Lasers lecture 9

Czesław Radzewicz

self-phase modulation

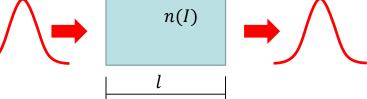
For high light intensities the index of refraction is not constant – it depends on light intensity. In most practical cases it suffices to include a term proportional to the light intensity:

$$n(I) = n_0 + n_2 I$$

The values of n_2 coefficient are small. For example, for quartz glass (SiO₂) $n_2 \cong 2 \cdot 10^{-16} \text{cm}^2/\text{W}$.

For very high light intensity $I = \frac{100 \text{GW}}{\text{cm}^2} = 10^{11} \text{W/cm}^2$ we have $\Delta n = n_2 I \cong 2 \cdot 10^{-5}$.

Nonlinear index of refraction influences: (1) pulse phase and (2) pulse wavefront.



1. Self-phase modulation

Consider 1-D case (plane wave, or fiber): $E_{in}(t)=A(t)e^{i\omega_0t}$. At the output $E_{out}(t,z)=A(t)e^{i(\omega_0t-kl)}$ with

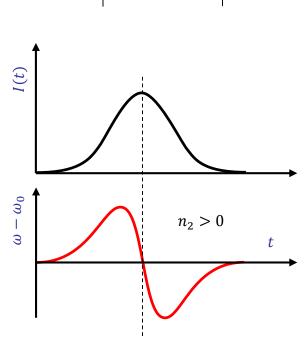
$$k=k(I)=\frac{n(I)\omega_0}{c}=\frac{n_0\omega}{c}+\frac{n_2I\omega_0}{c}=k_0+\frac{n_2\omega_0}{c}I \text{ with } I(t)=|A(t)|^2$$
 which leads to

$$E_{out}(t,z) = A(t)e^{i(\omega_0 t - k_0 z)}e^{i\frac{n_2\omega_0 l}{c}I(t)}$$

resulting in time-dependent phase and frequency

$$\varphi(t) = \omega_0 t + \frac{n_2 \omega l}{c} I(t), \qquad \omega(t) = \omega_0 + \frac{n_2 \omega l}{c} \frac{dI}{dt}$$

- pulse envelope remains the same
- · spectrum is broadened



self-focusing

Assume a Gaussian beam with a large waist at z = 0:

$$E(r, z = 0) = E_0 e^{-\frac{r^2}{w_0^2}}$$

for propagation distance $l \ll z_0$ we have

$$E_{out}(r,l) = E(r,z=0)e^{-ikl} = E_0 e^{-\frac{r^2}{w_0^2}} e^{-ik_0 l} e^{-i\frac{n_2\omega_0 l}{c}I(r,z=0)}$$
(1)

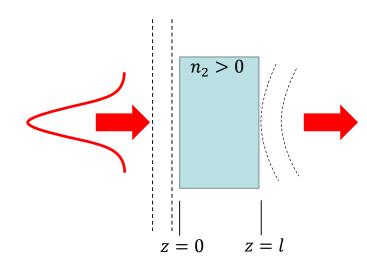
If $n_2 > 0$ the phase fronts are delayed at the center of the beam with respect to the peripheral regions – a plane wavefront bends.

Let's look at the region close to the beam axis

$$I(r, z = 0) = I_0 e^{-\frac{2r^2}{w_0^2}} \cong I_0 \left(1 - \frac{2r^2}{w_0^2}\right)$$

We put this into equation (1)

$$E_{out}(r,l) = \underbrace{E_0 e^{-\frac{r^2}{w_0^2}} e^{-ik_0 l} e^{-i\frac{n_2\omega_0 l}{c} I_0} e^{i\frac{n_2\omega_0 l I_0}{c}} \frac{2r^2}{w_0^2}}_{\text{Gaussian}}$$
Gaussian constant spherical wavefront intensity phase
$$\frac{1}{R_{sf}} = \frac{4n_2 l}{w_0^2} I_0$$



plane-parallel plate acts like lens

Kerr Lens

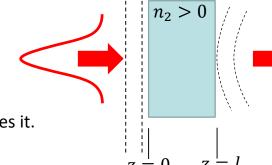
focal length f_K , $1/f_K \propto I$

self-focusing – critical power

from the previous slide

$$E_{out}(r,l) = E_0 \underbrace{e^{-\frac{r^2}{w_0^2}}}_{\text{Gauss}} \underbrace{e^{-ik_0l}e^{-i\frac{n_2\omega_0l}{c}I_0}}_{\text{constant}} \underbrace{e^{i\frac{n_2\omega_0lI_0}{c}}\frac{2r^2}{w_0^2}}_{\text{spherical wavefront}}$$

$$\frac{1}{R_{sf}} = \frac{4n_2l}{w_0^2}I_0$$



Two effects: diffraction increases beam diameter but self-phocusing decreases it.

From lecture 5

$$\frac{1}{R_{diff}} \cong \frac{l}{z_0^2} = \frac{\lambda^2 l}{\pi^2 w_0^4}$$

The beam will self-phocus if

$$R_{sf} < R_{diff} \Leftrightarrow \frac{4l}{{w_0}^2} I_0 > \frac{\lambda^2 l}{{\pi^2 {w_0}^4}} \Rightarrow I_0 > I_{cr} = \frac{\lambda^2}{4n_2 {\pi^2 {w_0}^2}}$$

Critical intensity I_{cr} depends on the beam size. Self-focusing is described by critical power P_{cr}

$$P_{cr} = 2\pi I_{cr} \int_0^\infty re^{-\frac{2r^2}{w_0^2}} dr = \frac{\lambda^2}{4\pi n_2}$$

for powers higher the P_{cr} the beam collapses.

Note: the exact form of self focusing depends on many parameters: pulse duration, dispersion, the nature of medium, ...

an example: filaments in air

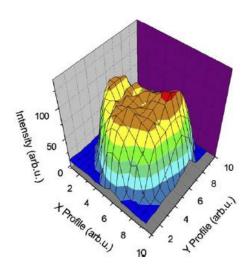
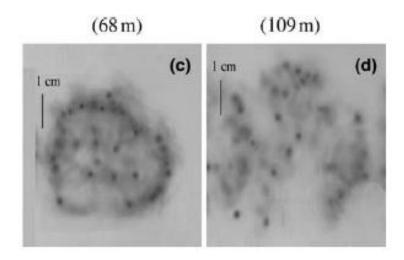


Fig. 1. Profile of the beam. Intensity recorded at the output of the compressor.



OPTICS COMMUNICATIONS

Optics Communications 247 (2005) 171-180

www.elsevier.com/locate/optcom

Range of plasma filaments created in air by a multi-terawatt femtosecond laser

G. Méchain ^{a,*}, C.D'Amico ^a, Y.-B. André ^a, S. Tzortzakis ^{a,1}, M. Franco ^a, B. Prade ^a, A. Mysyrowicz ^a, A. Couairon ^b, E. Salmon ^c, R. Sauerbrey ^d

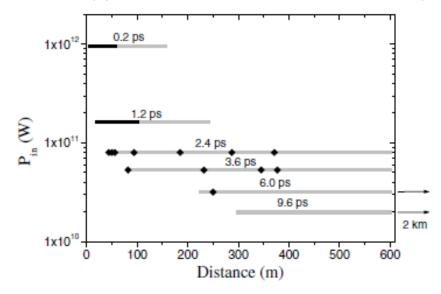
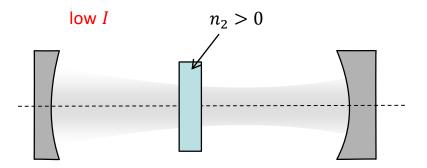
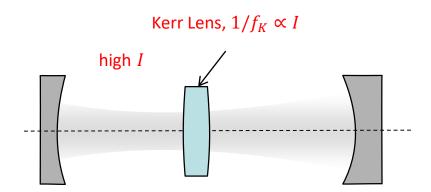


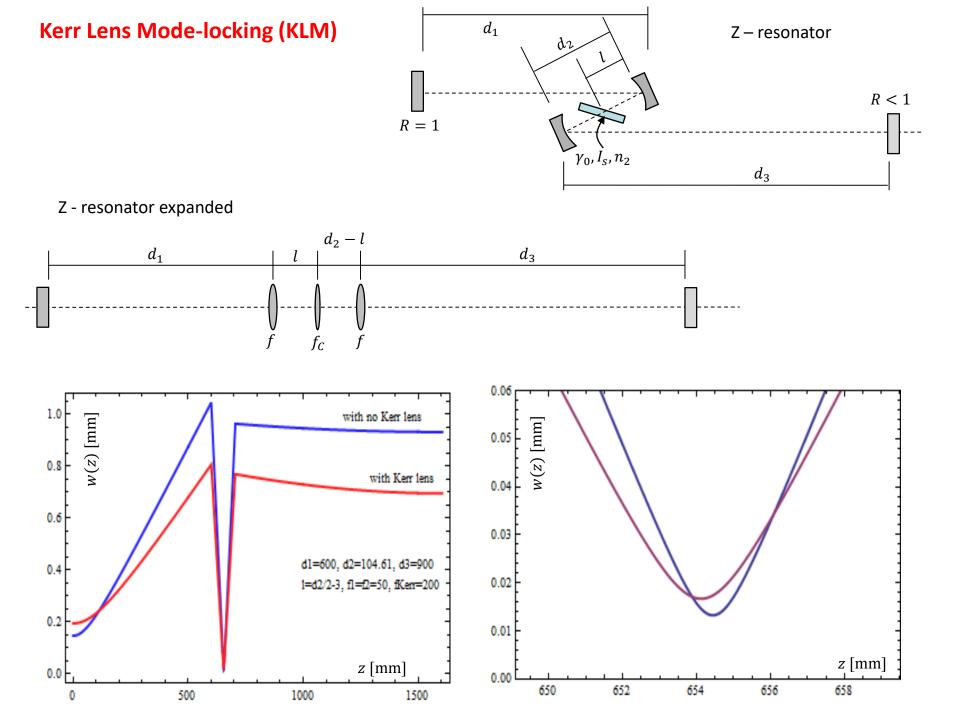
Fig. 8. Evolution of the length of filamentation by varying the initial chirp of the laser pulse. The pulse without chirp has a duration of 100 fs. The black lines and black points refer to locations where air ionisation could be detected, grey lines to distances where bright light channels are observed.

artificial saturable absorber based on Kerr lens



With Kerr lensing any piece of material inside the cavity (for example a plane parallel glass plate) may act as a lens. The focusing power of the lens scales approx. linearly with the instantaneous light intensity. This extra lens changes the properties of the resonator. If we want to promote short pulse operation of the laser we should make the resonator such that the Kerr lens decreases diffraction losses inside the cavity. Such a cavity mimics a saturable absorber – we call it an artificial saturable absorber.

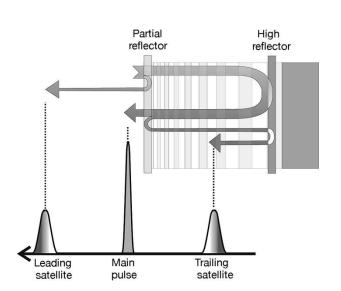


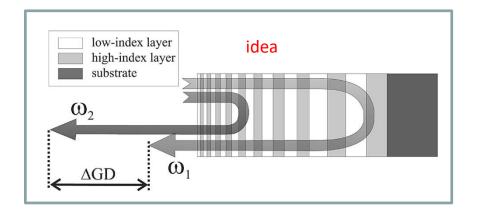


intra-cavity dispersion control

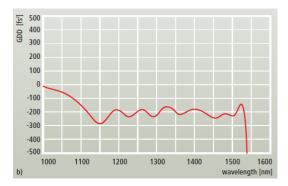
Group delay dispersion (GDD), how can we control it? Lecture 8: dispersion lines built out of prisms or diffraction gratings

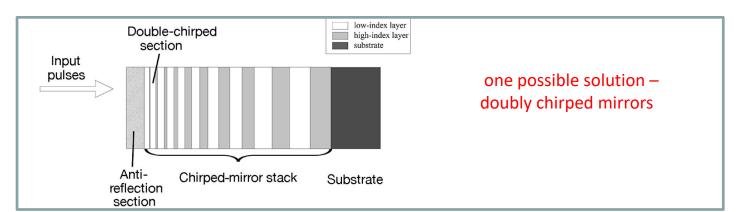
1. chirped mirrors





interference of waves reflecting from different parts of the structure leads to oscillations in reflectivity vs wavelength function





intra-cavity dispersion control, 2

Effective mode-locking requires a well defined dispersion of the lasers cavity. We quantize it by group Delay Dispersion $GDD(\omega)$ or $GDD(\lambda)$.

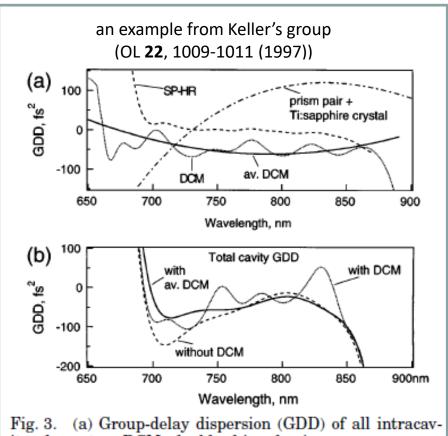
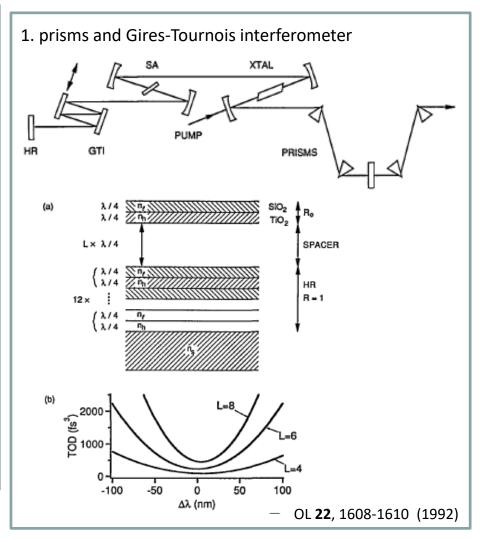


Fig. 3. (a) Group-delay dispersion (GDD) of all intracavity elements: DCM, double-chirped mirror; av., average; SP-HR, Spectra Physics high reflector. (b) Total intracavity GDD. The estimated resolution is ±5 fs².

methods to control GDD:



Gires-Tournois interferometer

An analog of the Fabry-Perot interferometer with one mirror fully reflecting R=1. no transmitted beam

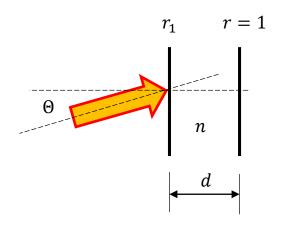
$$r = -\frac{r_1 - e^{-i\delta}}{1 - r_1 e^{-i\delta}}$$

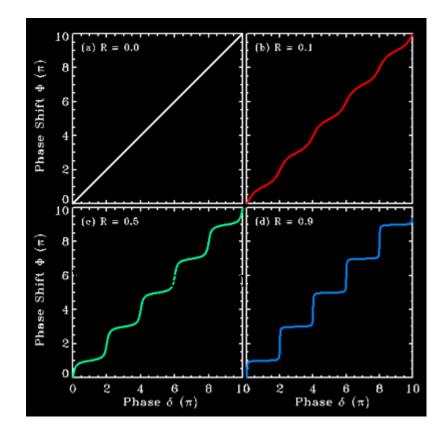
with

$$\delta = \frac{4\pi}{\lambda} nd \cos \Theta$$

Assuming that r_1 is real we have the phase φ of the reflected wave

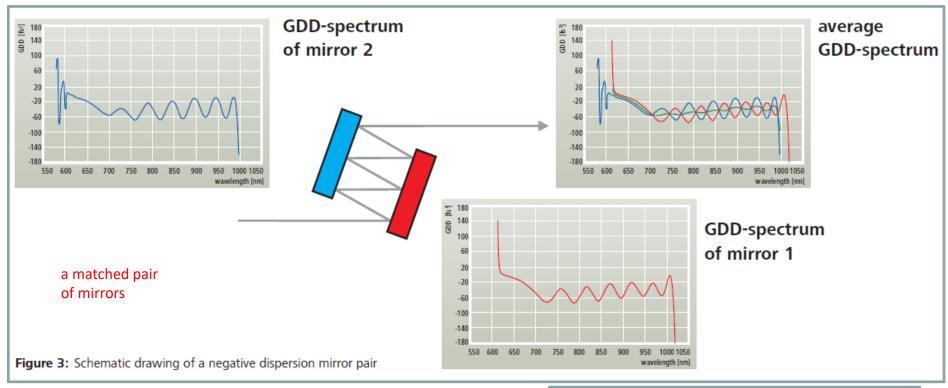
$$\tan\left(\frac{\varphi}{2}\right) = \frac{1+r_1}{1-r_1}\tan\left(\frac{\delta}{2}\right)$$

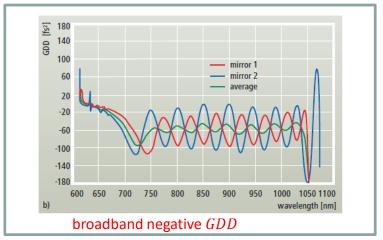


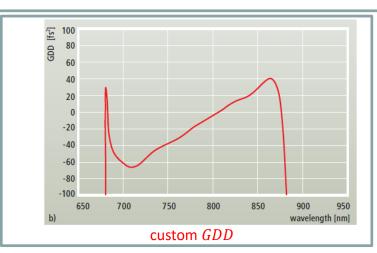


intra-cavity dispersion control, 3

commercial chirped mirrors (Layertech)







selected femtosecond oscillators

Ti:Sapphire (Ti³⁺:Al₂O₃) crystal.

typical specs

Orientation	Optical axis C normal to rod axis	
Ti ₂ O ₃ concentration	0.03-0.25 wt %	
Figure of Merit	> 150 (> 300 available on special requests)	
Size	up to 20 mm dia and up to 130 mm length	
End configurations	flat/flat or Brewster/Brewster	
Parallelism	10 arcsec	
Surface finishing	10/5 scratch/dig	
Wavefront distortion	λ/4 inch	

The quality of crystal is quantized by Figure of Merit: $FOM \equiv \frac{\alpha(\lambda_p)}{\alpha(\lambda_l)}$, with α standing for absorption coefficient,

własności fizyczne

Ti ³⁺ :Al ₂ O ₃	
Hexagonal	
a = 4.748, c = 12.957	
3.98 g/cm ³	
9	
0.11 cal (°C x sec x cm)	
0.10 cal/g	
2050 °C	
4-Level Vibronic	
3.2 us (T = 300 K)	
660-1050 nm	
400-600 nm	
795 nm	
488 nm	
1.76 @ 800 nm	

Ti:Sap fs oscillators – examples of designs

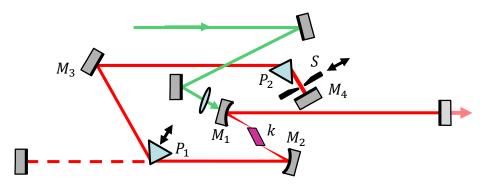
"old" design Ti:Sap with prisms

advantages: one can tune GDD

one can tune wavelength

high power (several W)

disadvantage: long pulse(50-100fs)



 M_1-M_4

- zero GDD mirrors

OC

- output coupler

 P_1, P_2

- prisms (quartz glass, Brewster)

k - sapphire crystal (Brewster)

S

- a slit

Spectra Physics (USA), model Mai Tai eHP

	Mai Tai <i>e</i> HP	
Peak Power ²	>450 kW	
Pulse Width ² , 3	<70 fs ⁹	
Tuning Range ⁴	690–1040 nm	
Average Power ²	>2.5 W	
Peak Power, Alternative Wavelengths ⁵	>70 kW at 690 nm >240 kW at 710 nm >240 kW at 920 nm >38 kW at 1040 nm	
Beam Roundness ²	0.9–1.1	
Astigmatism ²	<10%	
Repetition Rate ^{2, 6}	80 MHz ±1 MHz	
Beam Pointing Stability	<50 μrad/100 nm	
Noise ^{2, 7}	<0.15%	
Stability ⁸	<±1%	
Spatial Mode ²	TEMoo, M ² <1.1	
Polarization ²	>500:1 horizontal	
Beam Divergence ²	<1 mrad	
Beam Diameter (1/e²)²	<1.2 m	

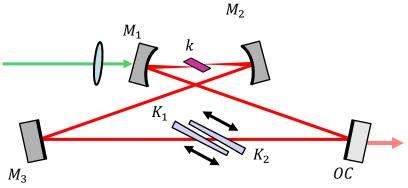
Ti:Sap fs oscylators – examples of designs, 2

"new" Ti:Sap oscillator design – no prisms

advantage: short pulses

disadvantage: lower power

no tuning



 $M_1 - M_3$ - negative GDD mirrors

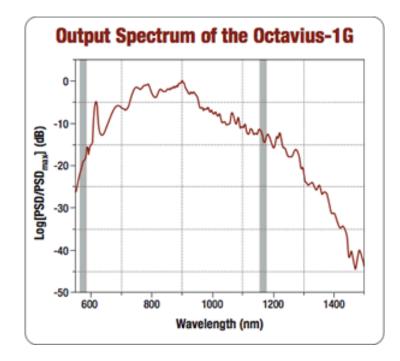
OC - output coupler

 K_1, K_2 - light glass wedges (continuous GDD control)

k - sapphire crystal (Brewster)

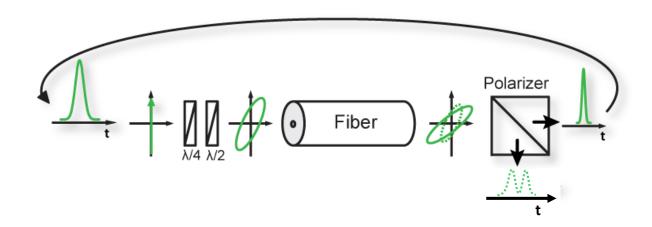
IdestaQE (USA), model Octavius

	Ocatvius-1G	Octavius-1G-HP
Pulse width	< 6 fs	
Bandwidth @-10 dB	300 nm	
Average out power	300 mW @6 W pump	750 mW @ 8W pump
Divergence	< 2 mrad	
Polarization	> 90:1	
Power stability over 1h	+/- 1%	
Dimensions	10.0" x 7.7" (255 mm x 196 mm)	

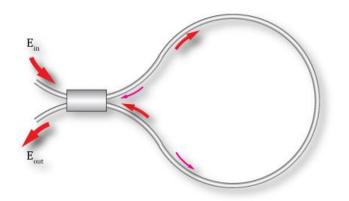


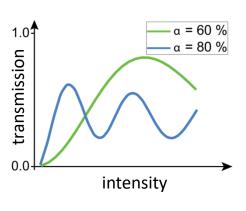
artificial saturable absorbers for fiber lasers

1. Nonlinear Polarization Evolution (NPE)



2. Nonlinear Loop mirror

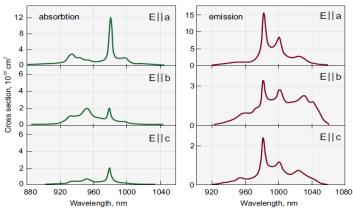




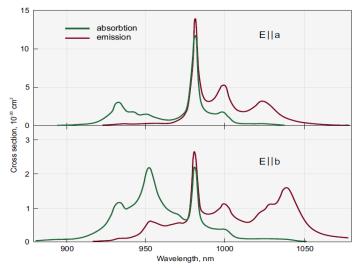
ytterbium fs oscillators - some designs

ytterbium doped crystals:

Yb: $KY(WO_4)_2$ - Yb:KYWYb: $KGd(WO_4)_2$ - Yb:KGW



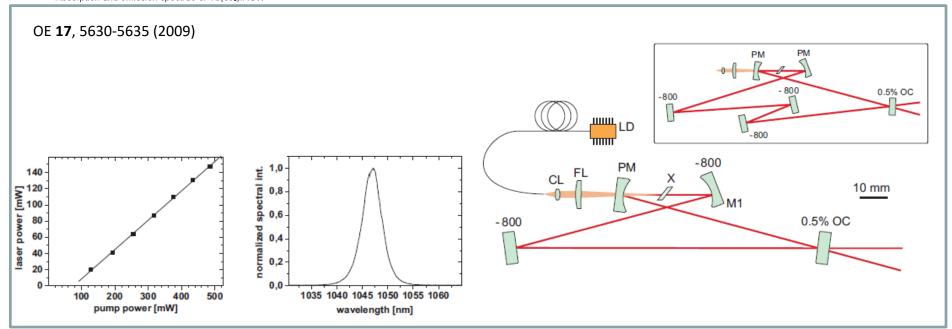
Absorption and emission spectrae of Yb(5%):KGW



Absorption and emission spectra of Yb(5%):KYW

advantages:

- very small Stokes shift little heat generated
- convenient pump wavelength 980 nm (laser diodes)
- good quality commercial SESAMs are available



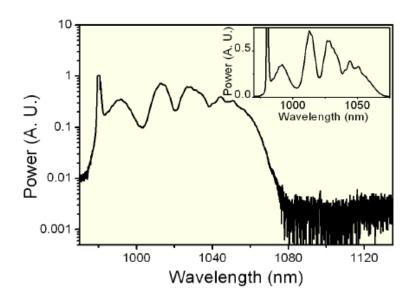
ytterbium-doped fiber fs oscillators

SiO₂ glass fibers doped with Yb:

- classical single mode
- Photonic crystals fibers

pulsed regime is forced by:

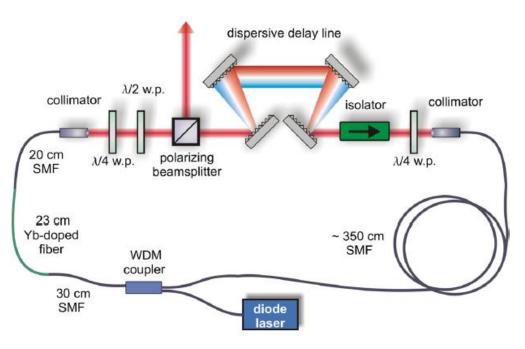
- Nonlinear Polarization Evolution, NPE
- Nonlinear loop mirror
- similaritons
- ANDi



Generation of 36-femtosecond pulses from a ytterbium fiber laser

F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. W. Wise Department of Applied Physics, Cornell University, Ithaca, NY 14853

Received November 14, 2003; Revised December 11, 2003 29 December 2003 / Vol. 11, No. 26 / OPTICS EXPRESS 3550



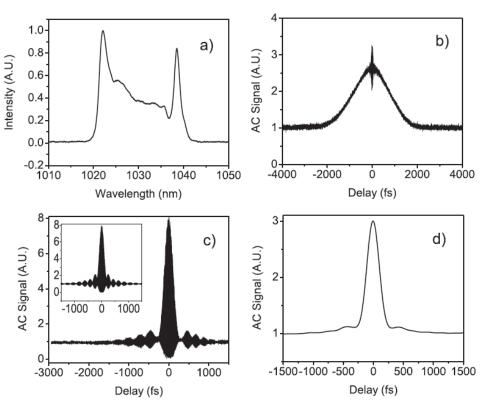
ytterbium fiber fs oscillators - designs

All-normal-dispersion femtosecond fiber laser

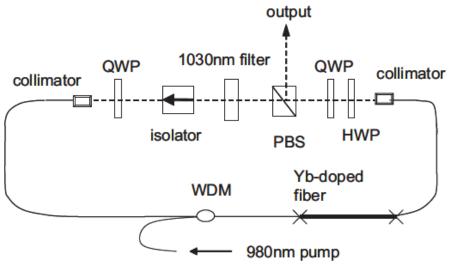
Andy Chong, Joel Buckley, Will Renninger and Frank Wise

Department of Applied Physics, Cornell University, Ithaca, New York 14853

Received 14 July 2006; revised 12 August 2006; accepted 23 August 2006 16 October 2006 / Vol. 14, No. 21 / OPTICS EXPRESS 10095



All-Normal-Dispersion (ANDi) NPE method



170fs, 3 nJ

ytterbium fiber fs oscillators - designs, 2

3500 Vol. 40, No. 15 / August 1 2015 / Optics Letters

Optics Letters

Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror

Jan Szczepanek,¹ Tomasz M. Kardaś,¹ Maria Michalska,² Czesław Radzewicz,¹ and Yuriy Stepanenko^{1,3,*}

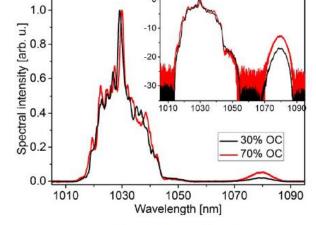
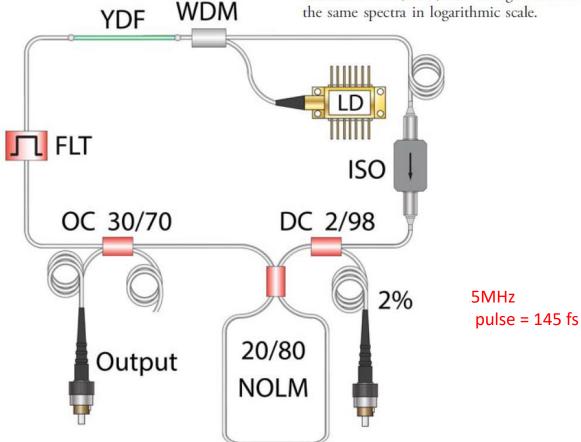
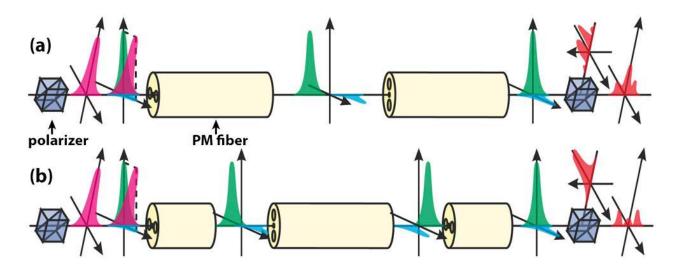
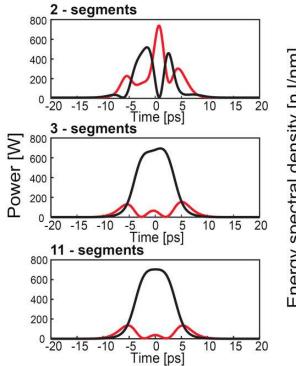


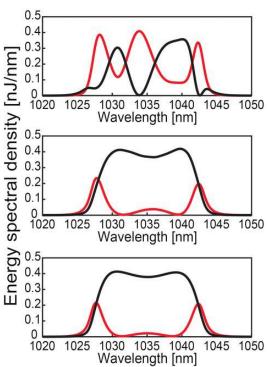
Fig. 3. Output spectra of two different laser designs—configuration with 30% OC (black) and configuration with 70% OC (red). Inset: the same spectra in logarithmic scale.



ytterbium fiber fs oscillators – designs, 3

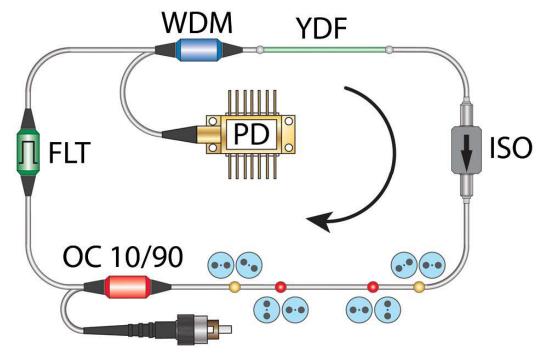


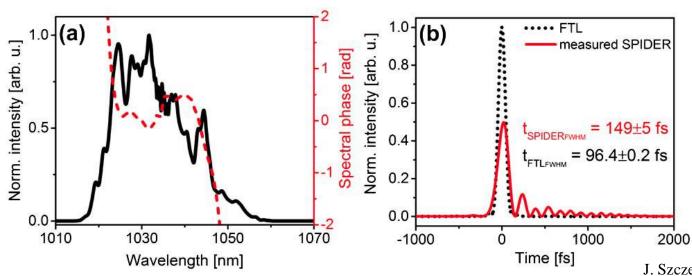




J. Szczepanek et al., *Ultrafast laser modelocked using nonlinearpolarization evolution in polarization maintaining fibers*, Opt. Lett. 42,575-577 (2017)

ytterbium fiber fs oscillators - designs, 4





J. Szczepanek et al., *Ultrafast laser* mode-locked using nonlinear polarization evolution in polarization maintaining fibers, Opt. Lett. 42,575-577 (2017)

amplification femtosecond pulses

Issues specific for short pulse amplifiers:

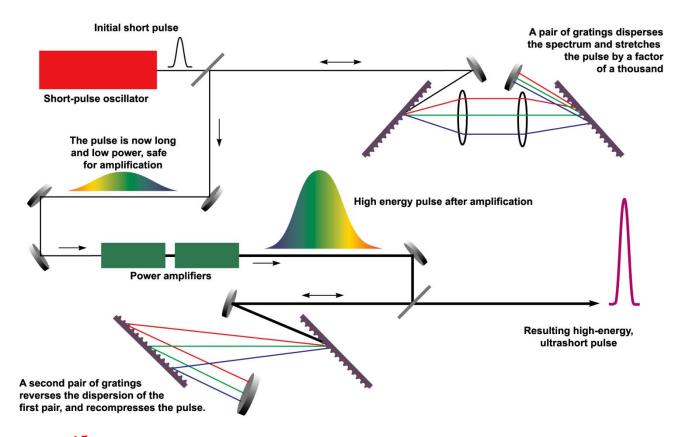
- broad band
- high intensities B inetgral
- high intensities damage

$$B = \frac{2\pi}{\lambda} \int n_2(z) I(z) dz$$

Chirped Pulse Amplification (CPA) technique

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses", Opt.

Commun. 56, 219 (1985)

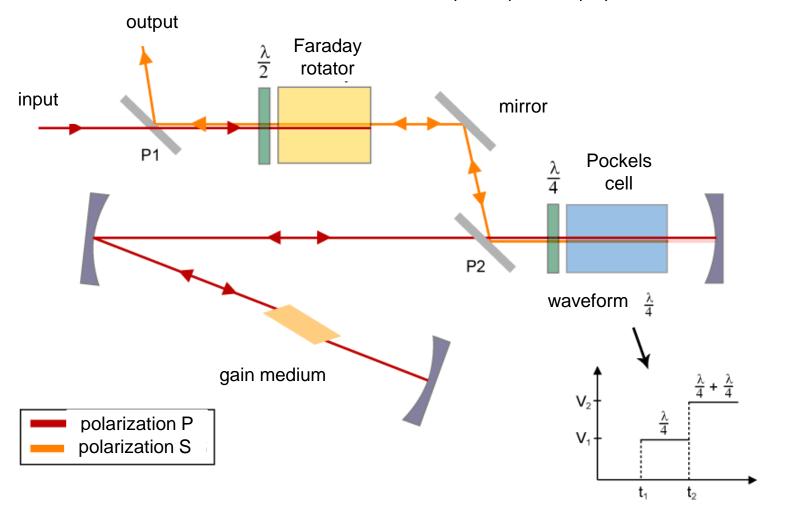


state of the art.: PW (PetaWatt = 10^{15} W) plans (ELI): EW (ExaWatt = 10^{18} W)

nJ→ mJ, regenerative amplifier

idea:

- an amplifier with a cavity
- the amplified pulse is shorter than the roundtrip time
- cycle: capture-amplify-extract



amplifier cavity modelling

• the *q* parameter equation:

$$q = \frac{Aq + B}{Cq + D}$$

with $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ - the matrix of elementary cell

G. Fox, T. Li, Resonant Modes in a Maser Interferometer, Bell Syst. Tech. J. **40**, 453 (1961)

• solution:

$$\frac{1}{q} = -\frac{A - D}{2B} \pm i \frac{\sqrt{1 - \frac{1}{4}(A + D)^2}}{B}$$

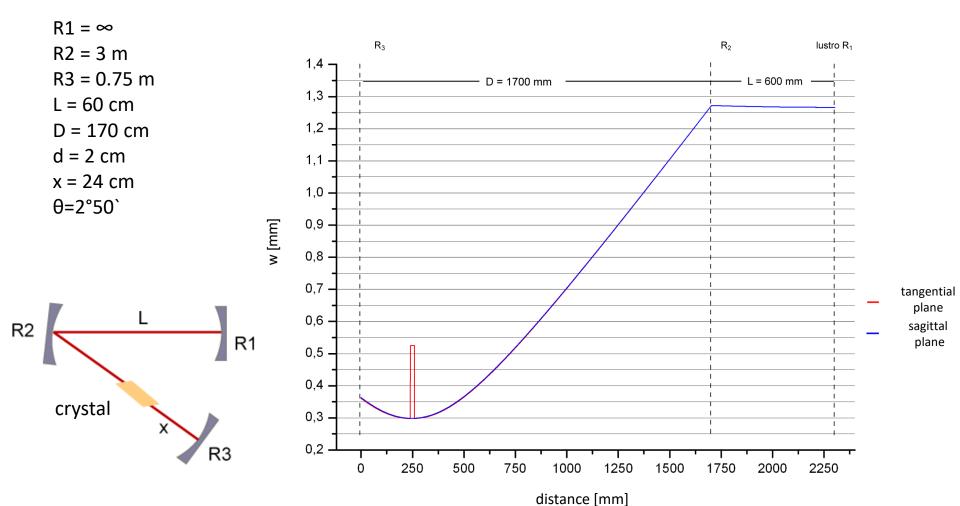
• the resonator is stable when

$$-2 \le A + D \le 2$$

amplifier cavity modeling - fundamental mode size

method:

- elementary cell R3-R2-R1-R2-R3
- calculate q at mirror R3
- propagate the beam in the resonator till the mirror R1
- separate calculations for the tangential and sagittal planes

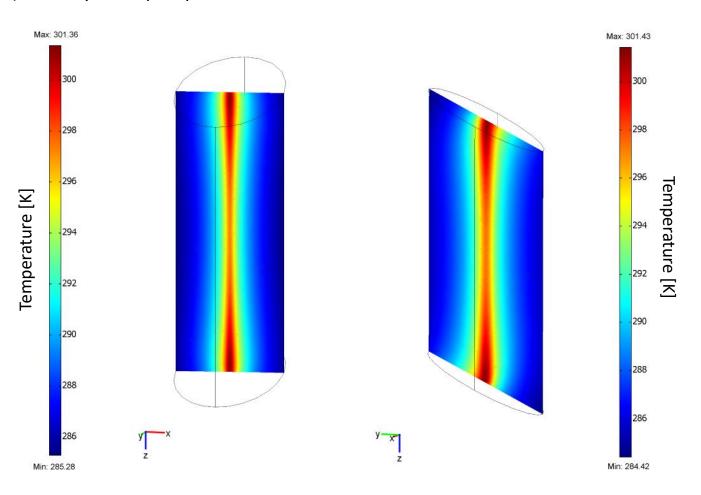


thermal effects in Ti:Al₂O₃ crystal

- more than 34% of the pump power is converted into heat:
- $1-\eta=rac{h
 u_p-h
 u_l}{h
 u_p}pprox 0.34$ for $\lambda_p=527$ nm i $\lambda_l=800$ nm, η quantum efficiency
- the heat is generated in a small volume (< 1 mm diameter)
- large temperature gradient
- thermal lensing, stress-induced birefringence

thermal effects in Ti:Al₂O₃ crystal, 2

Finite Element Method (FEM) modeling – we know the spatial distribution of heat generated by the pump beam. We know the temperature at the cylindrical surface of the crystal (cooler). The crystal is pumped from both ends.

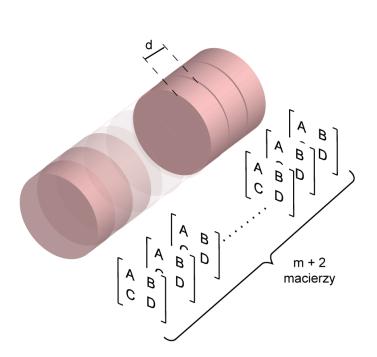


 $P = 50 \text{ W, } w_x = w_y = 0.3 \text{ mm, } T_{cooler} = 283 \text{ K}$

thermal effects in Ti:Al₂O₃ crystal, 3

The optical effects are expressed in the ABCD matric language:

from experiment



$$\Delta n = \frac{\partial n}{\partial T} \Delta T + o(\Delta T^2)$$

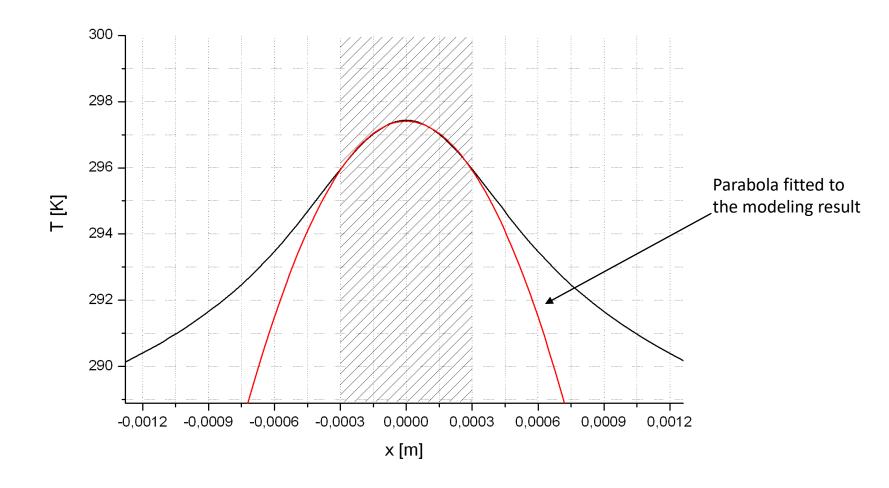
approximate Δn by a parabola

$$n(r) = n_0 \left(1 - \frac{r^2}{2b^2} \right)$$

The matrix ABCD for a slice of thickness d:

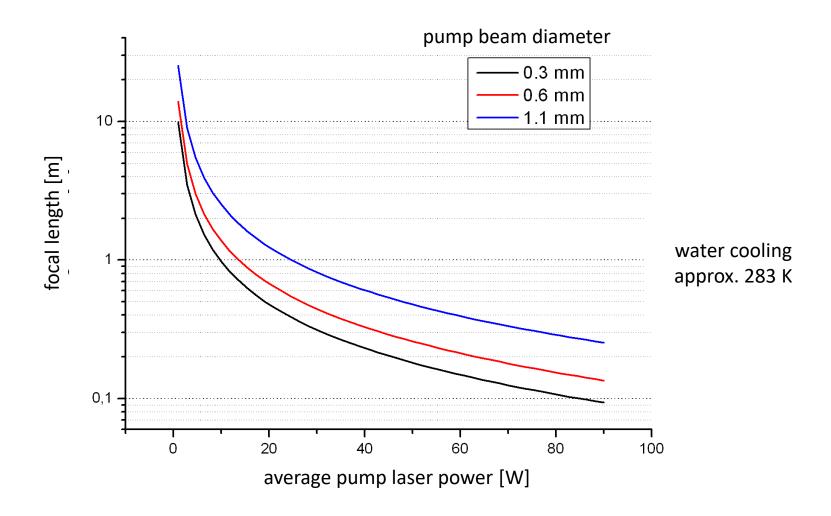
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \cos\left(\frac{d}{b}\right) & b\sin\left(\frac{d}{b}\right) \\ -\frac{1}{b}\sin\left(\frac{d}{b}\right) & \cos\left(\frac{d}{b}\right) \end{bmatrix}$$

thermal effects in Ti:Al₂0₃ crystal, 4



thermal effects in Ti:Al₂O₃ crystal, 5

results:



thermal effects in Ti:Al₂0₃ crystal, 6

what happens if we cool the crytsal?

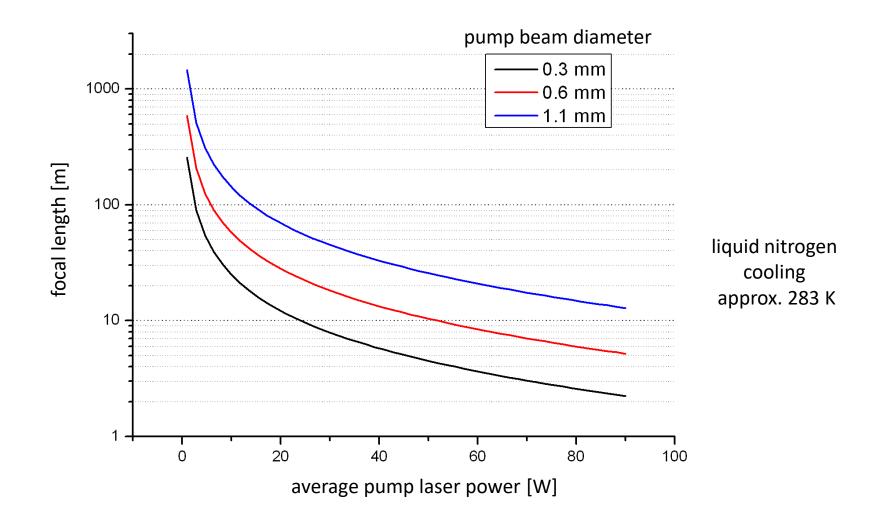
thermal conductivity: 28.6 W·m⁻¹·K⁻¹ at 300 K

1094 W·m⁻¹·K⁻¹ at 77 K

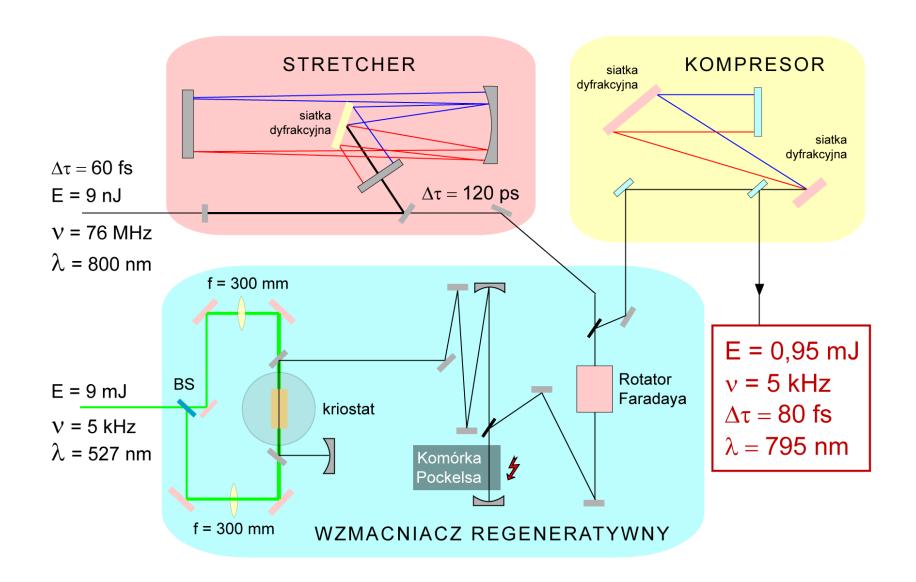
$$\frac{dn}{dT} = 9.87 \cdot 10^{-6} \text{ K}^{-1} \text{ at } 300 \text{ K}$$

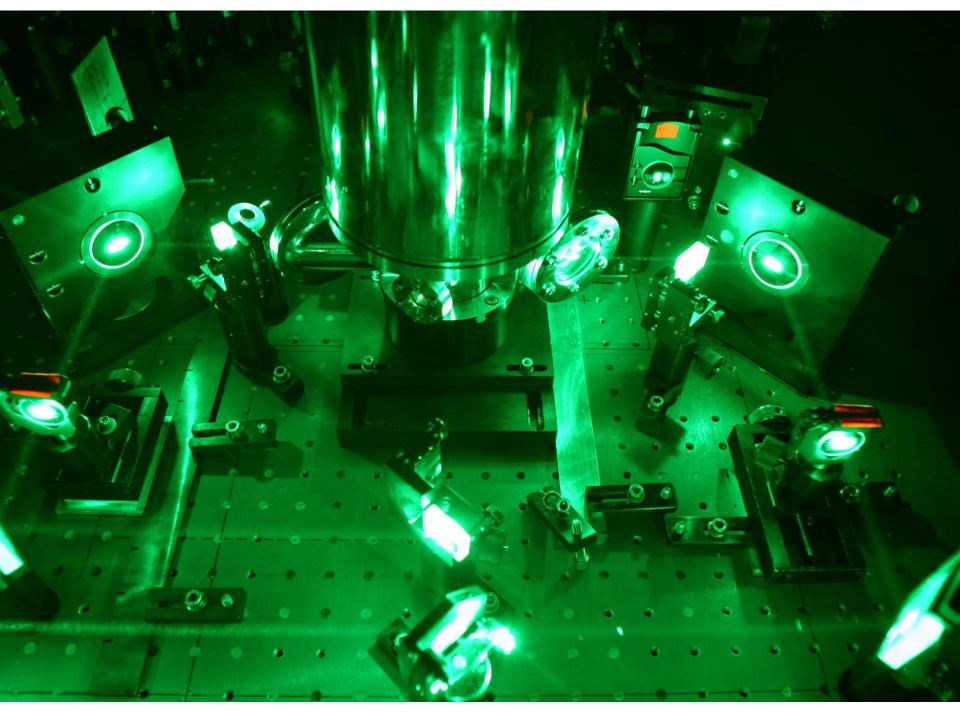
$$\frac{dn}{dT} = 4.48 \cdot 10^{-6} \text{ K-1}$$
 at 77 K

thermal effects in Ti:Al₂0₃ crystal, 6

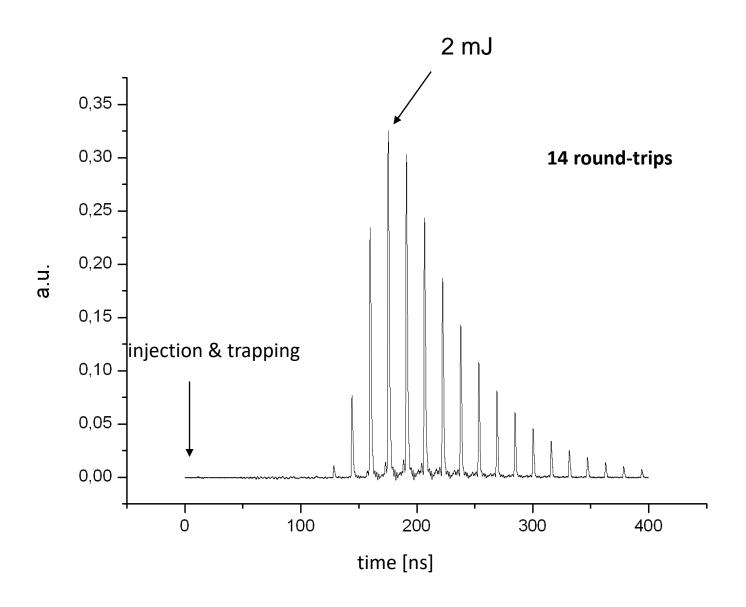


experimental set-up





pulse dynamics inside the cavity



spectrum



Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers

Pulse propagation in a fiber is described by the nonlinear Schrodinger equation:

$$i\,rac{\partial\Psi}{\partial z} = rac{eta_2}{2}\,rac{\partial^2\Psi}{\partial T^2} - \gamma |\Psi|^2\Psi + i\,rac{g}{2}\Psi$$
 dispersion self-phase gain (the lowest term) modulation

Gaussian pulse assumed at the input

