 =

𝑎0

𝑎0
2 + 𝑏0

2 + 𝑖
𝑏

𝑎0
2 + 𝑏0

2 + 2𝛽2 =
1

𝑎 − 𝑖𝑏

a persistent student can finish the calculations:

𝑎 =
𝑎0

1+2𝛽2𝑏0
2+ 2𝛽2𝑎0

2 , 𝑏 =
2𝛽2𝑎0+𝑏0 1+2𝛽2𝑏0

1+2𝛽2𝑏0
2+ 2𝛽2𝑎0

2

one can easily type those into computer code

Re 1/Γ𝑜𝑢𝑡

Im 1/Γ𝑜𝑢𝑡

1/Γ𝑖𝑛 =
𝑎0 + 𝑖𝑏0

𝑎0
2 + 𝑏0

2

1/Γ𝑜𝑢𝑡 = 1/Γ𝑖𝑛 + 𝑖2𝛽2

2𝛽2

Γ𝑖𝑛 = 𝑎0 − 𝑖𝑏0

Γ𝑜𝑢𝑡

ImΓ𝑜𝑢𝑡

ReΓ𝑜𝑢𝑡

 ImΓ𝑜𝑢𝑡 = 0 – Fourier limited pulse

 ReΓ𝑜𝑢𝑡 = 0 - 𝛿𝑡 → ∞

propagation of a Gaussian pulse in a dispersive system (time domain):



spectral phase 𝛽 𝜔 = 𝑘𝑧
the second derivative of the phase 𝛽2 = 𝑘2𝑧

 let’s start with a Fourier limited pulse Γ𝑖𝑛 = 𝑎0 + 𝑖 ∙ 0, 𝑎0 > 0, 𝑏0 = 0

𝑎 =
𝑎0

1+ 2𝑘2𝑧𝑎0
2 < 𝑎0, 𝛿𝑡 = 2ln2/𝑎 = 1 + 2𝑘2𝑧𝑎0

2 2ln2/𝑎0 > 𝛿𝑡0

- the output pulse is always longer than the input one
𝑏 = 2𝑘2𝑧𝑎0

- the chirp sign depends on 𝑘2

example: for optical glasses in the visible range we have 𝑘2 > 0 – positive chirp (red comes out first)

 the input pulse has non-zero chirp Γ𝑖𝑛 = 𝑎0 + 𝑖 ∙ 𝑏0, 𝑎0 > 0

𝑎 =
𝑎0

1+2𝑘2𝑧𝑏0
2+ 2𝑘2𝑧𝑎0

2 can be either larger or smaller than 𝑎0. 

the result depends on the sign of the product 𝑘2𝑏0

• 𝑘2𝑏0 > 0 gives 𝑎 < 𝑎0 and thus  𝛿𝑡 > 𝛿𝑡0

• for 𝑘2𝑏0 < 0 𝑎 is first decreasing and  then increasing. we search for the minimum which
corresponds to a shortest possible pulse …

𝑧𝑜𝑝𝑡 = −
𝑏0

2𝑘2 𝑎0
2+𝑏0

2

for a given value of 𝑏0 we can take a medium such that 𝑘2𝑏0 < 0 and propagate the pulse in the 
medium over the distance 𝑧𝑜𝑝𝑡 to get the shortest pulse possible. 

𝑧

Γ𝑖𝑛
Γ𝑜𝑢𝑡𝑛(𝜔)

propagation of a Gaussian pulse in a dispersive medium – some facts:



mode-locking: 

𝐸𝑛 𝑡 = 𝐴𝑛sin 𝜔𝑛𝑡 + 𝜑𝑛

the electrical field of the laser beam is: 

𝐸 𝑡 =  

𝑛=−𝑁

𝑛=𝑁

𝐴𝑛sin 𝜔𝑛𝑡 + 𝜑𝑛

in a complex notation:

𝐸 𝑡 = 𝑒𝑖𝜔0𝑡  

𝑛=−𝑁

𝑛=𝑁

𝐴𝑛𝑒𝑖 𝑛𝛿𝜔𝑡+𝜑𝑛

mode-locking in a laser oscillator:

quite different results for different phase relations: 

 random phases

 the same phases, e.g. 𝜑𝑛 ≡ 0

ν

𝛿𝜔 = 2𝜋  𝑐 2𝐿

Δ𝜔

𝜔𝑛 = 𝜔0 + 𝑛𝛿𝜔
𝑛 = 0, ±1, ±2, …

𝑅2𝑅1 = 1

𝛾0, 𝐹𝑠

𝐿



200 modes, temporal pictures for a full round-trip time

mode amplitudes random phases

laser intensity for all phases equal zero

0 200

0
0

0

0

0

1

300

𝑡/𝜏𝑤 𝑡/𝜏𝑤1
1

laser intensity for random phases

0
0

200

0

6000

2𝜋

mode-locking a numerical simulations:



2𝑁 + 1 modes with the same amplitudes 𝐴, the same (zero= 
phases

𝐸 𝑡 = 𝐴𝑒𝑖𝜔0𝑡  

𝑛=−𝑁

𝑛=𝑁

𝑒𝑖 𝑛𝛿𝜔𝑡

𝐸 𝑡 = 𝐴𝑒𝑖 𝜔0−2𝑁𝛿𝜔 𝑡
sin

2𝑁 + 1
2

+ 1 𝛿𝜔𝑡

sin  𝛿𝜔𝑡
2

intensity:

𝐼 𝑡 = 𝐴2
sin2 2𝑁 + 1

2
+ 1 𝛿𝜔𝑡

sin2  𝛿𝜔𝑡
2

ν

𝛿𝜔 = 2𝜋  𝑐 2𝐿

Δ𝜔 = 2𝑁𝛿𝜔

𝜔𝑛 = 𝜔0 + 𝑛𝛿𝜔
𝑛 = 0, ±1, ±2, … 𝑁

𝑅2𝑅1 = 1

𝛾0, 𝐹𝑠

𝐿

geometrical series

mode-locking, a simple model with a rectangular spectrum



𝐼 𝑡 = 𝐴2
sin2 2𝑁 + 1

2
𝛿𝜔𝑡

sin2  𝛿𝜔𝑡
2

properties:

 𝐼 0 = 𝐼 𝑛 ∙
2𝜋

𝛿𝜔
,  𝑛 = 1,2,3…

 lim
𝑡→0

𝐼 𝑡 =
2𝑁+1

2
+ 1

2

 𝛿𝑡 =
1

2𝑁+1 𝛿𝜔
≈

1

Δ𝜔

mode-locking, a simple model, 2

ν

𝛿𝜔 = 2𝜋  𝑐 2𝐿

Δ𝜔

𝜔𝑛 = 𝜔0 + 𝑛𝛿𝜔
𝑛 = 0, ±1, … ± 𝑁

𝜏𝑤

100

Wpisz
tutaj
równanie.

0
0

0
0

104

2 21 1𝑡/𝜏𝑤 𝑡/𝜏𝑤

intensity – 10 modes each with amplitude 1

𝛿𝑡

intensity – 100 modes each with amplitude 1



𝑅2𝑅1 = 1

𝛾0, 𝐹𝑠

𝐿

ν

𝛿𝜔 = 2𝜋  𝑐 2𝐿

Δ𝜔

𝜔𝑛 = 𝜔0 + 𝑛𝛿𝜔
𝑛 = 0, ±1, … ± 𝑁

lead to

𝐸 𝑧, 𝑡 =
1

2
𝐴 cos 𝜔0𝑡 − 𝑘0𝑧

sin 𝑁+1 𝑥

sin  𝑥
2

− cos 𝜔0𝑡 + 𝑘0𝑧
sin 𝑁+1 𝑦

sin  𝑦
2

, with 𝑥 =
𝜋 𝑧−𝑐𝑡

𝐿
and 𝑦 =

𝜋 𝑧+𝑐𝑡

𝐿

pulse propagating in 

the +𝑧 direction

we have short pulse bouncing between the resonator mirrors

mode-locking; what is inside the cavity

we assume a cavity with no dispersion and perfect mode-locking
𝜔𝑛 = 𝜔0 + 𝑛𝛿𝜔, n = ±1, ±2, … ± 𝑁

and 𝑘𝑛 = 𝑘0 + 𝑛
𝜋

𝐿

a „closed” resonator forms a standing wave for each mode

𝐸 𝑧, 𝑡 = 𝐴  

𝑛=−𝑁

𝑁

sin 𝑘𝑛𝑧 sin 𝜔𝑛𝑡

= A  

𝑛=−𝑁

𝑁

sin 𝑘0 + 𝑛
𝜋

𝐿
𝑧 sin 𝜔0 + 𝑛𝛿𝜔 𝑡

some calculations using trigonometric formulas …..

pulse propagating in 

the +𝑧 direction



ν

𝛿𝜔

Δ𝜔

𝜔𝑖

for a laser cavity with dispersion the simple relation 𝜔𝑖 = 𝑖 ∙
𝑐

2𝐿

does not hold. An example; for a cavity filled with a medium 

with a given dispersion 𝑛 𝜔 we have 𝜔𝑖 = 𝑖 ∙
𝑐

2𝑛 𝜔𝑖 𝐿
. In the 

case of a smooth dispersion relation we can expand the last 
formula into the Taylor series around 𝜔0:

𝜔𝑛 = 𝛼𝑛 + 𝛽𝑛2 +
𝛾

2
𝑛3 + ⋯ , n = ±1, ±2, … ± 𝑁

and calculate electric field amplitude 

𝐸 𝑡 = 𝑒𝑖𝜔0𝑡  𝑛=−𝑁
𝑛=𝑁 𝐴𝑛𝑒𝑖𝜔𝑛𝑡 and intensity of the laser beam

numerical simulations for a Gaussian spectrum: 2𝑁 + 1 = 500, 𝛼 = 1, 𝛽 = 5 × 10−7, 𝛾 = 0

𝑡/𝜏𝑤
the pulse after 4 round-trips

dispersion kills mode-locking!

mode-locking; the role of intracavity dispersion

the pulse after 8round-tripsinitial pulse



mode-locking mechanisms

active mode-locking (usually acousto-optic modulator with a 
standing acoustic wave) driven by an electrical signal with a proper 
frequency. 

𝑅2𝑅1 = 1

𝛾0, 𝐹𝑠

𝐿

loss 

modulator

𝑡

m
o

d
u

la
to

r 
tr

an
sm

is
si

o
n

𝜏𝑤

𝜏𝑤 - round-trip time; 𝜏𝑤 = 𝐿/𝜐𝑔 with 𝜐𝑔 being an effective (averaged over the resonator) group velocity

1

time-dependent losses in the resonator force pulse regime – a pulse transmitted through the modulator 
when its transmission is maximum  experiences minimum loss

the method can be applied to ps lasers only,  1ps = 10−12s



passive mode-locking, intracavity saturable absorption 

saturable absorber, problems:
• relaxation speed
• absorber thickness
ssolution: SESAM (Semiconductor Saturable Absorber Mirror)

𝑅2𝑅1 = 1

𝛾0, 𝐹𝑠

saturable 

loss

SESAM’s structure

carrier dynamics in semiconductors

mode-locking mechanisms, 2



SESAM - properties

P. Langlois, et al., Appl. Phys. Lett. 75, 3841-3483, (1999).

D. J. H. C. Maas et al., OE16, 7571-7579 (2008)



SESAM in Ti3+:Al2O3 laser


