

Asymmetries and their correlations

Rafał Gazda SINS, Warsaw

Analysis Meeting, CERN, 26 January 2006

Outline

- Inclusive and semi-inclusive asymmetries
- Correlations

$$\rho(A_{1}^{d}, A_{1,h+}^{d}), \quad \rho(A_{1,}^{d}, A_{1,h-}^{d}), \quad \rho(A_{1,h+}^{d}, A_{1,h-}^{d})$$

- Unpolarized parton distributions
- Fragmentation functions
- First look at

 Δu_v , Δd_v , $\Delta \overline{q}$

MicroDST Cuts (2004)

Events processed	3159242069
Without badruns	3142508122
Primary vertex	2883052309
PV has mu beam	2883052309
PV has mu'	1745787422
mu' in hodoscope	1610777459
y > 0.1	1362095091
y < 0.99	1362095079
Z + 35 < 85	1187388657
r < 2 cm	1127660250
Q2 > 1 GeV ²	87064994

13-Feb-06

Analysis cuts

No bad spills	77786258
Pt info from DB	77329603
140 <eb<180 gev<="" td=""><td>77085409</td></eb<180>	77085409
z<1	76999297
x>0.004	76927249
y<0.9	76555835
cross 2 cells	61165594
PV in target	54849847

<u>Next</u> runs are grouped to calculate asymmetry in consecutive configuration.

some runs have neither badrun nor grouping flag, e.g. W30: 37848-37866, 37978

Few of them have perhaps only badspills, but not all of them.

e.g.: 37856 – only 1 badspill (27)

37865 – 0 badspill

After all: 85110200 events

Helena's number: 85064782 events

bellow 0.1% differences

The Newest stability list should be used

13-Feb-06

Correlation between inclusive and semi-inclusive asymmetries

Second order weighted method:

Semi-inclusive asymmetry (2002+3+4)

Additional cuts: z>0.2, zlast < 3300

A1 - QPM interpretation

$$A_{1}^{h}(\mathbf{x}) = \frac{\sum_{i,h} e_{i}^{2} \left[\Delta q_{i}(\mathbf{x}) D_{i}^{h} + \Delta \overline{q}_{i}(\mathbf{x}) D_{i}^{h} \right]}{\sum_{i,h} e_{i}^{2} \left[q_{i}(\mathbf{x}) D_{i}^{h} + \overline{q}_{i}(\mathbf{x}) D_{\overline{q}}^{h} \right]}$$

$$A_1^p = \frac{g_1^p}{F_1^p} = \frac{4\Delta u_v + \Delta d_v + 10\Delta \overline{q}}{4u_v + d_v + 10\overline{q}}$$

strange sea neglected!

Due to isospin symmetry:

$$A_1^d = \frac{g_1}{F_1} = \frac{\Delta u_v + \Delta d_v + 4\Delta \overline{q}}{u_v + d_v + 4\overline{q}}$$

$$A_{1,h+}^{d} = \frac{(\Delta u_{v} + \Delta d_{v})(4D_{u}^{h+} + D_{d}^{h+}) + 2\Delta q_{s}(4D_{u}^{h+} + 4D_{\overline{u}}^{h+} + D_{d}^{h+} + D_{\overline{d}}^{h+})}{(u_{v} + d_{v})(4D_{u}^{h+} + D_{d}^{h+}) + 2q_{s}(4D_{u}^{h+} + 4D_{\overline{u}}^{h+} + D_{d}^{h+} + D_{\overline{d}}^{h+})}$$

13-Feb-06

PQD

How to obtain polarized quark distribution:

$$\vec{A} = (A_1^d, A_{1,h+}^d, A_{1,h-}^d, A_1^p, A_{1,h+}^p, A_{1,h-}^p)$$
 A^p from SMC

$$\chi^2 = \left(\vec{A}_{data} - \vec{A}_{calc}\right)^T C^{-1} \left(\vec{A}_{data} - \vec{A}_{calc}\right)$$

$$\boldsymbol{c}_{i,j} = \boldsymbol{cov}(\boldsymbol{A}_i, \boldsymbol{A}_j) \qquad \boldsymbol{cov}(\boldsymbol{A}_i^p, \boldsymbol{A}_j^d) = 0$$

What we need

- Correlation between asymmetries (calculate from multiplicities)
- Asymmetry on proton target (one can get from SMC)
- Unpolarized quark distributions (e.g. from Durham data base)
- Fragmentation functions (poorly known - additional assumptions needed)

Fragmentation function

Lets assume:

$$D_{1} = D_{u}^{\pi +} = D_{\overline{d}}^{\pi +} = D_{\overline{u}}^{\pi -} = D_{d}^{\pi -} = D_{s}^{K -} = D_{\overline{s}}^{K +}$$

$$D_{2} = D_{u}^{\pi -} = D_{\overline{d}}^{\pi -} = D_{\overline{u}}^{\pi +} = D_{d}^{\pi +} = D_{s}^{\pi +} = D_{\overline{s}}^{\pi -} = D_{\overline{s}}^{\pi +} = D_{\overline{s}}^{\pi -}$$

$$D_{3} = D_{u}^{K +} = D_{\overline{u}}^{K -}$$

$$D_{4} = D_{u}^{K -} = D_{\overline{d}}^{K -} = D_{d}^{K -} = D_{\overline{s}}^{K -} = D_{\overline{u}}^{K +} = D_{d}^{K +} = D_{\overline{d}}^{K +} = D_{\overline{s}}^{K +}$$

$$D_{5} = D_{u}^{p} = D_{d}^{p} = D_{\overline{u}}^{\overline{p}} = D_{\overline{s}}^{\overline{p}} = D_{\overline{s}}^{\overline{p}} = D_{\overline{s}}^{p} = D_{\overline{s}}^{p} = D_{\overline{s}}^{p} = D_{\overline{s}}^{p}$$

Used values from EMC for integrals over 0.2<z<1:

 $D_1 = 0.397$ $D_2 = 0.2$ $D_3 = 0.12$ $D_4 = 0.066$ $D_5 = 0.054$ $D_6 = 0.025$

Correlations between asymmetries

• COMPASS note 2004-4

$$\rho(A_1, A_1^{h}) = \rho(N, N^{h}) = \frac{\langle n^h \rangle}{\sqrt{\langle n^{h^2} \rangle}}$$

$$\rho(A+, A-) = \rho(N+, N-) = \frac{\langle n^{h+} n^{h-} \rangle}{\sqrt{\langle n^{h+2} \rangle \langle n^{h+2} \rangle}}$$

total multiplicities

h+ and h- multiplicities

13-Feb-06

Correlation between inclusive and semi-inclusive asymmetries

Correlations

Significantly larger values for COMPASS due to larger acceptance (we have more hadrons in final state)

Unpolarized parton distributions

ZEUS 2005 parametrization used, available online:

http://durpdg.dur.ac.uk/hepdata/pdf3.html

Polarized quark distributions

13-Feb-06

Correlation between inclusive and semi-inclusive asymmetries

Next steps

- Systematics studies
- Particle identification needed
- use new fragmentation functions:
 - from fits to world data, possibly minimizing nr of assumptions (Kretzer et al.).
 - determine from our data?
- include s quarks into calculations
- Flavor separation of sea quarks